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The solution of Hartree--Fock equations by a numerical method on computers, type 
BESM, is described. The minimization of the input information is reached by using the equa- 
tions independent of coupling scheme and the universal potential field for obtaining the initial 
radial wave funetions. The results obtained are compared with those evaluated from the solu- 
tions of conventional Hartree--Fock equations. 

1. Introduct ion 

A proper  theore t ica l  inves t iga t ion  of a tomic  proper t ies  is possible only 
when radia l  wave  funct ions are avai lable .  These are obta ined ,  in the  main ,  
f rom t rad i t iona l  H a r t r e e - - F o c k  equat ions .  Somet imes  i m p r o v e d  me thods ,  e.g. 
mul t i - conf igura t ion  app rox ima t ion ,  ex tended  me thod  of calculat ion,  incomple te  
separa t ion  of var iables ,  and other  me thods  ate  used. However ,  these l a t t e r  
methods  are appl ied only for r a the r  s imple  cases. Consequent ly ,  the  t rad i t iona l  
H a r t r e e - - F o c k  radia l  wave  funct ions  r emain  the  bes t  avai lable ,  especial ly as 
concerns many -e l ec t ron  a toms.  For  this reason  they  a t e  ve ry  widely used at  
present  and the  solut ion of H a r t r e e - - F o c k  equat ions is the  p rob lem of to -day .  

The m e t h o d  of numer ica l  solut ion of H a r t r e e - - F o c k  equat ions  have  been 
e labora ted  ma in l y  b y  FOCK, PETRASHEN [1] and HARTnEE [2]. The  develop-  
men t  of mode rn  comput ing  techniques  provides  new possibili t ies for ob ta in ing  
the  cor responding  solutions in ah easy  way.  Various p r o g r a m m e s  b y  different  
au thors  for ca r ry ing  out the cor responding  calculat ions have  been compiled,  
and the t a b u l a t i o n  of numer ica l  funct ions  has gradual ly  been  given up. There-  
fore, efforts are made  to draw up p r o g r a m m e s  sui table  for a n y  a tom in any  
s ta te  in order  to p rov ide  for any  p rob lem to be solved b y  the  wave  funct ions.  

At  the  p resen t  t ime p r o g r a m m e s  for numer ica l  solut ion of H a r t r e e - -  
Foek  equat ions  have  been given b y  WOnSLEY [3], RIDLEY [4], PIPER [5], 
IVANOVA et al. [6], B~ATS~V [7], HEnMAN and SKILLMA~ [8], FROSSE [9, 10], 
MAYERS and O'BRIEN [11] and b y  others .  Besides this the  m e t h o d  of analy t ica l  
solution of H a r t r e e - - F o c k  equat ions  [12] is widely used as well. As far  as we 
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are dealing with the methods of numerical solution we give no further references 
on this last yery interesting approach in this paper. 

The process of solution of Hartree--Fock equations is rather complicated 
even for powerful computing machines. For this reason simplifications ate 
sometimes used to facilitate the numerical procedures. This is achieved by 
neglecting the non-diagonal Lagrange multipliers, as is done in [7], or by 
replacing the exchange terms by a more simple expression, as is done in [8], 
and so on. 

In this paper we describe the method of solution of Hartree--Fock equa- 
tions in which the simplification is achieved by solving the corresponding 
equations independent of coupling scheme instcad of accurate Hartree--Fock 
equations and by the use of the universal potentia] for estimating the initial 
one-eleetron radial wave functious. Such an approach allows the " inpu t"  
information to be minimized coasiderably. 

In the next two Sections we describe the Hartrec--Fock equations inde- 
pendent of the coupling schemc and the universal potential, correspondingly. 
In Section 4 we indicate the methods of numerical calculations and in Section 
5 we present and discuss the results for NeII. 

2. Hartree~Fock equations independent of the eoupling scheme 

The solutions of Hartree--Fock equations for each term of a given 
configuration is rarely done, because it requires a great number of operations. 
Therefore, ir is usual to solve the equations either for the "centre of gravi ty" 
of the configuration or for one particular term of the configuration under 
consideration. The solutions so obtained are used to evaluate the physical 
quantities to be calculated. 

The modification of Hartree--Fock equations we shall use are those 
equations which do not depend on particular coupling scheme, i.e., the equa- 
tions are quite similar to those proposed by JucYs and VIZBARAITE [13] and 
ate obtained by making the functional stationary which is equal to the energy 
expression with all interactions depending on terms omitted. Such terms, 
besides magnetic interactions, are 

I. The non-spherical part of the direct electrostatic interaction between 
electrons belonging to the same incomplete shell. 

II. The non-spherical part  of the direct electrostatic interaction between 
electrons belonging to different incomplete shells (when one or both shells 
are complete this part vanishes). 

I II .  The non-spherical exchange electrostatic interaction between electrons 
belonging to different incomplete shells, under the concept of the shell being 
understood the group of electrons with the same set of quantum numbers nl. 
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Under these circumstances integrals Fk(nl, nl) (k > 0) and Gk(nl , nT )  
are partially neglected, integrals Fk(nl, n T )  (k > 0, n T  # ni) are all omitted, 
nl and n T  belonging to the incomplete shells. Then we are left with the expres- 
sion (in atomic units of HARŸ [2]) 

E --- , ~ l N n ,  I(nl) -~ Nn'(Nnz--1) Fo(nl, nl) -- 
nt I 2 

N., ~'(illC(k)!Fl)2 FI~ (al, nl) -~ 
4 1-~2 k>0 

t F ~  - - -  + ~~,_~ Nn',' 0(nl, n'r) 
n'l" 

, ] Nn~ ~ . ~  N~.'v (lliCtk)lll,)2Gk(nl, n,l, ) , 
4 l - F 2  ~'r k 2 / ' -F1  

(1) 

which is to be made stationary by FOCK'S variation method [14]. 
N~l in (1) denotesthe numberof  electronsinthe shell characterizedby the 

quantum numbers nl. The prime to the summation symbol shows that  n T  ~ ni 
is to be excluded from the summation. The radial integrals I,  F~ and Gk are 
defined according to HARTREE [2]. (l IIC<k)ll/) is the reduced matrix element of 
the spherical harmonic as defined by RACArt [15]. Its numerical values can 
be found in Appendix 6 of [16]. 

The functional (1) coincides with the expression for the energy not involv- 
ing magnetic interactions when only one electron is present outside the complete 
shells or one electron is missing as well as when the configuration contains the 
complete shells only. The deviation from the energy increases with increasing 
number of electrons in partially filled shells and increasing number of missing 
electrons in almost closed shells. This is true for the highest and lowest energy 
levels, because the functional under consideration is usually not far from the 
the "centre of gravi ty"  of a given configuration. This last involves the radial 
integrals representing the dependence on the coupling scheme mostly with 
small coefficients and do not matter  very much. Absence of these integrals 
in our functional makes it more convenient for calculation. 

When applying the FOCK variation method [14] to (1) supplemented by 
Lagrange multipliers one obtains the equations 

[ d2 2Y(nllr) l (1-4- 1) ] r P ( n l l r ) -  
d r 2 r 2 

p 

X(nlLr ) - ~ en,,,, t P(n'IIr ) -- O, 

(for all ni) 

(2) 
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where 

Y(nl[r) = lr [-- Z ~~ n'," " ~  (Nn"" -- 6n'n'Z') Yo (nT,  n'l'[r) -- 

-- (21 -~ 1)-1 _~~, (lllC(k)l[l)2Yk(nl, nllr ) 
k = 2  

•3) 

is the potential funetion and 

X(nllr  ) -- 1 . ~ . ~ -  Nn'," (l!tC(k)[ll')2Y~(nl, n'l'[r)P(n'l'[r ) (4) 
r n'r k (21'q-1)(2l-~-l) 

represents the exchange terms, the Yk(nl, n'l'/r) being radial integral funetions 
defined by the formula 3.5 (1) of [2]. 

Owing to the faet that  (2) does not involve terms depending on the 
eoupling seheme it is easier to make ealeulations fully automatie. 

3. The universal potential 

Besides the configuration, there must be put into the computer initial 
estimates of one-eleetron radial wave functions from which a proeess of sue- 
cessive approximation must be started. Generally, there the eomplementary 
procedure is programmed by which the estimates mentioned are obtained 
automatieally. Sueh proeedures used to be of 8everal kinds. One of them con- 
sists of using analytie hydrogen-like one-e]eetron radial wave functions and 
the other in making use of the interpo]ations of extrapolations from the wave 
functions of neighbouring atoms or ions already computed. The third eonsists 
of using the Thomas--Fermi statistieal potential. The first proeedure is applied 
mostly in the case of light atoms and the seeond in the case of heavy ones. The 
proeedure we are going to describe is a modifieation of the third approaeh 
mentioned and used in [8]. Ir consists of using the universal potential field 
derived from the statistical theory of the atom with a correetion fitting it to 
ions as well as to neutral atoms. 

The statistical theory of the atom foundedby THOMAS [17] and FERMI [18] 
and further developed by GOMB�93 [19] allowed G�93193 [20, 21] to approxi- 
mate the Hartree--Fock potential by the so-called universal potential field. 
This universality consists in scaling the radial variable in such a way tha t  the 
potential field has ah expression independent of the atomic number in the 
periodic system of elements. 

The universal potential mentioned above, giving a good approximation 
for neutral atoms (c.f. G�93193 [22]) has been adjusted to ions as well by the 
use of a simplified Fermi--Amaldi correction (c.f. GOMB�93 [19] p. 65 and [21] 
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p. 40). The resulting expression is given by equation (5) of [23]. As far as we 
ate interested in the first estimates of radial wave functions we neglect the 
exchange part and the adjustable parameter cr in this last equation. Such an 
approach leads us to this SchrSdinger equation 

[ d  2 2] 2 e - z ~  I (/+1) ] P ( n l l r  ) = 0 (5) + + - -  ( Z - I )  ~,in, , 
dr  ~ r r 1 + A o r r 2 

where I i s  the degree of ionization and 

20 = 0,2075 Z 1/3, A 0 =.1,19 Z 1/3 . (6) 

Z is the nuclear charge number here as well as in the preceding Section. 
For all one-electron wave functions equation (5) is the same, hence the 

solutions are spontaneously orthogonal. The programme for solving equation 
(5) was used as the complementary procedure mentioned above. 

4. The process of numerical solution 

The system of equations (2) was solved under well known boundary 
conditions [1, 2] 

P(, , l lo) = P(n,  li ~ )  = 0 (7) 

numerically following, on the whole, the methods used by FnoEsE [9, 10] which 
confortas well to the specificity of the computer. 

In order to keep the intervals between adjacent points constant in the 
entire range of r a logarithmic mesh [2] has been used. Then 

= In Z r  (8) 

s the independent variable instead of r. The last is then calculated by this 
simple formula 

r n e h = r n _ l ,  (9) 

where h is the interval between adjacent points in the logarithmic mesh, 
subscript n showing the ordinal number of mesh points. 

The solution of equations (2) was performed with NUMEROV'S formula 
[24]. However, for small and large values of r, the solutions are unstabte. 
In these regions the LOCKUCIEVSKY [25] method of factorization was used as 
is done by FROESE [9]. The main point of this last approach is the replacement 
of NUMEROV'S formula by two stable ones of lower order. 
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The calculations have been carried out by outward and inward solutions. 
Both solutions ate connected at a fixed point in the second half of the range 
of r. The difference between these solutions at this point allows the correctioh 
of the diagonal Lagrange muhiplier to be determined. This procedure is applied 
mainly in solving the equations for radial wave functions of inner shells. 

As FROESE has pointed out, the method of DETTMAR and SCHL• [26] 
is more appropriate in the case of outer shells. They suggest the expansion of 
the function in power series of ~ - - t ,  e and t being, correspondingly, the 
accurate and approximate values of the diagonal Lagrange muhiplier. The 
coefficients of such an expansion ate found step by step. 

Ah important feature of radial wave functions is their orthogonality 
between the shells with the same l and different n. This orthogonality is 
secured by the non-diagonal Lagrange muhipliers which must be used when 
incomplete shells ate present. The functions ate orthogonalized by Schmidt 
procedure and the estimates of non-diagonal Lagrange muhipliers calculated 
by the method of FaOESE [10]. Then the solution of equations (2) is carried 
out using the estimated values of non-diagonal Lagrange muhipliers. After- 
wards, those radial wave functions are improved for which self-consistency 
is poor. 

The degree of self-consistency is measured by the value of 

A P  = max(r)]P t P i - l i ,  (10) 

where i indicates the iteration number, max (r) denotes the maximum value 
over the entire range of r. Iterations ate performed until 

max(n/) A P ( n l )  ~.z 10 .5 (11) 

is attained, max(n/) denoting the maximum over all shells of electrons. 

5. The resuhs for NeII 

The numerical procedures described in the preceding Section have been 
programmed for computers BESM--2 and BESM--4. The programme works 
entirely automatically and is suitable for each atom in the periodic system of 
elements in any state of excitation. What  initially must be known is the 
atomic number and the configuration. After self-consistency is attained the 
radial integrals ate calculated and automatically printed by the output 
mechanism. 

We are presenting some results for the configuration ls22s22p43p of NeII 
in order to see how the solutions of Hartree--Fock equations independent of 
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T a b l e  I 

The quantities of self-consistent field independent of coupling scheme in comparison with 
those of accurate Hartree--Fock method 

quanti ty 
A 

e2p2p 

83p3p 

r(2p) 
r(3p) 
F2(2p, 2p) 

F2(2 p, 3p) 

G0(2 p, 3p) 
G2(2 p, 3p) 

)'2p,3p 

independent of i 
coupling scheme i 

4.16203 

0.69866 
0.8141 

3.958 
0.51661 

0.03452 

0.00977 
0.00986 

--0.2O366 

differences ,dA 

(~P)~P 

0.27711 

0.00288 
--O.O138 

0.056 

0.01095 
--O.OO467 

--0.00365 
--0.00320 

--0.22149 

QD)2P 

0.16449 
0.01088 

--0.0097 
--0.002 

0.00682 
--0.00220 

--0.00227 

--0.00287 
--0.O6382 

es)'P 

--0.01591 
0.02008 

0.0038 
--0.260 

--0.00259 

0.00541 

0.00471 
0.1697 

(~P)'P 

0.23861 

0.05235 

--0.0153 
--0.331 

0.00485 
O.O1358 

0.00899 
0.00812 

T a b l e  II  

Values* of the total energy (in atomic units) 
for NelI ls22s22p~3p 

Et 
Enr 

J 
(zp)2p QD) 2p (,S)2p i (3p)4p (3p)~ D (3p)~ D (3p)~ S 

I I 

m 1 2 6 4 7 1 6 3  ~ --126.6001' -- 126.4200 i 126.7474 
--126.7144! --126.6007 --126.4201! --126.7422 -- 

* E t - - f rom the accurate Hartree--Fock equations. 
Er, r - -  from those independent of coupling scheme. 

126.7364 -- 126.7290 i -- 126.7215 
126.7339 --126.7295 1 --126.7215 

I 

coupl ing  scheme  w o r k  as c o m p a r e d  wi th  t he  solut ions  o f  t r a d i t i o n a l  H a r t r e e - -  
F o c k  equa t ions  as given b y  FROESE [10]. I n  Table  I t he  values  of  L a g r a n g e  
mul t ip l iers  and  s o m e i n t e g r a l s  wide ly  used ( the  f i rs t  two  co lumns)  and  the i r  

dev ia t ions  f r o m  t he  values  as g iven  b y  FROESE [10] ( co lumns  3 - - 6 )  are given.  
Tab le  I I  con ta ins  the  ene rgy  values  e v a l u a t e d  b y  us (Enr )  and  b y  FROESE (Et). 

The  resul ts  show the  well k n o w n  fac t  t h a t  eve ry  mod i f i c a t i on  of  H a r t r e e - -  
F o c k  equa t ions  affects  the  ind iv idua l  quan t i t i e s  no t i ceab ly .  H o w e v e r ,  the  

values  o f  phys i ca l  quan t i t i e s  are a f fec ted  r a t h e r  s l ight ly .  I n  our  case, the  non-  
d i agona l  L a g r a n g e  mul t ip l iers  u n d e r g o  the  m a x i m u m  changes .  H o w e v e r ,  this  

�9 dev ia t ion  is less t h a n  the  m a x i m u m  difference b e t w e e n  sepa ra t e  t e r m s  in 

accu ra t e  t r a d i t i o n a l  H a r t r e e - - F o c k  equa t ions ,  as is to  be seen f r o m  the  resul ts  
o f  FROESE. The  n e x t  q u a n t i t y  w h i c h  is cons ide rab ly  a f fec ted  is t he  rad ia l  

in tegra l  G 2 a n d  t h e n  G o. Fo r  the  t e r m  4p ir reaches  90 per  cent .  Never the less ,  
t he  di f ference in t o t a l  ene rgy  does n o t  exceed  0.004 per  cent .  
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On a c c o u n t  of  t h e  s i m p l i c i t y  of  h a n d l i n g  a n d  r a t h e r  g o o d  f i n a l  r e s u l t s  

t h e  use  o f  t h e  H a r t r e e - - F o c k  s e l f - c o n s i s t e n t  f i e ld  e q u a t i o n s  i n d e p e n d e n t  o f  

c o u p l i n g  s c h e m e  is j u s t i f i e d ,  e s p e c i a l l y  as t h e  d i f f e r e nc e  u n d e r  c o n s i d e r a t i o n  is 

c o n s i d e r a b l y  less t h a n  t h e  d i f f e rence  b e t w e e n  t r a d i t i o n a l  H a r t r e e - - F o c k  

e q u a t i o n s  a n d  t h o s e  a c c o u n t i n g  for  t h e  c o r r e l a t i o n  effect .  As ah  e x a m p l e  we 

can  t a k e  t h e  m e t h o d  of  a s e l f - c o n s i s t e n t  f i e ld  in  m u l t i - c o n f i g u r a t i o n a l  a p p r o x i -  

m a t i o n  (cf. [27]). 

T h e  r e su l t s  o f  t h e  t h e o r e t i c a i  c a l c u l a t i o n s  o f  t h e  e n e r g y  s p e c t r a  o f  Z n I V  

i s o e l e c t r o n i c  s equence  in  t h e  c o n f i g u r a t i o n  dSp [28] m a y  se rve  as t h e  a d d i t i o n a l  

c o n f i r m a t i o n s  of  u se fu lnes s  of  t h e  so lu t i ons  of  H a r t r e e - - F o c k  e q u a t i o n s  i n d e -  

p e n d e n t  o f  c o u p l i n g  s c h e m e .  

The authors ate very happy to take this opportunity to express their appreciation to 
Prof. CHARLOTTE I~ROESE~ for making available all information concerning the pro- 
cess of programming the numerical procedures. 
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K BOFIPOCY 0 PEII IEHHH YPABHEHHI~I XAPTPH-- r  HE 3ABHC~tlIIHX 
0 T  THFIA CB~I3H, LIHCMEHHbIM MET0~ONI 

P. H. I~APA314~I, FI. 0 .  I30F~3AHOEHMYC 1~ A. IOI~HC 

P e 3 ~ o M e  

PaccMaTp/maeTca MeTo~m(a peme~Hu ypaBHenHª XapTpH--(l)oKa qHcJleHHblM MeTO~OM 
rl e~ npHMeHem~e K aneKTpOHHblM Bblqltc.rlHTeJlbHblM MamltHaM THrla B3CM. MtiHHMH3alXHJt 
r l aqZJ lbH0~ HHqb0pMal4HI4 j~0CTttFaeTca IIyT~M ttCnOJlb3OBaHl4~l ypanHeHnfi, se  3 a s n c a m H x  0T 
Tnna CB~I3H ( 2 ) - - ( 4 )  rl yHnsepcazbsoro noTeHm,a~a (5) J~~a noJ~yqeHn~ HCX0~HbIX pa~Ha~bm~x 
BOa~OSbrX qbynKun¡ Pc3yJ1bTaTbl JIJl~ NeII ls22s22pa3p cpaBnnna~oTca c pemenn~Mn ypaa- 
HeHHI4 XapTpH--(Dor(a ~da~ Ka~zoro TepMa. O£ TOqHOCTb noJ~yqeHHb~X qbym<I~n¡ 
H HX HpttF0~HOCTb B pacq~Tax. 
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