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A generalization of the method of the analysis of variance is given to investigate the 
existence and the shape of a periodieity with given length of period. Allowance is made for 
slow variations of the intensi ty of cosmie rays as well as for meteorological effects. In addition 
to the exact test  of the existence of the periodicity, maximum likelihood estimates both of the 
constants characterizing the shape of the periodicity and of the mean square amp]itude of the 
periodic function ate given, together with their  respective statistical errors, in the case of an 
arbi trary number  of meteorological factors affecting the intensity of the cosmic radiation. 

Disadvantages in applying the Fourier method when investigating a periodicity with 
given ]ength of period are pointed out as well as the fact  tha t  the determinat ion of meteorologi- 
cal coeffieients, if done statistically, must  not  be scparated from the analysis of the periodicity. 

I. Introduction 

w 1. I t  is known long since tha t  the intensity of cosmic radiation shows 
periodic variations. Three kinds of periodic variations have, up to now, been 
demonstrated without doubt. The lengths of periods of these ate one solar day, 
about 27 days, and about 11 years, respectively. The shapes of these periodi- 
cities are not constant, especially large variations may be observed in the case 
of the shape of the 27 day variation. 

The airo of this paper is to gire a statistieally correct method, making 
use of the full information available, to detect of else to contest the existence 
of a periodicity with given length of period and strictly constant shape, as 
well as to determine the shape of such a periodic change. 

w 2. The Fourier method, i.e. that  of expressing the shape of the periodi- 
city to be investigated by means of a trigonometrical polynome, has almost 
exclusively been used to investigate periodicities in the intensity of cosmic 
rays with given lengths of period. This method has, however, two serious 
shortcomings: 

2.1. I f  the question to be decided upon is whether a periodicity with 
given length of period does exist of not, ir is not sufficient to eontent oneself 
with determining the first few Fourier coefficients or, as it is sometimes done, 
the amplitude of the first harmonic, rather should the maximum possible 
number of Fourier amplitudes be taken into consideration so as to make use 

* Dedicated to Prof. P. GOMBŸ on his 60th birthday. 
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of the maximum amount of information available in the form of the measured 
data. To calculate the maximum possible number of Fourier coefficients re- 
quites, however, rather tedious calculations. I t  will be shown that  exactly 
the same amount of information can be gained on the basis of the same mea- 
sured data in a way much simpler than that  of calculating Fourier coefficients. 

2.2. If, in addition to proving the existence of the periodicity, the shape 
of the periodic function is also to be determined, the application of the Fourier 
method may lead to difficulties. The Fourier method is justified only in the 
case when the periodic function is really a trigonometrical polynome. Ir  a 
function other than a trigonometrical polynome is approximated by trigono- 
metric polynomes, the approximation obtained bears only a weak resemblance 
to the function to be determined and, in addition to this, the coefficients of the 
polynome approximating the unknown function ate "void"  in the sense tha t  they 
do not have any direct physical meaning, when considered individually; right 
on the contrary, they may be misleading sometimes. Variations of the cosmic 
ray intensity may often be sinusoidal and the second harmonic may also have 
physical meaning in certain cases. Fourier coefficients of the higher order have, 
however, no direct physical meaning in cosmic ray variations; at least, as for 
the present there has been no reason to attribute them any. 

w 3. Both disadvantages mentioned in the preceding paragraph are get 
rid of when approximating the unknown periodic function by means of a 
simple step function instead of a trigonometrical polynome. Numerical cal- 
culation of the heights of the maximum possible number of steps is a t a s k b y  
far simpler than that  of caleulating the maximum possible number of Fourier 
eoefficients. In addition to this, the heights of the individual steps have 
straightforward physical meanings, i.e. they ate equal to the mean values of 
the intensity during the time intervals corresponding to the widths of the 
steps. 

Although the speeial eonditions encountered in cosmic ray investigations 
ate born in mind throughout this paper, the methods outlined and the results 
obtained apply to a large variety of other problems as well. 

II .  Formulation of the problem.  Basic  notat ions  

w 4. Let us denote by n~(v : 1 , 2 , . . . ,  N) the rates of a certain kind of 
cosmic ray particles as observed during N consecutive unir time intervals. 
Let us assume tha t  the measured nv(v -~ 1,2, . . . ,  N) values ate not affected 
by any systematic errors, i.e. that  <ny>, the expected value of n ,  is equal to 
the mean value of the intensity during the unit time interval. 

Furthermore, let us assume that  the stochastic variables n~(v : 1 , 2 , . . .  N) 
ate independent of each other and are distributed normally. These condi- 
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tions are general ly not  met  r igorously,  they ,  however,  can be regarded as 
sufficiently good approximat ions  in m a n y  cases. 

Le t  us t empora r i ly  assume tha t  the variances of all the  variables n,. ate 
equal  to a 2. In  Sect ion VI the more general case with variables n,. having dif- 
ferent  variances a,~. will also be deal t  with. 

w 5. We have  to tes t  the hypothes is  tha t ,  apar t  f rom cer ta in  types  
of changes, the in tens i ty  be a periodic funct ion of t ime with a given period 
length,  q. Fu r the rmore ,  i f th is  hypothes is  turns  out to be t rue,  the  shape of  the  
periodic funct ion is to be determined.  

The unir  of t ime should be chosen in such a way  t h a t  q should be ah in- 
teger,  and the  to ta l  number  of measurements ,  N, should be N = pq ,  where p 
denotes ah integer  number .  The case with p being a non-integer  value  is deal t  
with in Section VI. 

The measured  data,  n~ (v = 1 , 2 , . . .  , N ) s h o u l d  then  be ar ranged to  
f o r m a  mat r ix  n(p,  q) = n with p rows and q columns in such a way  tha t  the  
elements ni j  of the  ma t r i x  should be equal  to n~ in the  following order:  

nty = ny if  v = ( i - -  1) q + j  

(i = 1 , 2 , . . . , p  j =  1 , 2 , . . . , q  v =  1,2 . . . . .  p q )  

p ~ 2 and q ~ 2 will be assumed t h rougho u t  this paper .  
w 6. A few more  nota t ions:  
a) Matrices will always be denoted  b y  bold characters .  Upper  indices 

wr i t ten  in bracke ts  and applied to a ma t r ix  symbol  denote  the  numbers  of 
rows and columns,  respect ively,  of the  matr ix .  These indices will be dropped 
if no ambigui ty  arises by  doing so. 

b) A dot  on the  place of a running  index denotes the  a r i thmet ic  mean  
of the quanti t ies  involved,  when the index replaced b y  the  dot  runs th rough  
its usual range. 

1 p 
E.g. n.i  - -  ,~-' nij  , 

p i=1 

1 p q 
n. .  - -  , ~  .~Y ni j ,  and so on. 

p q  i=1 j = l  

e) Two ident ieal  running indiees wi thin  a single t e rm denotc  summat ion  
ex tended  over  the  usual range of the  ident ical  indiees. 

d) A ba r  over  a symbol  denotes the  es t imated (measured) value  of an 
unknown paramete r .  Thus symbols wi th  bars  represeut  always s toehast ie  
variables.  

e) The var iance of a s toehast ic  var iable  x will be denoted  b y  ax 2. (The 
es t imated value of ax 2 will be denoted  by  r a z and ~ wi thou t  any  index 
denote  the var iance of the stochast ic  var iable  nij and its es t imated  value,  
respect ively .  
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III. The simple step funetion method in the case of a "pure" 
periodicity 

w 7. Let  us assume for the momen t  t h a t  the  in tens i ty  has no changes 
except  of  the hypo the t i ca l  per iodici ty  with the  period length of q. This case 
will be referred to as the  case of a " p u r e "  periodici ty.  The mean values of the 
in tens i ty  during the subsequent  unir t ime intervals  within the length of a 
period should be denoted  b y  a y ( j =  1 , 2 , . . . , q ) .  The  per iodici ty  does exist,  
i f  at  least  two of the aj ( j  = 1,2 . . . .  q) values are not  equal to each other .  
Clearly 

( n i j  > = ay (i  = 1, 2 . . . . .  p (1) 

j =  1 , 2 , . . . , q ) .  

<n• is independent  of the row index,  t h a t  means periodici ty.  
We are thus facing the  following problems:  
7.1 aj( j  = 1 , 2 , . . . , q )  i.e. the  es t imated  values of the parameters  

a y ( j  = 1,2 . . . .  , q) are to  be determined,  toge ther  with the es t imated  values 
of  the i r  respect ive s tat is t ical  errors, a2~. 

7.2 The probabi l i ty  ~ t h a t  the deviat ions of all the  aj ( j  = 1,2, . . . . ,  q) 
values f rom each other  are due only to s tat is t ical  f luc tuat ions  is to  be deter-  
mined.  I f  this p robabi l i ty  turns  out  to be v e r y  small, the  existence of the 
per iodic i ty  ma y  be regarded as proved.  

7.3. a 2 i.e. the  es t imated  value of 

1 q a 2 - -  ~~_" (ay - -  a . )  ~ 

q j = l  

is to be determined,  toge ther  with its s tat is t ical  error,  ~2 is the es t imated  value 
of the  mean  square ampl i tude  of the periodic step funct ion.  

w 8. Problems 7.1 and 7.2 are basic problems of  the  analysis of variance.  
Their  solutions, whieh can be found in t ex t  books,  are as follows (see e.g. [1]): 

8.1 

~j = n.j. (2) 

Le t  us in t roduce the following nota t ions:  

p,  = q ( p  - ] ) ,  

q 
Q1 = .~~ (aj - -  ~.)2 , 

j= ]  

P q 
Q2 :-- . ~  .,~ (n• 2. 

i=1 j = l  
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Since 
0.2 

0-27. - -  

P 

we have 

~,= ~__~ 
P 

8.2 Introducing the notation 

(4a) 

Q~ (4b) pp' 

(.Pe'_ o~ / 
X = I n  

2 [ q - - 1  Q2 

the probability, e, that  the deviations of the quantities d j ( j =  1 ,2 , . . . , q )  
from eaeh other are due exelusively to statistical fluetuatŸ is given by 

= P~-~,v (r > ~), 

where P,,~(~ > x) stands for FIs~~l~'S z distribution with q and r degrees of 
freedom. 

8.3 

a 2 = - -  Q1 Q2 - (5) q pp' 

The problem of determining 0.~j is not treated in the literature. Aceording 
to calculations outlined in Appendix I I  we have 

d~~--= 2Qz [2Q1 ( q -  1)z { p' 1) Q2]. (6) 
pp,q2 pp'(p' + 2) q -  1 

If  p �87 2, this turns into 
0.-~ -- 2Q2 pp, q { ~ + ~). (6*) 

IV. Comparison of the simple step function method and the 
Fourier method in the ease of pure periodicity 

w 9. The Fourier method is based on the hypothesis that  the intensŸ 
l(t), a s a  function of time, t, has the forro of a trigonometric polynome. 

m { 2zttl m, { 2zt ) I/t) = Ao + ,,=~2 A* cos t, q + ,,=1 ~ B~ sin ~, q t . (7) 
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The expected values of the  measured da ta  ate equal to the mean values of 
I(t) as t aken  during subsequent  uni t  t ime intervals:  

I(t) dt = Ao + ff. A~ cos # j - -  + <niJ> = -1  g = l  L q 

-4- .~~ B~, sin j -- 
~,=l L q 

( i -= 1 , 2 , . . . , p ;  j = l , 2  . . . .  , q ;  I m - - m ' l ~ l ) ,  

(8) 

where v stands for ( i - - 1 ) q  + j and 

A~ __ B~, __ sin (g~t/q) 

A~ B* (#~t]q) 

The est imated values of the Fourier coefficients A~(# ~ 1,2 . . . .  , m) and 
B,(# ~ 1 , 2 , . . . ,  m) have to be determine& The max imum possible number  
of the parameters  which can be determined is equal to* q; in par t icular  

where E[x] stands for the largest integer number  per  larger t h a n  x. 
I t i s  well known t h a t  the est imated values of the Fourier coefficients and 

their  s tat ist icM errors ate the following: 

cr L _ (72 
.,zl 0 ~ n . .  .~ Ao 

Pq 

As 2 ~ n ' j c ~  {J 21~--)] ' A s = . __ a- L __ 2 ~  

q j~~ L q Pq 

/~t '= 2 2n. i  sin # 
q 1=1 q pq 

[#=1,2 . . . .  , m ' ~ E [ q - ~ 2 1 ] }  

I f  q = 2 m', thš  

~m, = 1 ,~(_l)Jn.j, ~ , , =  
q 1=1 pq 

(9) 

* Compare,  however ,  [2], where  this fact  is disregarded.  
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I t  should be pointed out  t h a t  also the expression (8) has the  forro of a 
step function.  The step function representat ion of <ni j> is inevitable since the 
number of measurements  during a period is by  all means finite.  Expression 
(8) is, however, considerably more complicated than  the simple expression (1) 
on which the method  outlined in Section I I I  was based. The question arises, 
whether the much more complicated method  based on expression (8) yields 
statistically more information as to the existence of the periodicity,  than  does 
the simple step funct ion method based on (1). I t  will be shown, in what  fol- 
lows, t ha t  the answer is negative. 

Let  be 

m = E  ana  m ' : E  , (9") 

ioe, 

m + m ' + l : q .  

I t  will be shown tha t ,  in this case, the Fourier  procedure is statist ically equi- 
valent to the simple step function method  based on (1). 

w 10. First  it  will be shown t h a t  the est imated value of the mean square 
ampli tude as obtained by  the Fourier  method  and the simple step funct ion 
method are exact ly  the same, i.e. t h e y  are identical second order expressions 
of the quanti t ies ni]. 

A simple ealculation shows t h a t  the mean square ampli tude of the 
function (8) is equal to 

2 b�91 
where 

In order to determine A 2 ir should be noted tha t  

= ~2 _ ~X~ (/* - 1, 2 . . . .  , m) ,  
and 

~ = ~ ~  -~ - -  ~~~  (/x = 1,  2 ,  . . . ,  m ' ) .  

Furthermore ,  ir can be shown by  ra ther  longish e lementary calculations t h a t  

1 [~__m-2 m' -2]  -2 1 
Ag ~- ~-" Bg -~- eq B m, --  . ~  (n.j - -  n..)2 

2 ~=1 q j=l 

Whence, on the basis of (10), (2), and (5), ir can be seen t h a t  

a2 = z~2, 
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i.e. the  es t imated values of the  mean square ampl i tude  of the periodic funct ion 
as ob ta ined  on the  basis of (1) of (8) are ident ical  expressions of the  nq data .  

w 11. We proceed wi th  showing t ha t  the  simple step funct ion me thod  
based on (1), and the  Four ie r  me thod  based on (8) reduce the  (empirieal) 
mean  square deviation of  the  nq values f rom the i r  mean  to exac t ly  the  same 
extent .  The  reduced mean  square deviat ion divided b y  p ' =  q ( p - - 1 )  gives 
the va lue  of ~ .  Thus bo th  procedures lead exac t ly  the  same value of 

a-2 as determined on the  basis of (1) is given b y  

a-~= Q2 (11) 
p '  

(The nota t ions  are explained in Equs.  (3)). In  the  case of the Four ier  me thod  we 
have,  on the other  hand,  

(7 2 { ~o ~~~ ~.2~(j ~j 1 
~=1 j=l u=l L q 

- -  ~~ /~~ sin # j - -  - 
/~=1 T i 

(12) 

I t  can be shown by  direct  calculat ion t h a t  the  r ight  hand  sides of Equs .  (11) 
and (12) are identical  second order  expressions of the  values n q  if  (9*) is t rue.  

w 12. I r  seems to be wor th  while to emphasize t h a t  the  unbiased esti- 
mate  of the  mean  square ampl i tude  of the periodic funct ion (8) is given b y  

A 2 =  1 A~ + Ÿ -.~ eq B-2m �9 , 
2 p ~ l  

i.e. not b y  the expression 

U 2 = A. + ~" B + ~q B~., 
2 ,=l  

which is used in m a n y  cases in spite of the fac t  t h a t  U 2 is not ah unbiased 
est imate  of AL Ir  can be easily seen t h a t  in all cases (except  t h a t  of nq  = 
constant)  

U 2 > A 2 and thus  < U2> > A 2 . 

The  difference U 2 -  A ~ is large jus t  in the  delicate cases when the  stat is t ical  
errors of the coefficients A~, B~ ate large and the  existence of the per iodic i ty  
is quest ionable.  The incorrect  value U 2 un jus t ly  favours  the  hypothes is  t h a t  
the  per iodici ty  exists. 
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V. The simple step function method in the case of mixed 
periodicity 

w 13. The in tens i ty  of any  component  of the cosmic radia t ion shows, 
in all cases, also systematic  variations others than  the periodici ty to be in. 
vest igated (cases of " m i x e d "  periodicity). There are sys temat ic  variat ions 
like the absorption effect of the decay effect, which depend on quanti t ies ,  
like the baromctr ic  pressure of the height  of a eertain isobaric level, which 
in principle, can be measured regular ly and have thus  known values /~qk 
( i = 1 , 2  . . . .  , p ;  j =  1 , 2 , . . .  q; k =  1,2 . . . .  , r )  during the t ime interval  
(i, j).  (Let us take  e.g. ~~Jl to be the average barometric  pressure dur ing the 
t ime interval  (i, j),/~• the average height  of the 100 mb isobaric level during 
the name interval,  and so on.) Supposing tha t  the in tens i ty  be a linear funct ion 
of the quanti t ies  /~ijk(k = 1 , 2 , . . . ,  r) we have, in the case of a periodici ty 
with the period length q 

(ni j> : aj+ ~ijk bk (13) 
( i = l ,  2 , . . . , p ;  j = l , 2 , . . . , q ;  k = l ,  2 , . . . , r )  

where bk(k = 1,2, . . . ,  r) are unknown parameters ,  e.g. b 1 the  part ial  baro" 
metric coefficient, b z the decay coefficient, and so on. 

Ir  can always be assumed, wi thout  any  restriction of generali ty,  t ha t  the 
(sum of any  type  of the quantities/~ijk taken  for the to ta l  t ime of measurement  
is zero i.e. 

t~..k = 0 (k = 1, 2, . . . ,  0 .  

Note,  however,  t h a t  generally 

~.jk # 0 ,  E.k # 0.) 

Ir  would be incorrect to determine the values �91 = 1 , 2 , . . . ,  r) sepa- 
rately,  on the basis of the equations 

<ni]> = t~i]k b~ 

and then  to use the "cor rec ted"  values n*j = nij--~i]k bE to 
~j(j----- 1 , 2 , . . . ,  q) on the basis of 

<n~.> = a~ 

since in general 
b* ~= bk and a~ # aj 

determine 

and the values b*(k = 1 , 2 , . . ,  r) and a~(j = 1 ,2 , . . . ,  q) have no physical 
meaning. 
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Sometimes it may  be of advantage to use corrected values ntj--/~ukbŸ 
bk. This may be the case when the total time of  measure- with predetermined - '  

ment is short and there ate previous measurements available with considerably 
longer duration thus yielding considerably more exact values bŸ I t  is, however, 
indispensable tha t  these predetermined coefficients should have been calcul- 
ated on the basis of equations aUowing also for the periodicity in question, 
i , e .  

t t p / 
(rtij  > : aj -~- ~iy¨ bk 

( i : l ,  2 , . . . , p ' ;  j = l ,  2 . . . .  , q ' ;  k : l , 2 , . . . , r '  

with 

p ' � 8 7  q ' = q ,  r' = r), 

where nŸ are the results of the older measurements and /~Ÿ are the meteo- 
rological factors pertaining to them. 

w 14. Problems of the type  of Equ. (13) have also been dealt with in the 
l i terature (see e.g. [3]). The solutions found are, however, incomplete in the 
sense tha t  they do not give answers to all questions raised in cosmic ray in. 
vestigations. 

A full t rea tment  of the problem will be given in what follows. The metbod 
applied will be tha t  of the maximum likelihood which allows a compact 
t rea tment  of the problem on the one hand, and may be used also in cases, 
when the n U variables ate not distributed normally, on the other. 

w 15. The problem must be formulated in a more general way than that  
indicated in Equ. (13) so as to allow for systematic variations which are not of 
the type  ~iyk bk. There may be e.g. peri0dic variations with a period length 
other than q of aperiodic changes, like a slow recovery after a Forbush effect. 
The general character of these systematic variations must be known a priori 
or, at least, a reasonable hypothesis must be made as to the general t rend of 
these variations. New terms containing some unknown parameters must 
then be inserted into Equ. (13). The estimated values of these parameters can 
be determined by  means of the maximum likelihood method as discussed 
below. 

No special hypothesis has to be made as to the general character  of the 
remaining systematic variations if these ate "slow",  i.e. the changes due to 
them during the time q are small as compared to ~• where a 2 stands for 

1 q " ( a j  - a. )  ~ 
q T ~  

as before. "Slow" systematic variations can be approximated by  a step 
function in which the width of the steps are equal to q. Denoting the heights 
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PERIODICITIES OF COSMIC RAY TIME SERIES 533  

of the steps by ci Equ. (13) becomes 

<%> = ci + aj +/~;jk bk, 
q = 0 *), 3..k = 0, 

( i = 1 , 2 , . . . , p ;  j = l , 2 , . . . , q ;  k = 1 , 2  . . . .  , r)  

(14) 

of, in a more symmetric form: 

<n;j> = A + ce + aj +/~0~ bk, 

c . = 0  *, a . = 0  *, f l . . k=0 ,  

( i =  1,2 . . . .  , p ;  j : l ,  2 . . . . .  q; k =  1,2, . . . , r ) .  
(15) 

I f  the systematic variation characterized by the constants ci is slow 
enough, then the width of the steps may be chosen to be larger than q, e.g. 
an arbitrary integer multiple of q. Alternatively, a "slow" variation can be 
approximated also by a polygonal line connecting equidistant points separated 
by the distance q of ah arbitrary integer multiple of q. The most suitable 
hypothesis as to the form of the slow variation must be chosen individually 
in each case on the basis of eareful consideration of the circumstances. 

The problem as specified by Equ. (15) will be dealt with in what follows. 
I t  can be seen tha t  

(n. .)  ---: A, 

i.e. A is the average intensity as taken during the total time of measurement. 
Again the problem is a threefold one: 

(I) Unbiased estimated values of the parameters A, 

A , c i ( i :  l , 2  . . . .  , p ) ,  ay(j--=l,2, . . . , q ) ,  b k ( k =  l , 2  . . . . .  r) 

have to be determined together with their respective statistieal errors and 
covariances. 

(II) The probability has to be ealculated, tha t  the deviation from zero of the 
estimated values ~j(j = 1 , 2 , . . . ,  q) are due to statistieal fluctuations 
alone. 

(III) Ah unbiased estimated value of the quanti ty 

1 q 
a2=  2 a~, 

q j=l 

i.e. the mean square amplitude of the periodieity in question, has to be 
cletermined together with its statistical error. 

* Without this (these) assumption(s) the prob]em would become indeterminate. 
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w 16. Le t  us in t roduce  the  following nota t ions :  

bm,~=l  if m = n  and ~mn=O if m=~=n. 

T h e  t ranspose of the  ma t r i x  M (m'~) should be denoted  b y  ~ll (n'm). 
The  inverse of the  ma t r i x  M consisting of the  elements M q  should be 

denoted  b y  M +, the  elements  of M + b y  M~. 
i(m) should denote  a un i t  ma t r ix  with m rows and columns. 
j(m,,) should denote  a ma t r ix  whose elements  ate all equal to  1, and 

0 (ro'n) a ma t r i x  with elements  aH equal  to 0. 

B -----B (r,r) should denote  the  ma t r lx  
wi th  elements  Bkk" ~ flijk flijk" , 

B* -~~ B *(r'r should denote  the  m a t n x  
with elements  

B~k" -= Bkk - -  pf l .  ijk fl.jk" - -  qfli.k fli.k" , 

N = N(r,l~ should denote  the  m a t n x  
with elements  

N k  = nij flUk - -  p n . j  fl.j› - -  qni.  fli.~, 

Bc = B~ p'r) should denote  the  m a t n x  BŸ = fli.k, 
with elements  

Bo = B~,r ) should denote  the  ma t r , x  
with elements  B]k = fl . jk,  

-~e = ,~~p,r) should denote  the m a t n x  
with elements -~cl, =- fli.k' B~,~, 

-~a = �91 should denote  the mat r lx  �9 * +  
with elements "/~Ÿ =-tS,jt~ B k  k': 

~cc 
= ~~p,p) should denote  the m a t n x  

with elements 

1 1 
'~('~ii f l i 'k "~Ÿ ~-" " (~ii" 

q Pq 

, ~ s c =  .l~~{P'q>ac should denote  the m a t n x  
with elements "/~~Ÿ = ~i 'k  "~/~~aR :=- f l ' jk  " ~ Ÿ  

. ~ ~ = ~ ~ ~ q )  should denote  the ma t r lx  
with elements 

,~~j~, = fl.jl~-J)j%+ 1 6j/ 1 

P P q  

I t  can be seen easily t h a t  all quadra t ic  matr ices defined above are symmetr ica l .  

w 17. (Problem I of w 15). 
According to  the  me thod  of m a x i m u m  likelihood, unbiased est imates  

of the  parameters  A, ct, a j, bk can be ob ta ined  (see e.g. [4]) as the  solutions 
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of the  s i m u l t a n e o u s  equa t ions  

where  

wi th  

OP 
= 0  

OA 

8 P  
- - 0  

8ci 

8P 
- - 0  

Oaj 

OP 
- - 0  

Obk 

Pq c . = O  
a 2  

Pq a . = O  
(7 2 

(i = 1, 2 . . . . .  p)  

( j  = 1 ,  2, . . . , q )  

(k = 1, 2 . . . . .  r) 

1 I' 
P = In P*  - -  - -  Pq Ÿ c .  - - -  

0.2 

Pq 2aa. 
0.2 

Pq 2 c a n d  Pq 2 a 
0.2 0-2 

(16) 

d e n o t i n g  L a g r a n g e  mul t ip l ie rs ,  a nd  

p q 1 
P * = H I I  i=l j=l  V2 Ÿ 

[1 ] 
exp - -  - -  (nq - -  <n~1>)2 

2~r 

i.e. P* s t ands  for  t h e  jo in t  d i s t r i bu t i on  of  the  s tochas t i e  va r i ab les  no(i = 1,2, 

�9 . . ,  p ;  j = 1 , 2 , . . . ,  q). I f  t he  va r i ab les  ni• are n o t  i n d e p e n d e n t  and  n o r m a l ,  
P*  has  a n o t h e r  forro  which ,  a t  a n y  t a t e ,  m u s t  be k n o w n .  T h e  expl ic i t  f o r m u l a e  

g iven in w h a t  fol lows refer  to  the  case w h e n  n U are  i n d e p e n d e n t  and  no rma l .  
The  so lu t ion  o f  t he  s i m u l t a ne ous  equa t ions  aro t he  fo l lowing:  

-ci = n i .  - -  n . .  - -  f l i . k  B ~ k  + Nk" 

(i = 1, 2 . . . .  , p )  
* +  �9 Ej = n. i - -  n.. - -  fl.jk Bkk' N~ 

( j  = 1, 2 . . . . .  q) (17) 

/~k = B~k +' Nk" 

(k = 1, 2 . . . . .  r) 

2~ - -  2~ = 0 . 
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In  order  to obta in  the  stat is t ieal  errors and covarianees of  the  es t imated  
values as ind ica ted in  Equs.  (17), let  us write down the  ma t r ix  of the  simul- 
taneous  equat ions (16) mult ipl ied by  - -1 .  This is a ma t r ix  of p q- q q- r q- 3 
rows and  eolumns and is eomposed of submatr iees  in the following way:  

M =  1 
{y2 

p q  qj(1,p) pj(1,q) O(1,r) 0 0 

qj(p,1) qI@ J(p,q) qB~P, r) qJ~p,~) o(q, 1) 

pi(q,1) j(q,p) pi(q) pB(aq,r) O<q,1 ) pj<q,l} 

o(r, 1) q~(cr,P) p~(ar,q) B(r,r) O(r,1) O(r,1) 

0 qj(1,p) 0 (l'q) 0 (l'r) 0 0 

0 0r pj<l,q) 0 r 0 0 

The  inverse  of M i s  

M+ = cr2 

1 
. O(l,p) O(1,q) 0(1, r) 
Pq 

o(q'l) .~ac~( q'p~ ~q~q) _.~~,~) 

O(r, 1) ~~7~(r,P) --~7~(r,q) B*+(r,r) 

1 1 _ _  J(I,p) O(1,q) O(1,r) 
Pq Pq 

1 1 O(1,p) j(1,q) O(1,r) 

Pq Pq 

1 1 

Pq Pq 

1 _ _  j(p,1) O(P,1 ) 
Pq 

o(q,1) 1 j(q,l~ 

Pq 
O(r,D o(r,1) 

0 0 

0 0 

The meanings  of the  symbols  can be found in w 16. 
Le t  ~/~'+ be the  ma t r i x  obta ined  when  delet ing t h e l a s t t w o  rows and 

columns i n M  + �9 ~/ff+is ,  of  course, degenerate  because of c . = a .  = 0 and is 
of the  r a nk  p + q -~ r - -  1. Le t  s' and s be in teger  numbers  such t h a t  1 ~  s '  

p and 1 ~ s ~ q. Le t  us omit  therows andeolumns  o f ~ f +  s tanding on the 
places numbered  1 A-s' and 1 -~ p + s. The resuh ing  mat r ix ,  ~/J's+s is the  co- 
v a ¡  ma t r ix  of the  variables  A, ~;(i = 1,2, . . . ,  s ' - - 1 ,  s '  A- 1 . . . .  , p) ,  
~j(j : 1,2, . . . ,  s - -  1, s A- 1, . . . .  q), �91 : 1,2 . . . .  , r). 

I t  can thus  be seen t h a t  A is independen t  of the  measured  values  of  all 
remaining parameters  and has the  es t imated  v a r i an t e  

a 2 ~ 1 a". 

Pq 
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The es t imated values of the parameters  ci, ~j, �91 are not  independent  of 
each other. Their es t imated variances ate the diagonal elements of the matrices 
~~ .5~c~, ~ ~~~ and ~~ ~}~* + respectively; i.e. 

a~, = ~Ÿ237 z~ (with i' = i) 
o-2a__,.---- ~q~q (with j '  = j )  

~�91 "~*~ (with k ' =  k) 

(18) 

I t  can be eas i ly  seen tha t  the  est imated value of a 2 is 

0"2 ~__ - -  
1 

( n , / -  ¡ 3 (nej - ¡ = q' 

- -  1~ [nij  ni j  - -  p q  A z - -  qni .  -6g - -  p n . j a j  - -  nij  fli]k � 9 1  
t 

q 

(19) 

where q" : ( p - -  1 ) (q - -  1) - -  r and 

¡ = .4 + ~; + ~j + t~ijk bk. 

The qua n t i t y  q" ~2/a2 is a stochastic variable with a Z 2 d is t r ibut ion  of q' 
degrees of freedom. 

On the  basis of the  iden t i ty  

P q P q P q 

2 '  . 2  (n;j - -  n. .)~= 2 2 ,  ~ (n,j -- ¡ + . 2  ~" (-c' + ~J + fl'J~ �91 
i = I  j = l  i = 1  j = l  i - 1  j = l  

making use of the theorem of COCHnA~ [5] and FISHER'S lemma,  it  can be 
seen t h a t  all quanti t ies  n q - - ¡  (i = 1 , 2 , . . . ,  p i  j = ],2, . . . .  q) are in- 
dependent  of A, ti (i =:- 1 , 2 , . . . ,  p) ~ ( j  = 1,2, . . . ,  q) and �91 (k = 1,2, . . . ,  r) 
Thus,  e.g., (n  U -  ¡  U -  ¡ is independent  of f(fil,  ~2 . . . .  , ~q), this 
la t ter  being ah a rb i t ra ry  funct ion of the variables al, a2, . . . ,  ~ q .  

w 18. (Problem I I  of w 15). In  order to calculate the probabil i ty  e t h a t  
the deviations from zero of the values ~y (j = 1,2 . . . .  , q) are due to stat ist ical  
f luctuat ions  alone, let us introduce the  following notat ions:  

~s should denote the  mat r ix  

a 2  'q-l) = I1~1, ~2 . . . . .  a-~_l, ~~+1 . . . . .  ~q II 

with s being an integer number  chosen arbi t rar i ly  wi th in  the  in tcrval  

l < s ~ q .  
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• q - - l , q - - 1  should be the  m a t r i x  ob ta ined  when  omi t t ing  the  row and 8 

co lumn in the  m a t r i x  (�91 n u m b e r e d  s. ~ t 2 a  

Firs t ,  let  us calcula te  the  p robab i l i t y  es t h a t  the  deviat ions  f rom zero 
of the  e lements  of  ~s a te  due only to s ta t i s t ica l  f luc tua t ions .  

The  covar iance  m a t r i x  of the  e lements  of  ~s is a2~s.  Assuming  aj 
-----<~j> = 0 (j  = 1,2, . . . ,  q) the  jo in t  d is t r ibut ion  funct ion of the  e lements  

of  ~~ is g iven b y  

(2~r)q_l/2 exp -- - ~  ~s~  + as , 

where D + s tands  for the  d e t e r m i n a n t  of  the  m a t r i x  

1 _ _ ~ +  
S "  

(72 

h is well known  t h a t  the  q u a n t i t y  

is d i s t r ibu ted  according to a Z 2 d is t r ibut ion  with q -  1 degrees of  f reedom.  
As it  was shown a t  the  end of w 17 (n i j - -n i j ) (n•241  is i n d e p e n d e - t  
of  a n y  func t ion  of al ,  a2 . . . . .  iiq thus  ~ and  Qs are i ndependen t  of  each other.  
As a consequence,  the  q u a n t i t y  

1 1 ~ s ~ s  + 
y~ = - ~  la  

q - -  1 az 

is d i s t r ibu ted  according to FXSHER'S Z dis t r ibut i0n wi th  q - -  1 and q' degrees 
of f reedom.  Denot ing  this  l a t t e r  d is t r ibut ion  b y  Pq-l,q, (~ > z) the  resul t  is 
ob ta ined  t h a t  

es = ~ - l , q  (~>YA" (20) 

App ly ing  the  t h e o r e m  p r o v e d  in Append ix  I I I  i t  can be  seen t h a t  -as~s+ ~, 
is i ndependen t  of  s and,  a s a  consequence,  the  same  is t rue  also for Ys and  es 
I t  is therefore  jus t i f ied to  regard  the  va lue  e 1 = e 2 . . . . .  eq = e a s  being 
the  p robab i l i t y  t h a t  the  devia t ions  f rom zero of the  values ~j ( j  = 1,2 . . . .  , q) 
ate  due to s ta t is t ical  f luc tua t ions  alone. The  va lue  of  e ---- es is thus  de te rmined  

b y  Equs .  (20). 
w 19. (P rob lem I I I  of  w 15). Since 

~=a-]--~-~-~~~ ( j =  1 ,2 ,  . . . , q ) ,  
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the re fo re ,  t a k i n g  in to  a c c o u n t  E q u .  (18), an  u n b i a s e d  e s t i m a t e  of  a 2 is 

a - ~ =  1 ( ~ j ~ j - - ~ ~ 7 a - ~ ) .  (21) 
q 

Calcu la t ions  ou t l i ned  in A p p e n d i x  I I  show t h a t  t h e  e s t i m a t e d  va lue  o f  the 
v a r i a n c e  of  a 2 is e q u a l  to  

a,-- q--q-- 2~j3~jj'a',~j --(q"-~JJ"-~Ÿ237 "-~J'/') (22) 

the v a l u e  of  ~ be ing  g iven  w i t h  E q u .  (19). 

VI.  The case  of  the ineomple te  matr ix  n with  e lements  of  unequal  
variances* 

w 20. I r  m a y  h a p p e n  t h a t  t h e  m e a s u r e m e n t  of  t he  i n t e n s i t y  <n/y> a n d / o r  
some  of  t he  q u a n t i t i e s  flijk was  i n t e r r u p t e d  du r ing  ce r t a i n  i n t e r v a l s  (i, j ) ,  and  
t h u s  t h e  c o r r e s p o n d i n g  n i / a n d / o r  flijk va lue s  are  miss ing .  I t  m a y  also h a p p e n  
t h a t  t h e  v a r i a n c e s  of  t he  m e a s u r e d  q u a n t i t i e s  niy are  n o t  equa l  t o  each  o ther .  
T h e  so lu t ions  of  t h e  t h r e e  p r o b l e m s  f o r m u l a t e d  in w 15 m a y  t h e n  be  f o u n d  on 
the  fo l lowing  l ines.  

L e t  us d e n o t e  t h e  v a r i a n c e  o f  ni j  b y  

whe re  t he  f ae to r s  l/wij m u s t  be  k n o w n  a p r io r i  and  a ~* is to  be  d e t e r m i n e d .  
F u r t h e r m o r e ,  let  be  

/ l i j  = wiy i f  t h e  va lues  nty, flij2, f l i J z , . . . ,  flijr a te  all ava i l ab l e ,  
~ i j  = 0 i f  a t  l eas t  one of  t he  va lue s  niy, f i l  j l ,  ]~ij2, " " ", ~ i j r  i s  miss ing .  
I f  a m o n g  t h e  va lue s  Llil, ~liz, �9 �9  �91 t h e r e  is no t  m o r e  t h a n  one d i f f e ren t  f r o m  
zero,  t he  i t h  rows  o f  t he  m a t r i e e s * *  n a n d  ~ k ( k =  1,2, . . . ,  r) shou ld  be  de le t ed  
and  the  n u m e r a t i o n  of  t h e  rows shou ld  be  r e a r r a n g e d  a e e o r d i n g l y .  

I r  n o t  m o r e  t h a n  one  a m o n g  t h e  q u a n t i t i e s  zŸ , Ll2y , . . . ,  3py is d i f f e ren t  
f r o m  zero,  t h e  m e a s u r e m e n t  m u s t  be  c o n t i n u e d  un t i l  a t  l eas t  t w o  of  t h e  zJlj , 
J2j ,  �9 �9 -, Llvj, Ap+I,j . . . .  , Llp+p,,j v a lue s  b e c o m e s  d i f f e ren t  f r o m  zero,  and  the  
va lue  p -{- p *  shou ld  t h e n  be  d e n o t e d  b y  p .  

T h u s  a t  l ea s t  t w o  e l emen t s  in each  r o w  and  c o l u m n  of  t h e  m a t r i x  zl(v,q ) 
are  d i f f e ren t  f r o m  zero.  

* Identical indiees do n o t  mean summation in this ehapter. 
** ~k(P,~9 stands for the matrix with elements flijk (i = 1,2 . . . . .  p; j = 1,2 . . . . .  q) 
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The values niy, flifl~(k = 1,2, . . . ,  r) will, in wha t  follows, never  occur 
wi thou t  being multiplied by  ZI U. Thus arb i t ra ry  values (e.g. 0) m a y  be wri t ten  
in the place of n i /and  fliyk (k = 1,2 . . . .  , r) if  Aij = O. This way the b lank plaees 
in the matriecs n and ~k (k = 1 ,2 , . . . ,  r) can be filled in. This is also the case 
when the  total  t ime of measurement  (N) is no t  ah integer multiple of q; the 
last  row can be completed arbi trar i ly only t h a t  the  eorresponding ,dpj values 
mus t  be put  equal to 0. I t  will be assumed in wha t  follows t h a t  there are no 
blank plaees in the matrices n and [3k (k : 1,2, . . . ,  r). 

I t  can be assumed wi thou t  restrietion imposed upon the factors flljk t h a t  

P q 
.,~~ 2 "  AiJ flijk = 0 (k = 1, 2 . . . . .  r ) .  
i = l j = l  

The sum of the elements of the mat r ix  LI should be denoted by  ~1 and 
the number  of elements in LI which are different from 0 should be N 0. (N o < 
< pq is thus  the to ta l  number  of useful measurements.)  The product  of all 
non-zero values A U should be denoted by  :r(A). 

w 21. The basic assumption as to the forro of the change of the in tens i ty  
(Equs. (14)) m a y  remain unchanged,  nei ther  does change the principle ofder iv-  
ing the  equations for determining the es t imated values of the parameters  
(Equs. (16)). Thepa r t i cu l a r fo rmof  Equs.(16) will, however, be different  from 
t h a t  in w 17. The mat r ix  of the system of linear equations (multiplied by  --1) 
will, in this case, be the following: 

where 

Z~(ct,P) 

Z~(al,q) 

z~(P,P) cc 

d(aq• q) 

M =  1 
G 2* 

d~,,) /J~~,q) O0,r) 0 0 

~4~,1) d<c,c,p) Jtp,q) B~cP,r) qj(p,1) O(p,x) 

~{aq, 1~ ~(q,p> ~(aq• ) B(aq, r) o(q, 1) pj<q,~) 
o(r,1 > ~(r,p) ~(ar,q) B(r,r) O(r,t) O(r,1) 

0 qj(t,p) 0 (l'q) 0 (l'r) 0 0 

0 0 (1 'p) pjO,q) 0(1,r) 0 0 

stands for the  mat r ix  q .,,e~-% 
with elements 1=~ 

stands for the  mat r ix  P 
wi th  elements ~~ AU i=1 

stands for the diagonal ma t r ix  q 
with diagonal elements ~~ AU j = l  

stands for the diagonal matr ix  P 
with diagonal elements "~~AiJi=l 

(23) 

(i --~ 1, 2 . . . . .  p) 

( j  = 1, 2 . . . .  , q) 

(i = 1, 2 . . . .  ,p)  

(j---- 1, 2 . . . . .  q) 
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B~p,r) s tands  for the mat r ix  q (i = 1, 2, 
with elements .~~ Aij fli/k . . . .  P j = l  k = 1, 2 . . . .  , r) 

B~aq,r ) s tands  for the ma t r ix  P (j  = 1, 2 . . . . .  q 
with elements ~'~' zŸ fli]k i=l k =  1,2 . . . .  , r )  

s tands for the ma t r ix  P q 
.~~ .~" zŸ flijk flqk" ( k , k ' :  1, 2 . . . .  , r). B(r'r) with elements i=1 j~l 

d is explained in w 20, 0 and J have  the  same meaning as in w 16. 
In  general,  no simple expressions can be der ived for the  es t imated  

values of the paramete rs  which can, in principle, be calculated b y  inver t ing 
the ma t r ix  (23). I f  this has been done, eve ry  quest ion can be answered exac t ly  
as ir has been done in Section V. Note,  however ,  t h a t  the  es t imated  value of 
a 2 will be 

-~, 1 P q _ 

- -  ~ 2 ~ Z~ij (llij  --- ni j) 2. 
N O - - p  --  q - -  r q- 1 i = 1 j = I  

Equat ions  (20), (21), (22) remain  val id ir 

q" = N o - -  p . - -q- -  r + l  ( instead of ( p - - l ) ( q -  1) - - r ) ,  

and a 2. ~Ÿ denotes  the covariance of 21 and ~j,, and a2*~s stands for  the 
ma t r ix  obta ined  by  omit t ing  the row and column numbered  s in the  covariance 
mat r ix  of the  us quanti t ies .  

w 22. Sometimes it  m a y  be almost  impossible to calculate the inverse 
of  the ma t r ix  (23) even by  means of electronic computers .  This is the case ir  p 
is ve ry  large (e.g. ~ 200), i.e. the  m a t r i x  n consists of v e ry  m a n y  rows and 
thus there  ate lots of  parameters  ci character iz ing the  slow change of the  in- 
tensi ty.  The inversion of the whole ma t r i x  (23) can, however ,  be avoided in 
the following way:  

Le t  us in t roduce  the following nota t ions :  

q 

j '= l  

1 q 
n! = - -  ". A i j  nq 

Ai  j,~l 

1 q 
a! = ~, Aij aj 

J 1 

1 q 

j = I  

d i - -  A + c t -4- a! q- flJk bk 

(24) 
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Note tha t  

. ~  zl~j (ni: - -  n!) = 0 
j=l 

q 

2 TM Aij (aj - -  a!) = 0 
j=l 

q 

(i = 1, 2 . . . . .  p)  

(i = 1, 2 . . . . .  p)  

( i =  1 ,2  . . . . .  p 

(24a) 

~ "  Ai: ~:j~ = 0 
j=l k : 1, 2, . . . ,  r) 

The basic assumption as to the change of the in tens i ty  can thus be wr i t t en  in 
the forro 

( n q )  = di + aj - -  a! + flŸ bk 

( a . = 0 ,  1 = 1 , 2  . . . . .  p; j = l , 2  . . . . .  q; k = 1 , 2  . . . . .  r) 

which is identical  with the form as expressed b y  Equ.  ( 14 ) .  

Regarding the quant i t ies  di (i : 1 , 2 , . . . ,  p) ,  a j ( j  : 1 , 2 , . . . ,  q) and bk(k = 
: 1 , 2 ,  . . . ,  r) as unknown parameters  the normal  equations for de termining 
di, ay and bk w i l l  be the following: 

OP 1 q 
~d i 0.2, 2 zŸ (niJ - -  di) = 0 ,  (i : 1, 2 . . . .  ,p )  (25) 

8P  1 P 
- - - - - ~ i j ~ b ~ ~ )  0 .~" Aij  (nij n i a jq-a!  ' - = 

~aj 0..0. i=1 
( j =  1, 2 , . . . , q )  

~P 1 P q n ! - -  ' - 
- -  - - -  ' - ~ ~ j k "  b k ' )  = 0 , 8bk 0.2, ,~"  2 - '  A q fi l;,, (ni~ El_Fa ! _ (26) 

i= i  ]=~ 

2~;=0. 
j = l  

I t  can be seen tha t  Equs .  (25) and (26) do not  have  common variables and 

d i = n! (i = 1, 2 . . . . .  p ) .  

The  sys tem (26) consists of only q + r + 1 equat ions  the  ma t r ix  of which can 
be inver ted  much easier t han  the ma t r ix  (23), and the  covariance m a t r i x  of 
the quant i t ies  ~j (j  = 1, 2 . . . .  , q) and/~k (k = 1,2 . . . .  , r) can thus be de termined.  

The  es t imated  values of the quanti t ies  A + ci( i  = 1, 2, . . . ,  p) can be 
ob ta ined  on the basis of ~j, �91 and Equ.  (24). The variances involving A + ~i 
(i = 1 , 2 , . . . ,  p) can also be calculated on the basis of (24) and of the fac t  t h a t  
the  di (i = 1,2, . . . ,  p) are independent  o f ~ j ( j =  1,2 . . . . .  q) and �91 (k = 1 ,2 , . . . ,  r), 
E.g. 

T -- - -  

covar iance  of (Aq-~i, ~ . / ) = - -  covariance of (~!, ~~)- -a~  ~ eovar iance of (fl~k bk, ai). 
k = l  
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VII.  Concluding remarks  

w 23. I t  has been shown tha t  the  representa t ion  

<nij > = A -~ c i -~ aj + flijk bk 

( i - - 1 , 2  . . . . .  p ;  j = l , 2  . . . . .  q;  k = l ,  2 , . . . , r )  

a .  z c .  z 0  

(27) 

ma y  be ve ry  often preferred to t ha t  of the  Fourier  type .  Assuming nlj to  be 
independent  Gaussian variables,  explici te expressions have  been given for the 
ma x im um likelihood est imations of the  parameters  A, ci, aj, bk toge ther  with 
the variances and covariances of the es t imates .The  probabi l i ty  t h a t  the devia- 
tions of the values 8j ( j  ---- 1 , 2 , . . . ,  q) f rom zero are due to s tat is t ical  f luc tua-  
tions only has been der ived as well as ah unbiased es t imated  value  of the mean  

square ampl i tude  
1 q 

a 2 -  2 a ~  
q j=i 

and the  var iance  of  this est imate.  
The advan tage  of the represen ta t ion  (27) is t h a t  

a) it  does no t  involve the assumpt ion  t h a t  the  periodie funet ion be a 
t r igonometr ic  polynome,  and 

b) the numeriea l  ealculations required  are b y  lar  simpler t han  those 
involved in a Four ier  represen ta t ion  with the  same n u m b er  of para-  

meters.  
There  are cases when the f irs t  and m a y  be also the second Fourier  com- 

ponents  have direct  physical  meanings and should be es t imated.  In  such 
cases the Fourier  me thod  and the simple step funct ion me thod  m a y  be com- 
bined to yield the e~timated values of the ampli tudes of the first  and second 
harmonics and the  rest  may  be invest igated b y  the step funct ion  representa-  

tion. 
w 24. The existence of a slow var ia t ion  of the intensi ty ,  i.e. t h e  probabi-  

l i ty  ec t ha t  the deviat ions from zero of the es t imated values ~i (i = 1 , 2 , . . . ,  p) 
are due to stati~tical f luctuat ions  alone, can be de termined  jus t  in the same 
way as it has been done in the case of the  periodie pa r t  of the var ia t ion.  Al1 
what  we have to do is to change the  nota t ions  referr ing to  " a "  into those re- 

ferring to " c " .  We thus have 

with 

8c = Pp-l,q'(~ >Yc)  

1 In 1 ~s ~ ~ce~ 
Yo-- 2 p - - I  0 2 ' 
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where  ~~c s tands  for the  m a t r i x  ob ta ined  when  omi t t ing  the  row and co lumn 
n u m b e r e d  s in the  m a t r i x  ~cc (see w 18). 

The  unbiased  e s t i m a t e d  value  of 

c 2 1 P~ 2 

P i=x 

the  m e a n  square  ampl i t ude  of the  slow var ia t ion  and the  var iance  of this 
e s t ima t e  can also be  ob ta ined  b y  using the  fo rmulae  referr ing to  a 2 and  
chang ing  the  no ta t ions  accordingly.  

w 26. Appl icat ions  of  some par t s  of  the  resul ts  repor ted  on in this  pape r  
m a y b e  found in [6] and  [7]. Full  appl ica t ions  will be publ i shed  la te r  on. 
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Appendix I 

I f  the  var iables  xi(i = 1,2 . . . .  , n) are d i s t r ibu tcd  no rma l ly  according 
to the  jo in t  dens i ty  func t ion  

V de t  (Aik) 

t h e n  the  var iab le  

has  the  expee ted  va lue  

and  the  var ianee  

where  

and 

[ 1 _ a~)l - exp - -  ~ - A i k  (x i --. a,) (x k 

( i , k =  1,2 . . . .  , n )  

ti 

u = . 2  ( x ,  - ~.)~ 
i=1  

<u> = A j A ~ + A * ,  

aª = 2 Aq(Aq  + 2 Ai Aj) , 

A l :  a l - - a  

(Al)  

(A2) 

(A3) 

Proof. The quant i t ies  

I xi = xi - x. (i = 1,2 . . . . .  n) 
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have the expected values 
<xŸ = Al 

and their eovarianee matrix is eomposed of the elements A~(i ,  j = 1 ,2 , . . . ,  n), 
I t  can be shown by means of simple calculations tha t  the quant i ty  

u = xŸ xŸ 

has the expeeted value andvarianee as givenby Equs. (Al) (A2),respeetively. 

A p p e n d i x  I I  

The variables xi (i = 1 , 2 , . . . ,  n) should be distributed normally with 

<xt> = at (i = 1, 2 . . . .  , n) 

and 
< ( x i - - a i ) ( x y - - a l > = a 2 A q ,  ( i , j =  1, 2 , . . . , n )  , 

where the Aly elements are known, the rank of the matrix II A: j  II is at  least 
n -  1, at and a2 ate unknown, but  a2 has a known estimate a2, sueh tha t  
p,a~/a2 is distributed aceording to Z ~ with p '  degrees of freedom, and a~ is 
independ,:nt o f  zi(i-= 1,2, . . . ,  n). 

Clearly the value 
1 

a--i : [x i x i - -  Ai t  ~ ]  (A4) 
n 

is an unl,iased estimate of 
1 

a 2 ~ a i a i . 
n 

Ir will be shown tha t  the estimated varianee of ~2 is 

where 

o~ =_2~ [2Q3 o~ ] n ~ p ' + 2  (p  '4ij"41j --  A~l Ajj)  , (A5) 

Q 3  = X i .,4 i i  X i .  

Actording to Appendix I 

~x,x~ ~ - -  - -  2(r2Ai j (cr2At j+ 2a ta j ) .  

Taking into account tha t  
p p  

(o~), - -  - -  
p ' + 2  
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and 
2 2 

p '  p ' + 2  

f u r t h e r m o r e  t h a t  xtxi  is i ndependen t  of  o-q, and  t h a t  the  e s t ima ted  value  of 
aia j a 2 is 

__ p' 
xi xi  (r~ - -  A i i  (~)2.  

p ' + 2  

Equs .  (A5) can be ob t a ined  wi thou t  diff icul ty .  

Appendix III  

A one-row m a t r i x  b (l'n) wi th  e lements  bi(i = 1,2, . . . ,  n) aH different  
f r o m  zero should be  given toge the r  wi th  a one-co lumn m a t r i x  a ~~' 1) wi th  ele- 
men t s  ai(i ~ 1,2, . . . ,  n), a n d a  s y m m e t r i c  m a t r i x  D (n'r') of  the  r a n k  n - -  1. 
E a c h  diagonal  s u b m a t r i x  of  D witll n - -  1 rows and  n - -  1 columns should be  
of the  r a n k  n - -  1. The  e lements  of  a and D should  sa t is fy  the  equat ions  

and  
b a = O  r  i .e .  b i a i = O  (A6) 

D g = O  (n't), i . e .  D i i b ] = O  ( i = 1 , 2  . . . .  , n ) .  (A7) 

Le t  us denote  b y  _(n-1,1) the  one-co lumn m a t r i x  wi th  e lements  al, iltl'r ~ �9 ~ 

ar-1 ,  ar+l ,  �9 . . ,  a~ and  b y  ~rn(n-l'~-l) the  m a t r i x  wi th  e lements  D i j ( i , j  = 1, 

. . . ,  r - - l ,  r + l ,  . . . ,  n). 
I t  will be  shown t h a t  the  q u a n t i t y  

Qr = ~r D+ ar (A8) 

is i ndependen t  of  r. This can be done as follows: 
I f  the  one-co lumn m a t r i x  yo (n'l) is a solut ion of the  equa t ion  

Dy0 = a ,  (Ag) 

then  all solutions of (Ag) m a y  be wr i t t en  in the  fo rm 

Y = Yo + Xb ,  

where  ~ denotes an  a r b i t r a r y  scalar  q u a n t i t y .  I n t r o d u c i n g  the  no t a t i on  

Z(r n - l ' l )  = D +  l r ,  ( A I O )  
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i t  can  b e  seen  t h a t  

D r z r = a r . ( A l l )  

L e t  us  d e n o t e  t h e  e l e m e n t s  o f  Zr b y  zl ,  z2, . . . ,  Z r - 1 ,  z r + l ,  �9 � 9  z n  a n d  le t  

us  d e n o t e  by  Zr ("'1) t h e  m a t r i x  c o n s i s t i n g  o f  t h e  e l e m e n t s  Z l ,  . . . ,  Z r - 1 ,  O ,  

z r + l ,  �9 � 9  z n .  I t  fo l lows  f r o m  (A6),  (A7) ,  a n d  ( A l l )  t h a t  Zr is a s o l u t i o n  o f  (A9) ,  

m a y  t h u s  be  w r i t t e n  in t h e  fo r ro  

Zr = Yo + ~~~Ÿ ( A l 2 )  

M a k i n g  use  o f  Qr m a y  b e  e x p r e s s e d  b y  m e a n s  of  Zr in  t h e  fo r ro  

Qr = ~Z'r (A13)  

L e t  us  n o w  i n v e s t i g a t e  a n o t h e r  q u a n t i t y  (A8),  e.g.  

Qs = ~~ D~ + as .  

R e p e a t i n g  t h e  c o n s i d e r a t i o n s  a b o v e  we  a r r i v e  a t  

z~ = Yo �91  ~ts~ ( A l 4 )  

a n d  

Q s  ~ ! ~ az  s 

0 ~  th~  b a s i s  o f  ( A 1 2 )  - -  ( A 1 5 ) ,  ~ ~ d  ( A 6 )  ~ e  h a v ~  

Q~ - Q~ = (~r - -  ~~) ~~ = 0 

w h a t  was  to  be  shown .  

( A l 5 )  
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HEKOTOPblE I-IPOl3.rlEMbl HCCJ-IE~[OBAHHOI~ FIEPHO~[HttHOCTH 
BPEMEHHOFI CEPHH KOCMHLIECKHX J-I~qEFI 

I~. KOTA H A. IIIOM0,E[H 

Pe3~oMe 

,E[aeTc~ o6o6menHe MCT0~a aHa~H3a paCXO~~eHHYl C ue.qbm HCC~e~OBaHH~ cymec'r- 
BoBaHH~I H BH~a HepHo~HqHOCTH C ]IaHHO~ ~JIHH0~ nepH0~a. I-[pHHHMalOTC~I BO BHHMaHHe KaK 
nepeMeHH~e H3MeHeHHYl HHTeH•HBH0CTH K0CMHqeCKHX ayqefi, TaK H MeTC0p0.q0FHqeCKHe ar 
Tbl. ~(a~ee, Kp0Me T0qHOF0 I4CCJIe~0BaHH~ CylIIeCTBOBaHH~ I'IepH0~HqHOCTH H3~aFal0TC~ MaK- 
CHMaJ'IbHI~e Bep0~ITHb/e 0HeHKH KaK ~.qYl I'I0CT0~IHHblX, xapaKTepH3ylOUlHX BH,/~ IIepH0/L~IqH0CTH~ 
TaK H ~.rlYl r~aBH0~ KBfl,/~paTHqH0~ aMn.qHTy~l~ nepH0~HqeCN0~ ~yHKtIHH BMecTe C HX 0TH0CH- 
TeJlhH0fi CTaTHC'rHqecKoI~ 0tUH6}<0fi B c.qyqae I]p0H3B0.rII~HOF0 tlHC.rla MeTe0p0.q0FHqeCKHX ~aK- 
T0p0B, B.qH~IOIIJ[HX Ha HHTeHCHBH0CTb K0CMHqeCKOF0 H3JIyqeHHYl. 

I-IoKa3blBflIOTC~I HeB~F0,~bl IIpHMeHeHHH MeTo,~a ~ypbe B HCC.qe,/~0BaHHH IIepH0]IHqH0C'rH 
C oHpe;~e.qeHHofi ~.IIHH0~Ÿ nepHo~a l-[aKOHel L no~r qT0 ~aKT CTaTHCTHqeCKoro onpe- 
,~e.qeHH~ MeTe0p0JI0rHqeCKHX K0~HHHeHTOB H e a ~ a  0T2IeJIYlTb 0T aHaJiH3a IIepH0~I4qH0C'rH. 
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