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Finite dynamical symmetry transformations of the Kepler motion are given in closed 
analytic form. 

In recent years there has been considerable interest in the problem of 
dynamical groups in Classical and Quantum Mechanics. For the classical o n e  

particle problem in a - - 1 I r  potential, characterized by  the energy function 
(Hamiltonian) 

p2 
E -- g , (1) 

2m r 

two well-known vectorial constants of motion exist (see e.g., [1]): the angular 
momentum 

L = r •  (2 

and the Laplace- -Lenz--Runge vector 

A - -  mg ( r  r p X L j ,  (3) 
Po mg I 

where 

Po = V2m--~-~ ~4) 

The Poisson bracket  relations of L and A coincide with the defining relations 
of the SO(4) and SO(3,1) Lie algebras for negative and positive energies, re- 
spectively. Higher Lie algebras can also be constructed out of the primitive 
dynamieal variables. The pioneering work in this direction has been done b y  
BAcRY [2]. One finds (see also [3]) that  the quantities 

rp/COS/po(pr)._t - mg [.r (rP)PtJsin/po(pr) 
B =  / c h /  mg Po r mg j [ s h ]  mg 

S = mg [1--  rfjle~ po(pr) T rp/s inl  P~ , 
Po ( mg ) - eh l mg [ shJ  mg 

- - ,  (5a) 

(5b) 
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as  well as L and A, obey the bracket relations of the SO(4,1) and SO(3,2) Lie 
algebras for negative and positive energies, respectively. Further, 

C =  • mg [ r (rP)P ] lc~ P~ rp/sin] P~ , (6a) 
Po r mg [chJ  mg {shJ mg 

q / p0(pr) mg ( I - -  rP2 ) /s in]  P~ (6b) 
T = - - r P | c h  I mg Po mg / shJ  mg ' 

together with L and A, obey the bracket relations of the SO(4,1) algebra for 
both negative and positive energies. In (5) and (6) the trigonometric functions 
should be taken for bound states, and the hyperbolic functions for positive 
energy. (The upper and lower signs refer to negative and positive energies, 
respectively.) Finally, one finds that L, A, B, S C and T, taken together with 
the new quantity 

M = •  mg---~2 ' 2 E  (7) 

satisfy the Poisson bracket relations of the Lie algebra of the SO(4,2) group, 
again for both positive and negative energies [3]. 

The three-dimensional finite rotations generated by the angular momen- 
tum rector  L can be immediately obtained by integration. As to the finite 
transformations of the dynamical variables r and p generated by the Laplace--  
Lenz--Runge veetorA, it has beenpointed out in [4] that  these transformations 
are non-linear and caunot be given in explicit analytic form. In [5] it has been 
proved that  the transformations generated by the angular momentum and the 
Laplace--Lenz--Runge vector A forro, indeed, a group of canonical trans- 
formations. The finite group elements have been obtained by integration, and 
the global structure of this dynamieal (invariance) symmetry group has been 
elarified; the group is isomorphic to the four-dimensional rotation group SO(4). 

In what follows the dynamical invariance and non-invariance symmetry 
transformations will be treated in a unified and general manner. The use of 
the BAcx~Y variables [3] as the basic quautities makes it possible to obtain 
explicit transformation formulae. Introduce the four-dimensional nota t ion  

B~ [B, ( •  -z/2 S],  C, [C, ( i )  -*/~ T] 

for the quantities (5) and (6). The BACRY variables may be defined as 

b~ = -4- m g M  -2 B,, , % = • ( m g ) - '  MC~ ; (8) 

they can be used equivalently instead of the original r, p positiou and momen- 
tum variables. Thus, the transformation formulae for these basie variables 
b~, c~ ate determined by those valid for B~, C~ and M. 
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The  t h r e e - d i m e n s i o n a l  r o t a t i o n s  g e n e r a t e d  b y  t h e  a n g u l a r  m o m e n t u m  
v e c t o r  will n o t  be cons idered .  F o r  an inf in i tes imal  canon ica l  t r a n s f o r m a t i o n  
gene ra t ed  b y  the  L a p l a c e - - L e n z - - R u n g e  v e c t o r  one has  

6B : (B, A6ct) = - -  $ 6 ~ ,  

6S  - -  (S,  A6ct) : -  • B6~,, 

6C = (C, A(~~) ----- - -  T�91 

6T = (T ,  A~ct) = • C & t ,  

$ M  = (M,  A~ct) : 0.  

(9) 

F u r t h e r ,  for  t he  in f in i tes imal  canon ica l  t r a n s f o r m a t i o n s  
quan t i t i e s  B, S, C a nd  T the  fo l lowing f o r m u l a e  ho ld :  

6L = (L, B6~) . . . .  B • 6 f / ,  

hA = (A, B6/~)= S6/~, 

6B = ( B , B 6 ~ )  = L X 6/~,  

6S := (S, B6/~) = A 6 ~ ,  

6C = (C, B6/~) =- M6t~,  

6T = (T, B6/3)---- O, 
� 9 1  = ( M , B 6 ~ ) =  C6~ ; 

6L : (L, S6~) -= O, 

,~A = ( A ,  S&~)  = T B6a , 

r = (B ,  $ 6 ~ )  -~- - -  A & r  , 

~S = (S, S~~) = 0 ,  
~C = (C, $6~) = 0 ,  

£  = (T ,  $6~) : • M ~ a  , 

6 M  = (M,  T6a)  = T 6 a ;  

6L : (L, E�91 = - -  C X � 9 1  

6A - -  (A. C6},)= T 6 ~ ,  

6B ---- (B, C6y) . . . .  M(~y, 
~ s  = ( s , c ~ ~ )  = 0 ,  
6C = (C, C~y) ---- =[= L x ~),, 
6 T  = (T ,  C~~,) - -  -4- A6~,, 

6 M  : ( M ,  C6},)= TB~~, ;  

£ = (L, T6z)  : -  0 ,  

6A = (A, T6~) = T C6~ , 

6B = (B, T6~) = O,  

6S = (S,  T£ = T M6~ , 

6C = (C, T6~) = T A6~ , 

5T = (T, T~T) == 0 ,  

6 M  - -  ( M ,  T £  T SOr. 

g e n e r a t e d  b y  the  

(10) 

(11) 

(12) 

(13 )  
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The integrat ion c a n  be easily carried out. From (9) one obtains 

B' B - - ( B n ) n - b ( B n ) n  [c~ Sn [sin] 
[ e h ]  / s h /  

= [C~ I ~t B n [  sin] of, 
S' S /ch l  -4- [sh] 

C ' = C - - ( C n ) n - t - ( C n ) n [ C ~  
' / eh J I sh / 

T, = T{C~ o: Cn [sin/ce , 
/r • I~hJ 

M '  = M 

(14) 

(~ = q n = tt/ct) ; frdm (10) one has 

L' ----- (Ln) n-F [L - - (Ln)  n]ch/~ --  B.• n sh B ,  
B' = (Bn) n + [B -- (Bn) n] ch/~ + L X n sh/~, 
A' = A --  (An)n  -F (An)n ch/~ -F Sn sh/~, 
S' = S c h ~ - F  A n s h f l ,  
C' = C --  (en) n -~- (en) n eh/~-.~--M¡ sh/~, 
T'=T, 

M' = Mch /~  -4- Cn sh/~ 

I ] (15) 

(fl = 1~1, n =/~//~); f rom (11) one gets 

Lt  ~ L ~  

(cos / /sin l 

o ' - - A  (7 9 
cos sin 

S ' - - - -S ,  
C" = C ,  

T'= T[Ch]a-F M[Sh]~, 
/COSl /sinl  

M'= M[Chla:J=T[Shla ; 
[cosJ /sinj 
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from (12) one has 

= y - - C •  7, 
cos sin 

A'  = A - -  (An)  n + ( A n )  n ~, + T ~,, 
cos sin 

B'  = B  ( B n ) n +  (Bn)n{  ch} {sh} - -  y - - M n  ~,  
cos sin 

S ' = S ,  

C:: (Cn)n + [C --(Cn)n]/ehl~-}-LXn [sh]~,, 
[cosj / s in/  

[cos / sin 7 

; f inally,  from (13) i t  follows t h a t  

L' = L ,  
A' = A c h ~  ~ C s h ~ ,  

(17) 

B / : B ~  

S' = S c h z  T M s h z ,  (18) 
C' = C c h z  ~= A s h z ,  
T ' =  T 

M ' =  M c h z T  S s h z .  

This completes the  integrat ion of the SO(4,2) full dynamical  s y m m e t r y  group 
for the classical Kepler problem. The t ransformat ion  formulae (14)--(18) 
determine the analyt ic  forro of the  t ransformat ion  laws for the primitive 
dynamical  variables b~, c~ or r, p; though,  the formulae cannot  be solved 
explicitly for r '  and p'. 
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HHTEFPHPOBAHHE ~[HHAMHqECI~HX FPYI-II-I CHMMETPHH ~fl~l 
FIOTEHI_[HAYIA- 1/r 

F. ,~b]~P,~H 

Pe31oMe 

B 3aKpblTOfi aHa.rIHTHqeCKOfi ~opMe RaIOTCfl KOHeqHMe ~,HHaMHqeCKHe npeo6pa3oBaHH~ 
CHMMeTpHH ,~BHMKeHH~I Kermepa. 
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