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It is demonstrated that the atomic model, in which the zero order approximations to
the one electron orbitals are hydrogen like orbitals, always leads to a model which imitates
very closely the Thomas—Fermi model of the statistical theory of the atoms.

The Schridinger equation and zero order solutions

For an atom with atomic number Z the Hamiltonian has the form [1]
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where we have introduced the scaled coordinates with the relation [1]

eg=rZ. (2)
The Schrédinger equation
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has perturbation solution with the energy
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* Dedicated to Prof. P. GomMBAs on his 60th birthday.
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is the sum of the hydrogenic energy terms. a, is the first Bohr radius in the
hydrogen atom and e*/a, is the atomic unit of the energy 27.23 eV; g, is the
occupation number of the states, with principal quantum number n,. W, is
determined by the electrostatic interaction matrix. For closed shells the occu-

pation numbers are

9. = 2ni (6)
and the total number of electrons is
k k E(k+1) (2k+1) 2 133 1 1
Z = =2 ¥nt=2 "7 L "] -k —-— (7
Se=23 o] e
so that approximately
k= _ L + _3_) 18 Zu3 (8)
2 2 ’
By inserting (6) and (8) into (5) we get
1/3
M — L — (_.3_) Zus (9)
2 2

which is the zeroth order approximation to E/Z%. By investigating the case for
non closed shells it turns out that equation (9) represents W, for non closed
shells to a good approximation also. ‘

Energy theorems
Because of the Coulomb forces in the Hamiltonian (1) the virial theorem
1
E=—E,= o (E; +Ej) (10)

is valid, where we have introduced the kinetic energy E, the electron—~nucleus
interaction energy EZ and the electron—electron interaction energy E; which
add up to the total energy

E=E,+ E} + Ej (11)
with the explicit expressions as follows .
Ep =—Ze2J—Q—(idv, (12)
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In a previous paper [2] we have made use of the Hellmann — Feynman theorem
stating

3E 1

—=—EK]j 15

oz gz P (15)

and a combination of this theorem with the virial theorem gave us for neutral

B __ 74 log ‘EJ . (16)
E dz VAN N

atoms

By introducing —W, i.e. the zeroth order approximation for —E/Z? we get
after some manipulation

E; 1 1 1
E‘—‘?‘T(f)”l’?‘z‘rfs‘- (7
2

The second term in (17) is negligible for greater atomic numbers and we may
use

£ 1
- 18
E (18)

as a first approximation. (18) shows us that dependence of E; and E and con-
sequently that of E; on the atomic number is expressed by the same power
of Z which determines the logarithmic derivative and so the ratio Ej/E.
Therefore the equation Ej/E = — 1/3 is true with a much higher accuracy.
Using the virial theorem, it is easy to demonstrate that this is equivalent to

n
Er __ 4 (19)
E,

which is a well known theorem of the Thomas—Fermi theory [3].
We are going to make use of relations (18) and (19). By the aid of a scale
transformation we get the following relation

E(d) = 2 Ey + AE[ 4 AES® (20)

and for the minimum value

no | freo
Ao=— Ep’ + E (21)
2 E}
and
E(hy) = — 13 EY. (22)
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The zeroth order values are

E}? = W.! s (23)
Ep® = 2W, = — 2 EY (24)
and
Ep = - Ep. (25)
As a consequence
6
b=
and (263)
2 13
E(AO) = i] W,= Ezz_ 3_6_ i) AL
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or because the first term is much smaller than the second we get by an averag-
ing process

E(ly), ==— 0.712866 Z73 . (26b)

Scaling and invariance

In this Section we investigate the consequences of the above results.
We introduce a scaling of the coordinates and the charge density by the follow-
ing relations

r=2%" and ¢=2%. 27

The primed quantities in the above and following equations denote scaled
quantities.

Equations (27) lead us to a scaling of the energy and the normalization
condition in the following manner. By introducing the scaled quantities ac-
cording to (27) into (13) and (14) we get

Ez — Zl~b+2a EZ’ (28)
and
E, = Z¥»+sa Fe (29)

The normalization condition for the charge density turns out to be
—Ze—=—¢ 5 odv = Z"*3%(—¢) s o dv' (30)
for neutral atoms i.e. N = Z. If

b-+3a=1 (31)
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the normalization condition
[ o'dv =1 (32)

is independent of the atomic number.
We may observe that because of equation (31) we get

c=14+b+2a=2b+5a (33)

for any value of a and the corresponding value of b.
Because of the virial theorem there is a scaling of the kinetic energy too

E, =Z°E; . (34)
The total energy has the following form
E=E,+E}+E; = Z°E/, (35)

where E’ is a slowly varying function of Z. By comparing (26b) and (35) we
get for the exponent the value

c=—), (36)

and using this value of ¢ in (33), combining it with (31) and solving the system
of linear equations we get the constants

a=~—§. and b=—2. (37)

These constants have the values well known for the scaling exponents in the
Thomas—Fermi theory.
Let us make the further assumption that

E; = | &lo) dv, (38)

i.e. the kinetic energy is expressible as a function of the particle density. If we
take an energy density like

e4l0) = w0, (39)

which is the simplest possible form, we get

h=- (40)
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if we take the scaling and (34) with the proper value of the constant ¢. We
leave the determination of the constant x to a later discussion.

The Thomas—Fermi equation

According to (35), (34), (13) and (14) the total energy of the atom may
be written in the following form

E= ,‘,J‘Qsls dv — Ze2J-ﬂ dv' + % €2 JI—Q(I)—Q(RQ dvdv’.

|r — x| r—r'|

By the aid of an argument similar to that given by GoMBAs in his famous
book [3] we get the Thomas—Fermi expression

(41)

3/2
0= oV -V, ap= [ 2 )
M

and combining this with Poisson’s equation we obtain the Thomas— Fermi

equation

A(V— V) = 4oy oV — Vi (42)

and the scaled form of this is
32

n

(p:

(43)

xl{Z

with exactly the same boundary conditions that may be found in GOMBAs’s
book. We shall not repeat them here. The solution of the scaled equation (43)
is the same and has been tabulated in the article [4].

In (43)
x = I (44)
u

with

p—— e (45)
(4 70p)32 €213 °

and

P(x) =—(V—Vp). (46)
Ze

In all the above expressions x is a yet undetermined constant. It is interesting
that without this constant it is possible to get an equation for the determina-
tion of ¢, i.e. the potential field. This is a consequence of the inhomogeneity
of equations (42) and (43).
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The final determination of this parameter may be achieved by the aid
of the energy expression (26b) and the virial theorem. By inserting ¢ from
(41) into (38) with (39) and taking into account (46), (45) and (44) we get the
following expression

9 ®'(0)
=—(4n)2 — T 7 24 — 3,0063 ¢%a,. 47
35 () —0.712866  ° o (47)

Discussion

The consequences of the change in the value of the parameter x» as
compared to that for the free electron value

3

%, = — (3n%)*3 e2 a, = 2.871 €2 q,
10
may be summarized as follows. Because u is proportional to x, the density
distribution gets looser giving a smaller magnitude for the potential energy of
the atom and consequently reducing the average kinetic energy too. These
energy reductions result in a reduction of the total energy which is very much
welcome, but the reduction is not enough to get near to the experimental total
energy. Naturally many of the shortcomings of the original Thomas— Fermi
density distributions remain incorporated also in this model. -

The main aim of this paper has been achieved, however, because we
have demonstrated that we can get a model starting from the true zero-
order solutions of the atomic problem, which has the main features of the
original Thomas—Fermi theory without mentioning plane waves and statistics
at all.

Now we are in a position to reinterpret our results in the following
manner. The kinetic energy density function &(p) = %% with » = %, is a
characteristic function of free electrons with mass m,. According to the above
theory a neutral atom may be believed to be composed of a nucleus and a
cloud of quasi particles that imitate free electrons but with a reduced mass
m = vm,, where

%,  2.871é%a,

= = 0.9272.
x 3.0963¢%qa,

P =

It is interesting to note that a much better agreement for the energy of
atoms may be achieved if we suppose semiempirically that the effective
mass of the quasi electrons is

2.871 e2a,

2% — 0.8156.
3.51997 ¢ a,

m' =vm, with » =
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HOBBIE OBOCHOBAHHSI MOOEJIKM TOMACA—®EPMU

P. TALUIIAP

Peszwme
JIeMOHCTPHPYETCsl, YTO 4TOMHAsl MOZIeJIb, B KOTOPOIi HyJieBoe NpHOMIKEHHE OTHO3NEKT=

POHHBEIX opfuTanei ecTb IIPHMEHECHHE BOAOPOAONOROOHBIX opOuTaneil, CHCTEMATHYECKH BeeT
K MOIEJH, TOYHO HamomHHamwueHd mozens Tomaca— ®DepmMH CTAaTHCTHYECKOH TEOPHH.
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