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The solution of Hartree—Fock equations by a numerical method on computers, type
BESM, is described. The minimization of the input information is reached by using the equa-
tions independent of coupling scheme and the universal potential field for obtaining the initial
radial wave functions. The results obtained are compared with those evaluated from the solu-
tions of conventional Hartree—Fock equations.

1. Introduction

A proper theoretical investigation of atomic properties is possible only
when radial wave functions are available. These are obtained, in the main,
from traditional Hartree—Fock equations. Sometimes improved methods, e.g.
multi-configuration approximation, extended method of calculation, incomplete
separation of variables, and other methods are used. However, these latter
methods are applied only for rather simple cases. Consequently, the traditional
Hartree—Fock radial wave functions remain the best available, especially as
concerns many-electron atoms. For this reason they are very widely used at
present and the solution of Hartree—Fock equations is the problem of to-day.

The method of numerical solution of Hartree—Fock equations have been
elaborated mainly by Fock, PETRASHEN [1] and HARTREE [2]. The develop-
ment of modern computing techniques provides new possibilities for obtaining
the corresponding solutions in an easy way. Various programmes by different
authors for carrying out the corresponding calculations have been compiled,
and the tabulation of numerical functions has gradually been given up. There-
fore, efforts are made to draw up programmes suitable for any atom in any
state in order to provide for any problem to be solved by the wave functions.

At the present time programmes for numerical solution of Hartree—
Fock equations have been given by WorsLey [3], RipLEY [4], PipER [5],
Ivanova et al. [6], BraTseV [7], HERMAN and SkiLiman [8], FroEske [9, 10],
Mavers and O’BRrIEN [11] and by others. Besides this the method of analytical
solution of Hartree—Fock equations [12] is widely used as well. As far as we
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are dealing with the methods of numerical solution we give no further references
on this last very interesting approach in this paper.

The process of solution of Hartree—Fock equations is rather complicated
even for powerful computing machines. For this reason simplifications are
sometimes used to facilitate the numerical procedures. This is achieved by
neglecting the non-diagonal Lagrange multipliers, as is done in [7], or by
replacing the exchange terms by a more simple expression, as is done in [8].
and so on.

In this paper we describe the method of solution of Hartree—Fock equa-
tions in which the simplification is achieved by solving the.corresponding
equations independent of coupling scheme instead of accurate Hartree—Fock
equations-and by the use of the universal potential for estimating the initial
one-electron radial wave functions. Such an approach allows the “‘input”
information to be minimized considerably.

In the next two Sections we describe the Hartree—Fock equations inde-
pendent of the coupling scheme and the universal potential, correspondingly.
In Section 4 we indicate the methods of numerical calculations and in Section
5 we present and discuss the results for Nell.

2. Hartree—Fock equations independent of the coupling scheme

The solutions of Hartree—Fock equations for each term of a given
configuration is rarely done, because it requires a great number of operations.
Therefore, it is usual to solve the equations either for the *“centre of gravity”
of the configuration or for one particular term of the configuration under
consideration. The solutions so obtained are used to evaluate the physical
quantities to be calculated.

The modification of Hartree—Fock equations we shall use are those
equations which do not depend on particular coupling scheme, i.e., the equa-
tions are quite similar to those proposed by Jucys and VizBarAITE [13] and
are obtained by making the functional stationary which is equal to the energy
expression with all interactions depending on terms omitted. Such terms,
besides magnetic interactions, are

I. The non-spherical part of the direct electrostatic interaction between
electrons belonging to the same incomplete shell. ‘

II. The non-spherical part of the direct electrostatic interaction between
electrons belonging to different incomplete shells (when one or both shells
are complete this part vanishes).

II1. The non-spherical exchange electrostatic interaction between electrons
belonging to different incomplete shells, under the concept of the shell being
understood the group of electrons with the same set of quantum numbers nl.

.dcta Physica Academiae Scientiarum Hungaricae 27, 1969



NUMERICAL SOLUTION OF HARTREE - FOCK EQUATIONS 469

Under these circumstances integrals Fy(nl, nl) (k > 0) and Gi(nl ,n'l’)
are partially neglected, integrals Fy(nl, n’l') (k> 0, n’l’ >= nl) are all omitted,
nl and n’l’ belonging to the incomplete shells. Then we are left with the expres-
sion (in atomic units of HARTREE [2])

5= 20Nty 4 =t
nl
-------- Vol N (1c®l1y B, (nl, nl) +
k>0
+ Ny Z,Nn'l' Fy(nl,n’ 1) -
n't

NI ’ N'l' ’
— — L (UICW| 126G (nl,n'T')},
4l+z%‘k221'+1(“ 1#)*C(nl.m )}

which is to be made stationary by Fock’s variation method [14].

Nppin (1) denotesthe numberof electronsinthe shell characterizedby the
quantum numbers nl. The prime to the summation symbol shows that n’l’ =nl
is to be excluded from the summation. The radial integrals I, Fyand G, are
defined according to HARTREE [2]. (I/|C?¥[|]) is the reduced matrix element of
the spherical harmonic as defined by Racam [15]. Its numerical values can
be found in Appendix 6 of [16].

The functional (1) coincides with the expression for the energy not involv-
ing magnetic interactions when only one electron is present outside the complete
shells or one electron is missing as well as when the configuration contains the
complete shells only. The deviation from the energy increases with increasing
number of electrons in partially filled shells and increasing number of missing
electrons in almost closed shells. This is true for the highest and lowest energy
levels, because the functional under consideration is usually not far from the
the “centre of gravity” of a given configuration. This last involves the radial
integrals representing the dependence on the coupling scheme mostly with
small coefficients and do not matter very much. Absence of these integrals
in our functional makes it more convenient for calculation.

When applying the Fock variation method [14] to (1) supplemented by
Lagrange multipliers one obtains the equations

[—dz— —2Y(nl|r) — £y 8n1n1] P(nl|r) —
dr? r?

X(nllr) = 3 ey Pwllr) = 0, ®

(for all nl)
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where

1 ryr )
Y(nl|r) = i yARR 2[ (N = Op) Yo (R'U,nir) —
(3)

2/
— @I+ 1) N (UICHIRY nl, nl!r)}
k=2

is the potential function and

1 > N,
X(nllr) = AL L [T (Y Y2 LaliryP(n'l' 4
(nlir) = . g = (o1 ])(21_#1)(.!C 1) Y, (nl,n'l'[r) P(n'l'|r) (4)

represents the exchange terms, the Y(nl, n’l’[r) being radial integral functions
defined by the formula 3.5 (1) of [2].

Owing to the fact that (2) does not involve terms depending on the
coupling scheme it is easier to make calculations fully automatic.

3. The universal potential

Besides the configuration, there must be put into the computer initial
estimates of one-electron radial wave functions from which a process of suc-
cessive approximation must be started. Generally, there the complementary
procedure is programmed by which the estimates mentioned are obtained
automatically. Such procedures used to be of several kinds. One of them con-
sists of using analytic hydrogen-like one-electron radial wave functions and
the other in making use of the interpolations or extrapolations from the wave
functions of neighbouring atoms or ions already computed. The third consists
of using the Thomas—Fermi statistical potential. The first procedure is applied
mostly in the case of light atoms and the second in the case of heavy ones. The
procedure we are going to describe is a modification of the third approach
mentioned and used in [8]. It consists of using the universal potential field
derived from the statistical theory of the atom with a correction fitting it to
ions as well as to neutral atoms.

The statistical theory of the atom founded by THOMAS [17]and FErMI [18]
and further developed by GomBAs [19] allowed GAspAr [20, 21] to approxi-
mate the Hartree—Fock potential by the so-called universal potential field.
This universality consists in scaling the radial variable in such a way that the
potential field has an expression independent of the atomic number in the
periodic system of elements.

The universal potential mentioned above, giving a good approximation
for neutral atoms (c.f. GASPAR [22]) has been adjusted to ions as well by the
use of a simplified Fermi—Amaldi correction (c.f. GomBAs [19] p. 65 and [21]
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p- 40). The resulting expression is given by equation (5) of [23]. As far as we
are interested in the first estimates of radial wave functions we neglect the
exchange part and the adjustable parameter « in this last equation. Such an
approach leads us to this Schrédinger equation

d? 21 2 e tor 1(1+1)
— =+ 221 — — &nimt | P(nl|r) = 0, 5
[dr2 r r ( ) 1+A4,r r2 e IJ (nlir) ()

where I is the degree of ionization and
Ao = 0,2075 23, A, =-1,19 213, (6)

Z is the nuclear charge number here as well as in the preceding Section.

For all one-electron wave functions equation (5) is the same, hence the
solutions are spontaneously orthogonal. The programme for solving equation
(5) was used as the complementary procedure mentioned above.

4. The process of numerical solution

The system of equations (2) was solved under well known boundary

conditions [1, 2]
P(nlj0) = P(n, ljoc) =0 )

numerically following, on the whole, the methods used by Froesg [9, 10] which
conforms well to the specificity of the computer. .

In order to keep the intervals between adjacent points constant in the
entire range of r a logarithmic mesh [2] has been used. Then

¢=InZr (8)

s the independent variable instead of r. The last is then calculated by this

simple formula ,
r=e'r, ;, 9)

where h is the interval between adjacent points in the logarithmic mesh,
subscript n showing the ordinal number of mesh points.

The solution of equations (2) was performed with NumMEROV's formula
[24]. However, for small and large values of r, the solutions are unstable.
In these regions the LockuciEVSKY [25] method of factorization was used as
is done by FroEsE [9]. The main point of this last approach is the replacement
of NuMEROV’s formula by two stable ones of lower order.
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The calculations have been carried out by outward and inward solutions.
Both solutions are connected at a fixed point in the second half of the range
of r. The difference between these solutions at this point allows the correctioi.
of the diagonal Lagrange multiplier to be determined. This procedure is applied
mainly in solving the equations for radial wave functions of inner shells.

As FRrOESE has pointed out, the method of DETTMAR and ScHLUTER [26]
is more appropriate in the case of outer shells. They suggest the expansion of
the function in power series of ¢ —t, ¢ and ¢t being, correspondingly, the
accurate and approximate values of the diagonal Lagrange multiplier. The
coefficients of such an expansion are found step by step.

An important feature of radial wave functions is their orthogonality
between the shells with the same ! and different n. This orthogonality is
secured by the non-diagonal Lagrange multipliers which must be used when
incomplete shells are present. The functions are orthogonalized by Schmidt
procedure and the estimates of non-diagonal Lagrange multipliers calculated
by the method of FROESE [10]. Then the solution of equations (2) is carried
out using the estimated values of non-diagonal Lagrange multipliers. After-
wards, those radial wave functions are improved for which self-consistency
is poor.

The degree of self-consistency is measured by the value of

AP = max(r)|P' — Pi~1}, (10)

where i indicates the iteration number, max (r) denotes the maximum value
over the entire range of r. Iterations are performed until

max(nl) AP(nl) ~ 10~5 (11)

is attained, max(nl) denoting the maximum over all shells of electrons.

5. The results for Nell

The numerical procedures described in the preceding Section have been
programmed for computers BESM—2 and BESM—4. The programme works
entirely automatically and is suitable for each atom in the periodic system of
elements in any state of excitation. What initially must be known is the
atomic number and the configuration. After self-consistency is attained the
radial integrals are calculated and automatically printed by the output
mechanism.

We are presenting some results for the configuration 1s?2s?2p*3p of Nell
in order to see how the solutions of Hartree—Fock equations independent of
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Table I

The quantities of self-consistent field independent of coupling scheme in comparison with
those of accurate Hartree—Fock method

quantity independent of ‘7 differences 44
A | coupling scheme J 7 !“‘P)ZP J (DyP I (Syp ¢PyP
,, | i .
€apap i 4.16203 0.27711 0.16449 —0.01591 0.23861
E3pap 0.69866 0.00288 0.01088 0.02008 0.05235
r(2p) 0.8141 —0.0138 —0.0097 0.0038 —0.0153
r(3p) 3.958 0.056 —0.002 —0.260 —0.331
F,(2p, 2p) 0.51661 0.01095 0.00682 —0.00259 0.00485
Fo(2p, 3p) 0.03452 —0.00467 —0.00220 — 0.01358
Go(2p, 3p) 0.00977 —0.00365 —0.00227 0.00541 0.00899
G.(2p, 3p) 0.00986 —0.00320 —0.00287 0.00471 0.00812
lzp,:}p 3 —0.20366 —0.22149 —0.06382 0.1697 —
Table II
Values* of the total energy (in atomic units)
for Nell 1s*25*2p*3p
(-?P)?P (1D)2P ) (ls)lP i (HP)IP (SP)ID (SP)ZD ! (JP)ZS
. | .
i |
E, *126.7163% —126.6001| —126.4200| —126.7474 | —126.7364 | —126.7290 , —126.7215
E,, —126.7144 "' —126.6007 ~—126.4201, —126.7422) —126.7339 |—126.7295 ! —126.7215
i [ |

* E; — from the accurate Hartree—Fock equations.
E,, — from those independent of coupling scheme.

coupling scheme work as compared with the solutions of traditional Hartree—
Fock equations as given by FROESE [10]. In Table I the values of Lagrange
maultipliers and some integrals widely used (the first two columns) and their
deviations from the values as given by FrRoESE [10] (columns 3-—6) are given.
Table II contains the energy values evaluated by us (E,,) and by Frogsk (E,).

The results show the well known fact that every modification of Hartree—
Fock equations affects the individual quantities noticeably. However, the
values of physical quantities are affected rather slightly. In our case, the non-
diagonal Lagrange multipliers undergo the maximum changes. However, this
.deviation is less than the maximum difference between separate terms in
accurate traditional Hartree—Fock equations, as is to be seen from the results
of FROESE. The next quantity which. is considerably affected is the radial
integral G, and then G,. For the term *P it reaches 90 per cent. Nevertheless,
the difference in total energy does not exceed 0.004 per cent.
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On account of the simplicity of handling and rather good final resalts
the use of the Hartree—Fock self-consistent field equations independent of
coupling scheme is justified, especially as the difference under consideration is
considerably less than the difference between traditional Hartree—Fock
equations and those accounting for the correlation effect. As an example we
can take the method of a self-consistent field in multi-configurational approxi-
mation (cf. [27]).

The results of the theoretical calculations of the energy spectra of ZnlV
isoelectronic sequence in the configuration d®p [28] may serve as the additional
confirmations of usefulness of the solutions of Hartree—Fock equations inde-

pendent of coupling scheme.

The authors are very happy to take this opportunity to express their appreciation to
Prof. CHARLOTTE FROESE-FIsCHER for making available all information concerning the pro-
cess of programming the numerical procedures.
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K BOITPOCY O PELMIEHWU YPABHEHUHW XAPTPU--®OKA, HE 3ABUCAILIMX
OT THUIIA CB$3U, UHUCIIEHHbLIM METOOOM

P. M. KAPA3HS, 1. O. BOITTJAHOEMUYYC u A. KOLIHC

Peswome

PaccmaTpHBaeTCs METOQHKA PEUIeHHMs ypaBHEHHH XapTpu— PoKa YHCIEHHBIM METOMOM
H e NpHMEeHEHHE K 3JIEKTPOHHBIM BBIYHCJIMTEJIbHBIM MaiuHHaM THna BICM. MuHHMH3aLHA
Hay&IbHOH HHPOPMALIMU JOCTHTAeTCsl NMyTEM HCNOJIL30BAHHSI YpaBHEHUH, HE 3aBHCSILUHX OT
TUNA CBsi3H (2)— (4) H YHHBEPCAJBHOrO NMoTeHnHana (5) Uis NosiyueHusi HCXOAHBIX PaAHaIbHBIX
BOJIHOBbIX QyHKuMd. Pesynprathl ansi Nell 1522s?2p*3p cpaBHHBAIOTCA € peELIEHHSIMH YpasB-
HeHnit XaptpH—QPoKa 4sa Kaxgoro tepma. OOCY>KAAETCST TOYHOCTH MONYyYEHHBIX (YHKUHH
H HX MNPHTOJHOCTH B pacuérax.
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