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A generalization of the method of the analysis of variance is given to investigate the
existence and the shape of a periodicity with given length of period. Allowance is made for
slow variations of the intensity of cosmic rays as well as for meteorological effects. In addition
to the exact test of the existence of the periodicity, maximum likelihood estimates both of the
constants characterizing the shape of the periodicity and of the mean square amplitude of the
periodic function are given, together with their respective statistical errors, in the case of an
arbitrary number of meteorological factors affecting the intensity of the cosmic radiation.

Disadvantages in applying the Fourier method when investigating a periodicity with
given length of period are pointed out as well as the fact that the determination of meteorologi-
cal coefficients, if done statistically, must not be separated from the analysis of the periodicity.

I. Introduction

§ 1. It is known long since that the intensity of cosmic radiation shows
periodic variations. Three kinds of periodic variations have, up to now, been
demonstrated without doubt. The lengths of periods of these are one solar day,
about 27 days, and about 11 years, respectively. The shapes of these periodi-
cities are not constant, especially large variations may be observed in the case
of the shape of the 27 day variation.

The aim of this paper is to give a statistically correct method, making
use of the full information available, to detect or else to contest the existence
of a periodicity with given length of period and strictly constant shape, as
well as to determine the shape of such a periodic change.

§ 2. The Fourier method, i.e. that of expressing the shape of the periodi-
city to be investigated by means of a trigonometrical polynome, has almost
exclusively been used to investigate periodicities in the intensity of cosmic
rays with given lengths of period. This method has, however, two serious
shortcomings:

2.1. If the question to be decided upon is whether a periodicity with
given length of period does exist or not, it is not sufficient to content oneself
with determining the first few Fourier coefficients or, as it is sometimes done,
the amplitude of the first harmonic, rather should the maximum possible
number of Fourier amplitudes be taken into consideration so as to make use
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524 J. KOTA and A. SOMOGYI

of the maximum amount of information available in the form of the measured
data. To calculate the maximum possible number of Fourier coefficients re-
quires, however, rather tedious calculations. It will be shown that exactly
the same amount of information can be gained on the basis of the same mea-
sured data in a way much simpler than that of calculating Fourier coefficients.

2.2. If, in addition to proving the existence of the periodicity, the shape
of the periodic function is also to be determined, the application of the Fourier
method may lead to difficulties. The Fourier method is justified only in the
case when the periodic function is really a trigonometrical polynome. If a
function other than a trigonometrical polynome is approximated by trigono-
metric polynomes, the approximation obtained bears only a weak resemblance
to the function to be determined and, in addition to this, the coefficients of the
polynome approximating the unknown function are “void” in the sense that they
do not have any direct physical meaning, when considered individually; right
on the contrary, they may be misleading sometimes. Variations of the cosmic
ray intensity may often be sinusoidal and the second harmonic may also have
physical meaning in certain cases. Fourier coefficients of the higher order have,
however, no direct physical meaning in cosmic ray variations; at least, as for
the present there has been no reason to attribute them any.

§ 3. Both disadvantages mentioned in the preceding paragraph are get
rid of when approximating the unknown periodic function by means of a
simple step function instead of a trigonometrical polynome. Numerical cal-
culation of the heights of the maximum possible number of steps is a task '/by
far simpler than that of calculating the maximum possible number of Fourier
coefficients. In addition to this, the heights of the individual steps have
straightforward physical meanings, i.e. they are equal to the mean values of
the intensity during the time intervals corresponding to the widths of the
steps.

Although the special conditions encountered in cosmic ray investigations
are born in mind throughout this paper, the methods outlined and the results
obtained apply to a large variety of other problems as well.

II. Formulation of the problem. Basic notations

§ 4. Let us denote by n,(v = 1,2, ..., N) the rates of a certain kind of
cosmic ray particles as observed during IN consecutive unit time intervals.
Let us assume that the measured n,(v = 1,2, ..., N) values are not affected
by any systematic errors, i.e. that (n,», the expected value of n,, is equal to
the mean value of the intensity during the unit time interval.

Furthermore, let us assume that the stochastic variables n,(v = 1,2, ... N)
are independent of each other and are distributed normally. These condi-
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tions are generally not met rigorously, they, however, can be regarded as
sufficiently good approximations in many cases.

Let us temporarily assume that the variances of all the variables n, are
equal to ¢ In Section VI the more general case with variables n, having dif-
ferent variances o> will also be dealt with.

§5. We have to test the hypothesis that, apart from certain types
of changes, the intensity be a periodic function of time with a given period
length, g. Furthermore, if this hypothesis turns out to be true, the shape of the
periodic function is to be determined.

The unit of time should be chosen in such a way that ¢ should be an in-
teger, and the total number of measurements, N, should be N = pq, where p
denotes an integer number. The case with p being a non-integer value is dealt
with in Section VI. '

The measured data, n,(» = 1,2,...,N) should then be arranged to
form a matrix n(p, q¢) = n with p rows and ¢ columns in such a way that the
elements n;; of the matrix should be equal to n, in the following order:

n;;=n, if v=(—1)qg+j
i=12,...,p j=1,2,...,9q v=12,...,p9

p =2 and q¢ > 2 will be assumed throughout this paper.

§6. A few more notations:

a) Matrices will always be denoted by bold characters. Upper indices
written in brackets and applied to a matrix symbol denote the numbers of
rows and columns, respectively, of the matrix. These indices will be dropped
if no ambiguity arises by doing so.

b) A dot on the place of a running index denotes the arithmetic mean
of the quantities involved, when the index replaced by the dot runs through
its usual range.

1 2,
E.g. n.,;=-—- _>n;,
P =1
1 p 4
n.. = — nijs and so on.
pPq i=1 j=1

¢) Two identical running indices within a single term denote summation
extended over the usual range of the identical indices.

d) A bar over a symbol denotes the estimated (measured) value of an
unknown parameter. Thus symbols with bars represent always stochastic
variables.

e) The variance of a stochastic variable x will be denoted by o% (The
estimated value of o> will be denoted by o2). ¢* and ¢% without any index
denote the variance of the stochastic variable n;; and its estimated value,

respectively.
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III. The simple step function method in the case of a ‘‘pure”
periodicity

§ 7. Let us assume for the moment that the intensity has no changes
except of the hypothetical periodicity with the period length of g. This case
will be referred to as the case of a “pure” periodicity. The mean values of the
intensity during the subsequent unit time intervals within the length of a
period should be denoted by a;(j=1,2,...,¢q). The periodicity does exist,
if at least two of the a; (j = 1,2, ...¢q) values are not equal to each other.
Clearly

y=a) (=12 M
j:1,2, ,q)

{ni; is independent of the row index, that means periodicity.

We are thus facing the following problems:

7.1 aij = 1,2,...,q) ie. the estimated values of the parameters
aj(j =1,2,..., q) are to be determined, together with the estimated values
of their respective statistical errors, ?g’.

7.2 The probability ¢ that the deviations of all the &;(j = 1,2, ... ., q)
values from each other are due only to statistical fluctuations is to be deter-
mined. If this probability turns out to be very small, the existence of the
periodicity may be regarded as proved.

7.3. a? i.e. the estimated value of

~

(WS

a? =- (¢ —a.)?

It
—

1
9

is to be determined, together with its statistical error, a? is the estimated value
of the mean square amplitude of the periodic step function.
§ 8. Problems 7.1 and 7.2 are basic problems of the analysis of variance.
Their solutions, which can be found in text books, are as follows (see e.g. [1]):
8.1
i 2)

aj: n.

Let us introduce the following notations:
p=4qp-—-1),

o a. )2
lej%(aj - a‘) ’ (3)

b=

il

q —
02 = N Z(nii—aj)z.
i=1 j=1
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Since

o2 — A (4a)
p

we have

_ —2
2 =" = & (4b)
p
8.2 Introducing the notation

1 pp’ &]

x:-—ln[———
2 9—1 Q.

the probability, ¢, that the deviations of the quantities a;(j=1.2,...,9)
from each other are due exclusively to statistical fluctuations is given by

e=F_, 7 ({>x),

where P, ,({ > x) stands for FisHER’s z distribution with x and v degrees of
freedom.
8.3

a=i[ol B oz]. (5)
q pp

The problem of determining ¢Z; is not treated in the literature. According
to calculations outlined in Appendix II we have

&2,:—392—[2 _ g-1p pp —1J ) 6
“ pp'g & pp'(p'+2) lg—1 02] (©)

If p> 2, this turns into
&%:i?i(&_{_ﬁ)_ (6*)
ppatly

IV. Comparison of the simple step function method and the
Fourier method in the case of pure periodicity

§ 9. The Fourier method is based on the hypothesis that the intensity
I(t), as a function of time, ¢, has the form of a trigonometric polynome.

1) = Ay + 3 A% cos {,uziz—tJ + 3 By sin (,uzyit] . (7)
a=1 q u=1 q
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The expected values of the measured data are equal to the mean values of
I(t) as taken during subsequent unit time intervals:

v m 9 -
<nij>=[ I(t) dt =A°+2‘A# cos[,ul(]——l—”—}-
B M T ®)
m . 2 (. 1
+‘%lB#sm [,u—q—[]_?]]
(i:]-»z’---ap;j:-l,z,...,q; !m—m'lgl),

where » stands for (i —1)q 4 j and

A, B, _ sin (,unﬂ)_ )

4 By (u/q)

The estimated values of the Fourier coefficients 4,(x = 1,2, ..., m) and
B, (v = 1,2,...,m) have to be determined. The maximum possible number
of the parameters which can be determined is equal to* ¢; in particular

ng[q;l and m’gE[%’,

where E[x] stands for the largest integer number pet larger than «x.

It is well known that the estimated values of the Fourier coefficients and
their statistical errors are the following:

Ay =n.. , 0%, =

rq

- 2 27 1 — 202

A, =" ¥n.; cos /1——[]"——”, 5=

ST~ [ q 2 " pg
q

®

2
[le,z,...,m'gE[q;]}

If ¢=2m/, then
_ 1 < _
B=— ¥ (—1Yn.,, 0y . =
{ = ! " pg

* Compare, however, [2], where this fact is disregarded.
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It should be pointed out that also the expression (8) has the form of a
step function. The step function representation of {n;;> is inevitable since the
number of measurements during a period is by all means finite. Expression
(8) is, however, considerably more complicated than the simple expression (1)
on which the method outlined in Section III was based. The question arises,
whether the much more complicated method based on expression (8) yields
statistically more information as to the existence of the periodicity, than does
the simple step function method based on (1). It will be shown, in what fol-
lows, that the answer is negative.

Let be

m:E[q—l
2

and m' — EI%] (9*)

i.e.

m+m+1=q.

It will be shown that, in this case, the Fourier procedure is statistically equi-
valent to the simple step function method based on (1).

§ 10. First it will be shown that the estimated value of the mean square
amplitude as obtained by the Fourier method and the simple step function
method are exactly the same, i.e. they are identical second order expressions
of the quantities n;;.

A simple calculation shows that the mean square amplitude of the
function (8) is equal to

ar=r| Zaz s Tma e, (10)

=1

[

=
|
—

where

EZEpil_izi,
2 2

In order to determine A2 it should be noted that

=~“1‘L24—0,%“ (v=1,2,...,m),
and

Furthermore, it can be shown by rather longish elementary calculations that

1 [m ”L'Ez B2 1 2
-5 > Ay + X Bu|+ By =— 3 (n.;—n.)
n=1 pu=1 q

=1

whence, on the basis of (10), (2), and (5), it can be seen that

a® =A%,
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i.e. the estimated values of the mean square amplitude of the periodic function
as obtained on the basis of (1) or (8) are identical expressions of the n;; data.

§ 11. We proceed with showing that the simple step function method
based on (1), and the Fourier method based on (8) reduce the (empirical)
mean square deviation of the n;; values from their mean to exactly the same
extent. The reduced mean square deviation divided by p’ = ¢(p — 1) gives
the value of g% Thus both procedures lead exactly the same value of o2

o2 as determined on the basis of (1) is given by

F:lf. (11)
P

(The notations are explained in Equs. (3)). In the case of the Fourier method we
have, on the other hand,

A3 2y dy = 3 A eoslu (5|
P i=1j= p=1 q (12)
. & 2n 1\72
— Y B_sin ,u——-['—-——)“
20 [ ¢ ! 2

It can be shown by direct calculation that the right hand sides of Equs. (11)

and (12) are identical second order expressions of the values n;; if (9*) is true.
§ 12. It seems to be worth while to emphasize that the unbiased esti-

mate of the mean square amplitude of the periodic function (8) is given by

— 1 m ___ mo_ —_

A2=—_[2'A3+2~Bg]+e,,3m..
2 p=1 p=1

i.e. not by the expression

m

1 _2 m _2
U2=—[ A, +2‘B,{I+s B,
2 pu=1 p=1

which is used in many cases in spite of the fact that U? is not an unbiased
estimate of 4% It can be easily seen that in all cases (except that of n;; =
constant)

U2>42 and thus <(U2)>A42.

The difference U2 — A2 is large just in the delicate cases when the statistical
errors of the coefficients A;, B, are large and the existence of the periodicity
is questionable. The incorrect value U2 unjustly favours the hypothesis that
the periodicity exists.
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V. The simple step function method in the case of mixed
periodicity

§ 13. The intensity of any component of the cosmic radiation shows,
in all cases, also systematic variations others than the periodicity to be in-
vestigated (cases of ‘“mixed” periodicity). There are systematic variations
like the absorption effect or the decay effect, which depend on quantities,
like the barometric pressure or the height of a certain isobaric level, which
in principle, can be measured regularly and have thus known values f;j
t=12,..., p; j=12,... ¢ k=12,...,r) during the time interval
(i,j)- (Let us take e.g. Bij, to be the average barometric pressure during the
time interval (i, j), Bij, the average height of the 100 mb isobaric level during
the name interval, and so on.) Supposing that the intensity be a linear function
of the quantities f;u(k = 1,2, ..., r) we have, in the case of a periodicity
with the period length ¢

(> = a;+ B by

) . (13)
¢t=1.2,..,p; j=4L2,...,q; k=1,2,...,1)

where bi(k = 1,2, ..., r) are unknown parameters, e.g. b; the partial baro-
metric coefficient, b, the decay coefficient, and so on.
It can always be assumed, without any restriction of generality, that the

(sum of any type of the quantities §;;x taken for the total time of measurement
is zero i.e.

ﬂ..kZO (k:‘—l,z,...,r).

Note, however, that generally
B0, Bin+0.)

Tt would be incorrect to determine the values by(k = 1,2, ..., r) sepa-
rately, on the basis of the equations

{nypy = Biji bk
and then to use the ‘‘corrected” values n¥;, = n;; — fiu b* to determine
ai{j=12,..., q) on the basis of

(n§> = af

since in general

b¥+b, and afFa;

and the values b}f(k =12,.., r) and &%(j = 1,2,..., q) have no physical

meaning.
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532 J. KOTA and A. SOMOGYI

Sometimes it may be of advantage to use corrected values n;— £« b
with predetermined bg. This may be the case when the total time of measure-
ment is short and there are previous measurements available with considerably
longer duration thus yielding considerably more exact values b%. It is, however,
indispensable that these predetermined coefficients should have been calcul-
ated on the basis of equations allowing also for the periodicity in question,
ie.

(nj> = aj -+ B by
G=L12,...,p"; j=12,...,¢s k=1,2,...,r

!

with
pP>p, ¢=q, 1'=r),

where nj; are the results of the older measurements and f/; are the meteo-
rological factors pertaining to them.

§ 14. Problems of the type of Equ. (13) have also been dealt with in the
literature (see e.g. [3]). The solutions found are, however, incomplete in the
sense that they do not give answers to all questions raised in cosmic ray in-
vestigations.

A full treatment of the problem will be given in what follows. The method
applied will be that of the maximum likelihood which allows a compact
treatment of the problem on the one hand, and may be used also in cases,
when the n;; variables are not distributed normally, on the other.

§ 15. The problem must be formulated in a more general way than that
indicated in Equ. (13) so as to allow for systematic variations which are not of
the type Bijx bx. There may be e.g. periodic variations with a period length
other than q or aperiodic changes, like a slow recovery after a Forbush effect.
The general character of these systematic variations must be known a priori
or, at least, a reasonable hypothesis must be made as to the general trend of
these variations. New terms containing some unknown parameters must
then be inserted into Equ. (13). The estimated values of these parameters can
be determined by means of the maximum likelihood method as discussed
below.

No special hypothesis has to be made as to the general character of the
remaining systematic variations if these are ‘‘slow”, i.e. the changes due to
them during the time g are small as compared to }/a® where a® stands for

| /=

(aj — a.)?

I
—

1
q7j

as before. “Slow” systematic variations can be approximated by a step
function in which the width of the steps are equal to g. Denoting the heights
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of the steps by ¢; Equ. (13) becomes

{nip = ¢; + a; + Bijicbys (14)
6=0 %,  B=0,
i=11.2,..,p; j=12,...,¢; k=12,...,1)

or, in a more symmetric form:
(g =A + ¢; + a; + Bij bys
—0 * —0 * —
c.=0 %, a.=0* B.x =0, (15)
i=12,..,p; j=12,...,q;5 Ek=12,...,r).

If the systematic variation characterized by the constants ¢; is slow
enough, then the width of the steps may be chosen to be larger than g, e.g.
an arbitrary integer multiple of ¢q. Alternatively, a “slow” variation can be
approximated also by a polygonal line connecting equidistant points separated
by the distance ¢ or an arbitrary integer multiple of q. The most suitable
hypothesis as to the form of the slow variation must be chosen individually
in each case on the basis of careful consideration of the circumstances.

The problem as specified by Equ. (15) will be dealt with in what follows.
It can be seen that

{n..) =4,

i.e. 4 is the average intensity as taken during the total time of measurement.
Again the problem is a threefold one:
(I) Unbiased estimated values of the parameters A,

Aei(t=1,2,...,p), a;(j=12,...,9, b(k=12,.. .,71)

have to be determined together with their respective statistical errors and

covariances.
(IT) The probability has to be calculated, that the deviation from zero of the
estimated values a,(j = 1,2,...,q) are due to statistical fluctuations

alone. ]
(III) An unbiased estimated value of the quantity

2 1 d 2
= 3af.
q j=1

i.e. the mean square amplitude of the periodicity in question, has to be
determined together with its statistical error.

* Without this (these) assumption(s) the problem would become indeterminate. -
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§ 16. Let us introduce the following notations:
Ompn=1 if m=n and 6,,=0 if msn.

The transpose of the matrix M™™ should be denoted by M,

The inverse of the matrix M consisting of the elements M;; should be
denoted by M*, the elements of M* by M,";

I should denote a unit matrix with m rows and columns.
’ 3™ should denote a matrix whose elements are all equal to 1, and
0™ a matrix with elements all equal to 0. ,

should denote the matrix
B = BN . B = BijkPiji »
, with elements

B* — B*rr should denote the matrix
with elements

Bfy = By “‘P.B-ijkﬂ-jk’ — qﬂi'kﬂi-k' .
+1y should denote the matrix
N =N&b with elemezts o Ny = ny; iy — pnejBj — qnue Bi-ko
hould denote the matrix
B — Ben ° BS, = B,
¢ ¢ with elements e = Biok

B, — BU" should denote the matrix a — B
with elements ! d

should denote the matrix
B, = HP" B = Biw Bk

with elements

should denote the matrix )
By = LI 55 = B B

with elements

. should denote the matrix .., L 1 . 1
B = B fenot B = B Ht — b —
with elements q Pq
should denote the matrix .
HBae= '@S’%q) with elements ,)Q%C = Bi ’79;1 = ﬂ'ﬂx’ Hiks
should denote the matrix ; 1 1
Hua= B with elements B = B "Q}I”f—*— —P?"" O — };1' :

It can be seen casily that all quadratic matrices defined above are symmetrical.
§ 17. (Problem I of § 15).
According to the method of maximum likelihood, unbiased estimates
of the parameters A4, ¢;, a;, by can be obtained (see e.g. [4]) as the solutions
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of the simultaneous equations

where

with

ap

84
opP
oc;
oP
Ba;
P
Bb,

L1 .o
0-2

, (16)

P=mlap*—PL; . P1;,
o? a?

Pq ;5 and

o2 o?

denoting Lagrange multipliers, and

P’“IIIT

Ao e
i=1 j= V2 2 P[_ 232 (m <n,]>):|,

1.e. P* stands for the joint distribution of the stochastic variables n;,(i = 1,2,

o psj=12,..

.» q). If the variables n;; are not independent and normal,

P* has another form which, at any rate, must be known. The explicit formulae
given in what follows refer to the case when n;; are independent and normal.
The solution of the simultaneous equations are the following:

CN
I

n..
n;. —n. — Py BEE Ny
i=12,...,p)
aj=n.;—n.—B.; BNy
) Gg=1.2,...,¢
by = By Ny
k=1,2,...,7)
Aa=4=0.

o
Il

i

(17)
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In order to obtain the statistical errors and covariances of the estimated
values asindicatedin Equs. (17), let us write down the matrix of the simul-
taneous equations (16) multiplied by —1. This is a matrix of p ¢+ r + 3
rows and columns and is composed of submatrices in the following way:

Pq qJ®p pJLo oD 0 0
qJ®v  q1@ Jr qBP" qJ» TR
M- _1_ p Jan Ja.r) Pl(q) PBgl,r) 0@ pJy@v
L ST () PRI RO oD or ||
0 qJ&p oL o 0o 0
0 o.p) P J1.9 oLn 0 )

The inverse of M is

_1__ owp) oLy oun 1 —_ L
pPq Pq pPq
oY o) o AL - Koty _1_ Je o1
Pq
N \ o 2ap FL N o@D _1_ Jan
Mt=g¢ Pq
o {@(gm) — t@g,q) B*+rn) oY o
1 _1_ Jan 009 oD 0 0
pPq Pq
1 1
—— oL.p) —Juo  oun 0 0
1) P9

The meanings of the symbols can be found in § 16.

Let «#* be the matrix obtained when deleting the last two rows and
columns in M* - <# *is, of course, degenerate because of ¢.—a. = 0 and is
of the rank p 4 ¢ + r — 1. Let s” and s be integer numbers such that 1< s’ <
< pand 1 < s < q. Let us omit therows and columns of «# + standing on the
places numbered 145’ and 1+ p + s. The resulting matrix, «#J; is the co-
variance matrix of the variables A, Gi=12, ..., —1, s +1,...,p),
aG(j=12,..,5—Ls+1..,9,bk=12,..,71).

It can thus be seen that A is independent of the measured values of all
remaining parameters and has the estimated variance

1 __

= —— g<.

e

Sl
Drto
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The estimated values of the parameters ¢;, @;, by are not independent of
each other. Their estimated variances are the diagonal elements of the matrices
0% Bee, 0 Baa and o B** respectively; i.e.

ol = B0 (with i’ = i) ]

of= e (with j'=j) . (18)
5, = B (with k'= k) [

It can be easily seen that the estimated value of o2 is

— 1 — —
0 = —-~ (ni; — nyj) (ny; — ny) =

(19)
1 _ _ _ _
= 7 [nij n;j—pqA*—qn;.¢c; — pn.;a; — nijﬂijk b,

where ¢ = (p — 1)(g— 1) —r and
ﬁij:j+zi+aj+ﬂijkbh

The quantity ¢’ 6%o® is a stochastic variable with a 2 distribution of ¢’
degrees of freedom.
On the basis of the identity

p 14 q
SZ0yny=33 -t 3 3@t by
J=1 i=1 j=1 jml jm1l

making use of the theorem of CocHRAN [5] and FisHER’s lemma, it can be
seen that all quantities n; —7m; (i=12,..., p; j=12, ..., q) are in-
dependent of 4, & (i = 1,2,..., p) a_](] =12,..,¢9 and by(k=12,...,7)
Thus, e.g., (nij— fij)(nij—n;) is independent of f(a,, @,, ..., ), this
latter being an arbitrary function of the variables @,, @,, . . ., @,

§ 18. (Problem II of § 15). In order to calculate the probability ¢ that
the deviations from zero of the values @;(j = 1,2, . . ., q) are due to statistical
fluctuations alone, let us introduce the following notations:

a; should denote the matrix
—a-1) = = o —
a's( -1 = Hav Aoy - o9 B 19 Asyys - - "aq”
with s being an integer number chosen arbitrarily within the interval

1<s<q.
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&9 should be the matrix obtained when omitting the row and
column in the matrix H%? numbered s.

First, let us calculate the probability &s that the deviations from zero
of the elements of @ are due only to statistical fluctuations.

The covariance matrix of the elements of a, is ¢2%,. Assuming a; =
={@;> =0 (j= 1,2, ..., q) the joint distribution function of the elements
of a; is given by

_ VDr 1 .~
S(as) = (Zn—)qflﬁ exp | — —2‘0785%; al,
where D{ stands for the determinant of the matrix

1
— %y

o2
It is well known that the quantity

1 _ ~
Qs=Tas s 8
(23

is distributed according to a j? distribution with ¢ — 1 degrees of freedom.
As it was shown at the end of § 17 (m;; — n;))(ni; — ;) is independent
of any function of @,, @,, . . ., dq thus o% and Qs are independent of each other.
As a consequence, the quantity

1 1  a%Ba
Ys=g o=y &

is distributed according to FisHER’s z distribution with ¢ — 1 and ¢’ degrees
of freedom. Denoting this latter distribution by P,_;, ({ >>2) the result is
obtained that

&= Pq—l,q' (€>ys)- (20)

Applying the theorem proved in Appendix III it can beseen that a.%y a,
is independent of s and, as a consequence, the same is true also for y; and &
It is therefore justified to regard the value e, = ¢, = ... = g, = ¢ as being
the probability that the deviations from zero of the values @; (j = 1,2,...,q)
are due to statistical fluctuations alone. The value of ¢ = ¢, is thus determined
by Equs. (20).

§ 19. (Problem III of § 15). Since

i—ai -3, (j=1,2,...,9,
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therefore, taking inte account Equ. (18), an unbiased estimate of a? is

=L @a— ). @1)

Calculations outlined in Appendix II show that the estimated value of the
variance of @? is equal to

= 23 [ e -
oh= |24, @ — a

o2 , '
" i Py (¢’ B Fp— B H7) (22)

the value of ¢2 being given with Equ. (19).

VI. The case of the incomplete matrix n with elements of unequal
variances*

§ 20. It may happen that the measurement of the intensity {n;;) and/or
some of the quantities f§;; was interrupted during certain intervals (i, j), and
thus the corresponding n;; and/or f;jx values are missing. It may also happen
that the variances of the measured quantities n;; are not equal to each other.
The solutions of the three problems formulated in § 15 may then be found on
the following lines.

Let us denote the variance of n;; by

o} = 0¥ fw;;,
where the factors 1/w;; must be known a priori and 02* is to be determined.

Furthermore, let be
dij = w;; if the values nyj, Bij, Bijyy ..., Bijr are all available,

Aij =0 if at least one of the values nij, ﬂijl’ ﬂij29 .oy ‘Bij,— is missing.

If among the values 4;,, 4;,, . . ., 4i; there is not more than one different from
zero, the ith rows of the matrices** n and B4(k=1,2, .. ., r) should be deleted
and the numeration of the rows should be rearranged accordingly.

If not more than one among the quantities 4,;, 4,5, . . ., 4p;is different
from zero, the measurement must be continued until at least two of the 4,
Ay o+ oo Apjs Api1,js « « -+ Apype,j values becomes different from zero, and the
value p 4 p* should then be denoted by p.

Thus at least two elements in each row and column of the matrix 4,
are different from zero.

* Identical indices do not mean summation in this chapter.
** B, (.9 stands for the matrix with elements Big G=12,..., p; j =12,...9)
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The values n;;,f: (k= 1,2, ..., r) will, in what follows, never occur
without being multiplied by 4;;. Thus arbitrary values (e.g. 0) may be written
in the place of n;; and Bijx (k= 1,2, . . ., r) if 4;; = 0. This way the blank places
in the matrices n and By (k= 1,2,. . ., r) can be filled in. This is also the case
when the total time of measurement (V) is not an integer multiple of g; the
last row can be completed arbitrarily only that the corresponding 4,; values
must be put equal to 0. It will be assumed in what follows that there are no
blank places in the matrices n and B, (k=1,2, ..., r).

It can be assumed without restriction imposed upon the factors 8, that

S

(S
(WS

J

B =0  (k=1,2,...,71).
1

[
-

i

The sum of the elements of the matrix 4 should be denoted by 4 and
the number of elements in 4 which are different from 0 should be N,. (N, <
< pq is thus the total number of useful measurements.) The product of all
non-zero values A;; should be denoted by =(4).

§ 21. The basic assumption as to the form of the change of the intensity
(Equs. (14)) may remain unchanged, neither does change the principle of deriv-
ing the equations for determining the estimated values of the parameters
(Equs. (16)). The particular formof Equs.(16) will,however, be different from
that in § 17. The matrix of the system of linear equations (multiplied by —1)
will, in this case, be the following:

A AL 400 01 0 o |

AS{"D Agzcr,p) AP ng,r) qJ(p,l) o
M — 1 Egl,l\ E(q,p) dﬁ’a"” Bl [ CRY PJ(q,l) (23)
T o lor)  grp  feo  Ben QD Qe |
0 P T | N | LK I 0
|| O o pJ(l.q) oan 0 0
where
; q
AP stands for the matrix ~4.. i=1,2, ...,
¢ with elements = i ¢ P)
i P
ALD stands for the matrix S A —1,2,...,
N with elements % i G 9
. . g
Ap.p) Stands for the diagonal matrix I, 4 i—1.2,...,
“ with diagonal elements _’%1 Y § P)
. . p
400 stands for the diagonal matrix S A 1,2, ...,
“ with diagonal elements =Y G 9
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() stands for the matrix q‘wA t=1.2,...,p

Bc ’ ith el ij:Bl]I\

with elements = E=1,2,...,r)
stands for the matrix p, (Gj=12,...

B . A B 7= 4

with elements = E=1,2,...,r)
tands for the matrix P.3

Br» 8 > N A B B (K =1,2, .. .,r).

with elements % - Biji by (k )

<,

4 is explained in § 20, O and J have the same meaning as in § 16.

In general, no simple expressions can be derived for the estimated
values of the parameters which can, in principle, be calculated by inverting
the matrix (23). If this has been done, every question can be answered exactly
as it has been done in Section V. Note, however, that the estimated value of
6% will be

— q _
o?* = 2 EAU (nij — ).

Equations (20), (21), (22) remain valid if
¢ = Ny—p —q— r+1 (instead of (p—1) (¢ —1)—7),

and o%* @‘}f, denotes the covariance of @; and @;, and 0?*.%; stands for the
matrix obtained by omitting the row and column numbered s in the covariance
matrix of the a; quantities.

§ 22. Sometimes it may be almost impossible to calculate the inverse
of the matrix (23) even by means of electronic computers. This is the case if p
is very large (e.g. > 200), i.e. the matrix n consists of very many rows and
thus there are lots of parameters ¢; characterizing the slow change of the in-
tensity. The inversion of the whole matrix (23) can, however, be avoided in
the following way:

Let us introduce the following notations:

Ai_—_ ~Aij
j=1
g
nf:—L— ~ Ay
A; j=1
. 1 q
al=— M 4a; ) (24)
4; &=
i 1 .
ﬂ-k—_—"zdijﬂljk

Bijk = Bijx — B
di==A+c;+al + Bl by
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Note that

- ‘ \

ZAU(R,-/ - n‘) =0 (L: 13 29 ’P)

j=1

q

2 (¢j—al) =0 t=12,...,p) (24a)
a9, , i=12,...,p

— Aijﬂi}k =0

i=1 k=1,2,...,71)

The basic assumption as to the change of the intensity can thus be written in
the form

g =d; 4 a; — al + B by
1=132,...,p; j=12,...,¢; E=1,2,...,r)

which is identical with the form as expressed by Equ. (14).
Regarding the quantities d;(i = 1,2, . . ., p), a;(j = 1,2,

{(a. =0,

.+ q) and by(k =

= 1,2, ..., r) as unknown parameters the normal equations for determining
d;, @; and by will be the following:
8P 1 .
S—d 02*24]("” d)=0, (i=12,...,p) (25)
i j=1
P 1 2 A , -
P —7_21 Aij(ny; —n' —a;+al — B 6,) =0
g i= )
P Lo j=12,...,9
J - o2* > 2 ij ﬂlj]( (nu n! — E]_*_Et - ﬂx"jk' bk') =0 (26)
P i=17=1
Ya; = 0.
j=1

It can be seen that Equs. (25) and (26) do not have common variables and

d=ni (i=12,...,p).

The system (26) consists of only ¢ + r 4 1 equations the matrix of which can
be inverted much easier than the matrix (23), and the covariance matrix of
the quantities a;(j=1,2, .. .,q) and be(k=1.2,..., r) can thus be determined.

The estimated values of the quantities 4 4 ¢;(i =1, 2, ..., p) can be
obtained on the basis of @;, bx and Equ. (24). The variances lnvolvmg A+%

(i=1,2, ..., p) can also be calculated on the basis of (24) and of the fact that
thed; (i = 1,2, ..., p)areindependent of @;(j=1,2, ...,¢) and b k=12,...,71),
E.g.

. r P —
a;)==— covariance of (@.,a,) — Y covariance of (8.x bk, a;).
k=1

covariance of(/f—{—?,-,
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VII. Concluding remarks
§23. It has been shown that the representation

(nijy=A +¢; + a; + Bij by
t=1L2,...,p; j=12,...,¢9; k=1,2,...,1) 27

a.=c¢.=0

may be very often preferred to that of the Fourier type. Assuming n;; to be
independent Gaussian variables, explicite expressions have been given for the
maximum likelihood estimations of the parameters A, c;, a;, by together with
the variances and covariances of the estimates.The probability that the devia-
tions of the values a@; (j = 1,2,. . ., q) from zero are due to statistical fluctua-
tions only has been derived as well as an unbiased estimated value of the mean

square amplitude

/i Sl

2
@;

il
-

a? = L

q
and the variance of this estimate.

The advantage of the representation (27) is that

a) it does not involve the assumption that the periodic function be a

trigonometric polynome, and

b) the numerical calculations required are by far simpler than those

involved in a Fourier representation with the same number of para-
meters.

There are cases when the first and may be also the second Fourier com-
ponents have direct physical meanings and should be estimated. In such
cases the Fourier method and the simple step function method may be com-
bined to yield the estimated values of the amplitudes of the first and second
harmonics and the rest may be investigated by the step function representa-
tion.

§ 24. The existence of a slow variation of the intensity, i.e. the probabi-
lity e that the deviations from zero of the estimated values ¢; (i = 1,2, . . ., p)
are due to statistical fluctuations alone, can be determined just in the same
way as it has been done in the case of the periodic part of the variation. All
what we have to do is to change the notations referring to “a” into those re-
ferring to “c”. We thus have

€ = I)p—l,q'(c >yc)
with
1 e Hics
2 p—1 0?
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where %, stands for the matrix obtained when omitting the row and column
numbered s in the matrix .. (see § 18).
The unbiased estimated value of

P

~

C

1
P i=1

the mean square amplitude of the slow variation and the variance of this
estimate can also be obtained by using the formulae referring to a® and
changing the notations accordingly.

§ 26. Applications of some parts of the results reported on in this paper
may be found in [6] and [7]. Full applications will be published later on.
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Appendix I

If the variables x;(i = 1,2, ..., n) are distributed normally according
to the joint density function g

det (4;,) 1
~V_(ze'ftt)("lz o P [h 5 A (% — @) (%, —~ al\)] )

G, k=12,...,n)
then the variable

= é (x; — =.)?

has the expected value

uy =A; A;+Af, (A1)
and the variance
oy =24%A5+24;4), (A2)
where
Ai=a;,—a
and
Afj=Af— Af — A5+ A7 (A3)
Proof. The quantities
x; = x; — X. i=112,...,n)
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have the expected values

(x> = A4;

and their covariance matrix is composed of the elements A%(i, j = 1,2,.. ., n),
It can be shown by means of simple calculations that the quantity

o7
U= x;x;

has the expected value and variance as givenby Equs. (41) (42),respectively.

Appendix II

The variables x; i = 1,2, . . ., n) should be distributed normally with
() =@ (i=1,2,...,n)

and
<(xi~ai)(x]_aj>=02Alj, (i9j=1929 ---sn) ’

where the A4;; elements are known, the rank of the matrix || A;;}| is at least
n—1, a; and o® are unknown, but ¢ has a known estimate ¢2, such that
p’0?/o? is distributed according to 42 with p’ degrees of freedom, and o2 is
independent of 2;(i = 1,2, ..., n).

Clearly the value

_ 1 —
at = — [x; 2, — A;; 2] (A4)
n
is an unliased estimate of
1
a?=—a;aq;.
n

It will be shown that the estimated variance of a2 is

— 20?2 at ,
=2 [203 —g Af,-A,,-—A”A,p], (45)
where
Q= xiAijxj-

According to Appendix I

g%‘x‘ == 262Aij (UZAU—‘}— 20101').

Taking into account that
’

T 4 —\2
o) — — (g2
(@) oo (0%)
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and

R =2 = (P

p p+2

furthermore that x;x; is independent of o2, and that the estimated value of
a;a;0? is
’
p+2

Equs. (A5) can be obtained without difficulty.
Appendix III

A one-row matrix b™ with elements bi(i = 1,2, ..., n) all different
from zero should be given together with a one-column matrix a"? with ele-
ments a;(i = 1,2, ..., n), and a symmetric matrix D™ of the rank n — 1.
Each diagonal submatrix of D with n — 1 rows andn — 1 columns should be
of the rank n — 1. The elements of a and D should satisfy the equations

ba = 0(1’1) = 0 ie. bi a; = 0 (A6)

and

DE=0"D, jie D;b=0 (i=12,...,n) (A7)

v
@r_1s @ryqs -+ o @n and by D"V the matrix with elements Dj; (i j = 1,

cor—1,r41,..., n).
It will be shown that the quantity

Let us denote by a1 the one-column matrix with elements T S

Q. —3D;a, (A8)

is independent of r. This can be done as follows:
If the one-column matrix y,"" is a solution of the equation

Dy,=a, (A9)
then all solutions of (A9) may be written in the form
y =yo+4b,
where 1 denotes an arbitrary scalar quantity. Introducing the notation
z~0) = D} a,, (A10)
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it can be seen that
D.,z,=a,. (Al1l1)

Let us denote the elements of z. by z,, 2, .. ., Zr_1, Zr415 - + +» 21 and let
us denote by z;("'l) the matrix consisting of the elements z;, ..., z,_,;, O,
Zryqs - - - 2n. It follows from (A6),(A7),and (All) that z, is a solution of (A9),
may thus be written in the form

7z, =y, + Ah. (Al12)
Making use of Q, may be expressed by means of z’ in the form
Q, = az,. | (A13)
Let us now investigate another quantity (A8), e.g.
Qs =14,D; a,.
Repeating the considerations above we arrive at

7, =y, + Asb (A14)

and

Qs =z, . (A15)
On the basis of (A12) — (Al5), and (A6) we have
¢ — Q=4 — AS)EE:O

what was to be shown.
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HEKOTOPBIE TTPOBEJIEMb] UICCJIEJOBAHHON TEPUOJUYHOCTH
BPEMEHHON CEPHHW KOCMHUUECKHX JIYUEH

A. KOTA u A. LIOMOOU

Peswme

Haercs ob6obmenne meToga aHaiM3a DPACXOXKIEHHSI C LEJIbI0 HCCIIEJIOBAHHS CYILeCT-
BOBAaHHsI H BHA MEPHOJHYHOCTH C AaHHOH ANHHOH nepHoaa. ITPHHHUMAIOTCSI BO BHHMAHHE KaK
MEPEMEHHBIE H3MEHEHHST HHTEHCHBHOCTH KOCMHUYECKHX Jlyueit, TaK B meTeoponoruueckue addex-
Tel. Jlanee, Kpome TOYHOr'0 HCCJIECXOBAHHSI CYILECTBOBAHHA MEPHONMYHOCTH M3NAralTCs Mak-
CHMAaJIbHBIE BEPOSITHbIE OLIEHKHM KaK /IS MOCTOSIHHBIX, XapaKTepH3YIOLMX BHI NEPHOAHYHOCTH,
TaK H 751 rJaBHOH KBagpaTHYHOH AMIUIMTYNIB NEPHOAHYECKOH (PYHKLHH BMECTe C HX OTHOCH-
TeJIbHOH CTATHCTHYECKOH OIHOKOH B Cylyyae NMPOH3BOJILHOIO YHCJIA METEOPOJIOTHYECKHX (aK-
TOPOB, BJIHAIOLUIHX HAa HHTEHCHBHOCTb KOCMHYECKOTr0 HW3JIYYEHHS.

INokasbiBarOTCS1 HEBHIMOAB MPHMEHEHHST MeToAa Dyphe B HCCIIENOBAHHH NMEPHOAHYHOCTH
¢ onpeneneHHoOH AnHHol nepuosa HakoHel, NMoKaspBaeTCs, YT0 HaKT CTATHCTHYECKOTO OMpe-
JIeJIEHHST METEOPOJIOTHYECKHX KO(pPHLHEHTOB HENb3si OTAEJATH OT AHAJH3a NEPHOAHYHOCTH.
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