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SIMULATION OF THE INFLUENCE OF CORE
ELECTRONS BY A PSEUDOPOTENTIAL II*

APPLICATIONS TO SOME MOLECULES WITH TWO AND THREE ATOMS
By
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Pseudopotential theory is combined with the Hartree—Fock and natural expansion
method to calculate the molecular constants D,, R, and k, for Na,, K,, NaCs and BeH,. We treat
these molecules as two- or four-electron problems respectively in the pseudopotential field of
their cores. We then analyze the energies and wave functions in terms of the contributions of
the different natural orbitals to the correlation energy. The calculated equilibrium distances
agree well with the experimental ones. The dissociation energies are in better agreement with
experiment than those of previous calculations.

1. Introduction

Ab initio calculations are at present possible with rather high accuracy
for small molecules and with modest accuracy for large molecules.

On the other hand — since the early days of quantum chemistry — the
obvious similarities in the chemical and spectroscopical behaviour of the ele-
ments of one column of the periodic system have encouraged people to simplify
many-electron theory by dividing the electrons into core and valence electrons
[1]. If one limits oneself to a treatment of the valence electrons of an atom or
molecule one has to account for a twofold influence of the inner electrons. On
one hand they shield part of the nuclear charge for the valence electrons, on
the other hand the Pauli principle requires that the valence orbitals are ortho-
gonal to the core orbitals.

The last requirement has already been recognized in 1935 by H. HELL-
MANN [1] and P. GomB4s [2] who independently developed the concept of
pseudopotential theory. They started from expressions for the pseudopotential
in terms of the electron density ¢ of the core electrons based on the Thomas-
Fermi model. Whereas GoMBAs refined his expressions and replaced the sta-
tistical electron density ¢ by its quantummechanical analogue [3] HELLMANN
chose an analytic ‘ansatz’ with adjustable parameters. He started from the
observation that the kinetic and potential energies of a valence-electron
cancel to a high extent inside the core region. The logical consequence of this
argument would have been to use a cut-off Coulomb potential (cf. Equ. (4)).

* Dedicated to Prof P. GomBAs on his 60th birthday.

21* Acta Physica Academiae Scientiarum Hungaricae 27, 1969



324 W. A. BINGEL et al.

For other reasons HELLMANN preferred the following analytical form of the
psendopotential:
W)= — 2 4 45 1)

r r

where Z°, A and x are parameters which are adjusted such that the lowest
states of the atom are well reproduced. This potential (1) is still being applied
{41, but during the last few years many other types of pseudopotentials have
been discussed in the literature. With the potential

W(r): ~rZR » r>R,,
(2)
== 00, r<Rca

where R, is the core radius and Z; the reduced nuclear charge R. PARrsons
and V. Weisskopr [5] obtained surprisingly good results for the Rydberg
series of alkali atoms. An alternative but related potential is that used by
B. J. AvsTin and H. Heing [6]

Wy =28, >R,

r : 3
=0, r<R.,

in a qualitative discussion of atomic properties in relation to the periodic
system. As the discontinuity of this potential at R, does not seem to be very
physical the present authors preferred the so-called ‘cut-off’ potential

Zg

W(r) = — » r>R,.,
Z’ )
= 2R r<R,.
R,

In the first part of this series {7] (hereafter referred to as part I) we have used
this potential to calculate Rydberg series of alkali-atoms, alkali-like positive
ions and ground- and excited states of atomic two-valence electron systems
(Be, Mg, Ca).

Rather than to use one of those pseudopotentials that contain adjustable
parameters one can also use {(as Szasz and McGiny [4e] have done for atoms
and for molecules) the pseudopotential (Equ. (6)) derived by PrrLLips and
KieinmMANN [8] on the grounds of rigerous quantum mechanics. It turns out

Acta Physica Academige Stcientiarum Hungaricae 27, 1969



SIMULATION OF THE INFLUENCE OF CORE ELECTRONS 325

that the behaviour of the pseudopotential inside the core is relatively irrelevant
as far as the total energy of the valence electrons in this field is concerned.
As A. U. Hazi and S. A. Rice [9] have pointed out, the agreement of the pseu-
dopotential eigenvalues with the correct orbital energies depends more signi-
ficantly on the proper boundary conditions imposed on the wave function by
the pseudopotential than on the behaviour inside the core. This is consistent
with the observation (see part I) that pseudopotentials which are very differ-
ent inside the core lead to quite similar results.

The pseudopotentials just discussed (except the HELLMANN potential*)
can be regarded as special cases of the general expression:

W”(r)=n2a,,r'. r<R.,
= (5)

= — . r>R, .

By choosing the parameters of this potential appropriately one may hope to
combine the advantages of the different types just mentioned. The computa-
tion of the necessary matrix elements of this potential with a basis of Gaussian-
functions is straightforward (see the Appendix), which is important for the
applicability to molecules.

2. General theory

a. Choice of the pseudopotential

If, in the atomic case, one wants to take care of the orthogonality of the
valence-orbitals to the core orbitals in a quantum-mechanically straightfor-
ward way one may use the PaiLLips—KLEINMANN potential [8]

W=U+ 3 )05, - (6)

a=1

Here U denotes a Coulomb-potential of the atoms, @, are the core orbitals
with orbital energies €, and with valence orbital energy €,. Although the deri-
vation of this potential is based on a one-electron model it can also be justified
[9], [4b], [4c] in the framework of Hartree— Fock theory. This pseudopotential
contains a non-local operator which projects a given function on the core orbi-
tals.

* Note, however, that for n = 2 the potential (5) is very close to the HELLMANN poten-
tial (1).
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The question whether it is justified to replace the correct non-local pseu-
dopotential by a local model potential has been discussed by several authors
[4b, 4¢, 5, 9]. Actually the model potentials mentioned in the Introduction are
either local or just l-dependent, i.e. of the form

W:Z;lelv (7)

=0

where P is the projection operator on the subspace of orbitals with angular
quantum number /. (see also [23]).

Now the question arises how to choose the corresponding pseudopoten-
tial for a molecule. As a first approximation one expects it to be a sum of ato-
mic contributions. This question has recently been discussed by ScEWARz
[18] and Haz1 and Rick [9¢]. (As to earlier work on this question see HARRI-
soN [19] and GomBAs [3]). In fact there are only very few practical experiences
concerning the relation of the molecular and atomic pseudopotentials and about
the role of correction terms [18]. Most practical applications of the pseudopo-
tentials deal with atomic states or solids [21], [9b], [18], except for HELLMANN’s
early molecular calculations [1]. So far only Szasz and McGINN [4e] (see also
Preuss [20]) have contributed to the study of molecular binding, using a
pseudopotential approach, namely for the molecules Li,, Na,, K,, LiH, NaH,
and KH. The results of these authors encourage one to construct the mole-
cular pseudopotential from those of the constituent atoms. We regard it as
sufficiently justified to write our molecular model potential in the form

n
Wn(r,) = 2 Wil —r,)) = 2 _\_’ aylr; —r,|", r;<RY"
« x 420 (@)
= — Z—R-—, r;>R%"

= Ir—rf
for the i-th electron, where « labels the nuclei, where the a; are semiempirical
parameters and where n, the degree of the polynomial, is fixed in advance.
In fact, we only consider the possibilities n = Orand n = 1, i.e. we chose
either a cut-off Coulomb-potential (W?°) or a potential with a linear repulsive

part inside the core region (see Fig. 1).

In part I we have limited ourselves to 59, i.e. the cutoff Coulomb potential.
The results were rather satisfactory for the atomic calculations. However,
we found that the second and third s-type Rydberg states were not too well
reproduced and that the ‘radii’ of the ions were somewhat too large. In order
to remedy these slight defects we have started investigations with the more
general type (8) of pseudopotential which in fact led to still better agreement
for the Rydberg series and to smaller ‘“ionic radii’. Whereas in atoms the non-
local properties of the pseudopotential can to some extent be accounted for
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by thel-dependent form of Equ. (7), for molecules the use of such angular-depend-
ent atomic pseudopotentials in the sum (8) would mean great computational
difficulties. Calculation of the matrix elements would imply that every basis
orbital has to be expanded in terms of spherical harmonics with respect to any
of the present nuclei. In order to avoid these difficulties we have used local (i.e.
l-independent) atomic contributions to the potential, namely those that are
appropriate for s-orbitals. In the case of Li and Na the p-orbitals (and of course
d and higher orbitals) should have a more attractive potential (i.e. a smaller

Fig. 1. Pseudopotentials W? and W for Na (in correct scale)

cut-off radius). So by using the pseudopotential appropriately for s-orbitals
the contribution of the p-orbitals is expected to be underestimated. This should
result in an increase of the energy value like that due to the use of a poorer
basis. For K, Rb and Cs the cut-off radii corresponding to s- and p-orbitals
do not differ much so that a local potential is justified as long as d-contribu-
tions to binding are neglegible.

We do not, however, regard the local approximation as completely
satisfactory and work is in progress to account for the l-dependence of the
atomic pseudopotential in molecular calculations.

In connection with pseudopotential theory the question arises how one
should represent the repulsion of the cores. If the cores are rigorously non-
overlapping it is justified to replace them by point charges. So far we have not
considered effects due to an overlap of the cores. They are supposed to depend
exponentially on the distance and to be non-negligible only for very short
interatomic distances.

b. Natural orbital expansions and their combination
with the pseudopotential method

Since by using the pseudopotential method we are left with a rather small
number of valence electrons, we can therefore treat this small number by rather
sophisticated methods which would not be manageable in a treatment of all
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328 W. A. BINGEL et al.

electrons. Let us start with the Hamiltonian for the valence electrons
1 1
H=—— 34~ SWir) + 3 — ©)
2 i @ 4] Tij

in which 3'W; stands for the potential of Equ. (8). The HF equations for a

valence electron in a closed shell state will then be

[—%—A,-— SWir) + 2(2Jf—1<f)]¢,=eia>i, (10)
o J

where J/ and K/ are the Coulomb and exchange operators, respectively and
®; is a HF pseudo-orbital.

In order to compare the calculated total energies with their experimental
counterparts one has to note that the zero of the energy scale corresponds to
the sum of the core energies, i.e. the sum of the energies of the ions obtained
from the neutral atoms by ionizing off all the valence electrons.

In part I we have obtained good agreement for the orbital energies and
the total valence-electron energies between complete Hartree— Fock calculations
and HF calculations in the field of a pseudopotential. This agreement turns
out to hold in our molecular calculations as well. If we want to get even better
agreement with experiment we have, of course, to go beyond the Hartree— Fock
approximation. This is why we combined the pseudopotential approach with
a ClI-calculation in terms of approximate natural orbitals like it has been applied
in all electron calculations [13c]. _

The equations to be solved for a two-valence electron system are those

derived previously [13a, b]
h+J)t=2ux,

Q:ilnih+ K') + K Qiti = Augi» i1 (11)

Here g, is the ‘strongly’ occupied (spinfree) natural orbital, y is a ‘weakly’
occupied one, (; a projection operator projecting onto*the subspace which is
orthogonal to the first (i—1) natural orbitals. k is the one-electron part of
the Hamiltonian containing here the pseudopotential, J' and K' are Coulomb
and exchange operators originating from an electron pair in the space orbital
%i- (1k|k1) is an exchange integral involving orbital y, and x,. The coefficients
¢; in the natural expansion of a two-electron function®

(e, 1) = e 2:(1) 21(2) (12)

* For a generalization to systems with more than two electrons, see [13b].
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are finally obtained from the secular equations

2¢; h;; - 5 ¢ (klki) = pc; . a3)

The lowest eigenvalue of these equations is the ground-state energy of a two-
electron system in the pseudopotential. The equations are solved algebraically,
each natural orbital (NO) being represented as a linear combination of a given
orthonormal set of one-electron basis functions which are constructed from
Gaussian-type orbitals ¢. We therefore have to evaluate the matrix elements
(pas W2, @) with respect to the pseudopotential We.

c. Calculation of the matrix elements

The only matrix elements not known from the literature are those in-
volving the pseudo-potential W;. As basis set for the expansion of the pseudo-
orbitals y; we use Gaussian-type functions of the form

20 3/4
(p“ —= (_F'
T

The following matrix elements have te be calculated

exp [—a,(r—r,)*] p=a,b,c, .... (14)

W;b,c = (‘pa’ W? ‘pb) 4 (15)

where W, stands for the pseudopotential. In this Section we only give the final
expression (for a detailed description of the evaluation see Appendix A).

Wos,e = V L s, {% V% [exf(¥7(re, + R)) — exf(7(re, — R))] +

2 Tep V—"‘ [Cl‘f(}/y(rcp + R ) + el‘f(}/—(rcp —_— R))] +

[Tt RR _ rrg—R?] L (16)
2yrcp

n v v(R— Iy

vl W -V;rcy V¥ren

v+41 - R— -
F () rpryin (JVT( o) A g-u? du-t-(—1y- ‘i” R¥Te) 3 gt dy

Vyre Vyres

I
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330 W. A. BINGEL et al.

In this expression Sy is the overlap integral (o, ¢s)

Sab = (“a ° ab)_ai4 A3/2 e—ll2(r"~’b)2‘A 9

(17)
Q. -
A=B
and %a o
T, =T, — T,
with

1 -
rp = —y—— [dan + “b BX’ “aAy + Xp By’ “IIAZ + “b BZJ (18)

which is a point on the line between a and b where the position vectors of the
nuclei are defined by

a = [Ax9 Ay’ Az] » b= [Bxs By’ Bz]’ ¢ = lcxv Cy’ Cz] . (19)

A further reduction of the integrals in this expression for I is possible if we
define J,(a, b) as

Jo(a, b) = ﬂ’ wte v du.

We then obtain the recurrence relation

Ji(a, b) = % [(A — 2)J,_y(a,b) + ai—2e - _ pi2 e_bz] )

3. The choice of the parameters for the model potential in
the caleulations of Na,, K,, NaCs and BeH,

Our method is semiempirical in the sense that the pseudopotential con-
tains at least one parameter to be adjusted using experimental data. Our
philosophy is to adjust the pseudopotential from data of the constituent atoms
(ionization energy and possibly higher Rydberg levels), but not from data of
the molecule that we want to calculate or from any related molecule. For one
atom in different molecules the same pseudopotential should be used. The num-
ber of parameters should be as small as possible. If we use W?° then a single
parameter describes the particular type of (singly positive) core, in W' two
parameters are necessary to characterize the core, but it turns out that for
different alkali atoms the optimum choice is in good agreement with the rela-
tion @, = +-Zg/R. so that we are again left with one parameter. R is then fit-
ted to the lowest Rydberg states with the resulting values of Table 1.
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Table 1

Rydberg states of Na, K, Cs resulting from the pseudopotential W' (all quantities in a.u.)

Molecule a a R, j —E(13) —E@) | —E@) | —E(4)

Na + 0.44 | — 0.399 2.266 | (0.18886) 0.07242 0.0380 0.0233

Na (exp.) 0.18886 | 0.07158 | 0.0376 | 0.0231
K 4 0.34 | —0.236 2.908 (0.15952) | 0.06507 | 0.0351 0.02189

K (exp.) 0.15952 0.06371 | 0.0344 0.0216

Cs +0.29 | —0.174 3.394 (0.14310) l 0.05864 0.0323 0.0205

Cs (exp.) ]\ 0.14310 | 0.0606 0.0333 0.0208

" i

ay, a,, R, pseudopotential parameters as defined in Equ. (8). To be fitted at E(ls)

4. Results of the calculations

One may wonder why in almost all pseudopotential calculations only
molecules like Na,, K, etc. have been investigated. Actually they play the same
role in pseudopotential theory as does the H, molecule in all-electron calcula-
tions. In the pseudopotential method these molecules can be treated as pseudo-
H, problems. Just as in H,, the 1s-pseudo-AQ’s contribute much more to the
binding MO’s of the ground state than do any other, in particular p-AO’s. It
is therefore not too crucial to ignore the I-dependence of the pseudopotential
and to use that local approximation which is justified for s-AQ’.

NaCs has recently been investigated by W. NEuMANN [22] in molecular
beam experiments. This stimulated our interest in a theoretical study of this
heteronuclear molecule.

The choice of the orbital basis is suggested by the fact that we are dealing
with pseudo-H, problems. We actually chose the basis of Gaussians used
by Hovranp [14] in his H, calculations omitting, however, the Gaussians
with highest «,-values which in the genuine H, problem take care of the re-
presentation of the cusp at the nuclei, but adding some Gaussians with smaller
a,-values in the binding region as is illustrated in Table II.

Since the pseudopotential does not contain any singularities, the problem
of the correct cusp does not matter and a Gaussian basis should be better than
in the real H, problem. The results of our calculations on diatomics using
the two model-potentials W° and W can be found in Table III.

The parameters a,, a,, R are taken from Table I. The dissociation ener-
gies D, are obtainedfrom D, = |Eyr  corr -+ 21,| where Eyp  corris the sum of HF-
and the correlation energy of the system. The equilibrium distances rohave
been obtained by 4-th degree polynomial fitting, (see Figs. 2—4), from which
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Table II1

The computed data for the A,, AB-type molecules with the pseudopotentials W?* and W?,
All quantities are in atomic units
1 2 3 4 5 6
Molecule R, a, a, —Ip —Enmp —EHP + orr.
T Na, 2.266 0.44138 —0.38963 0.37717 0.3759 0.3993
| K, 291 0.3438 —0.2364 0.3190 0.3142 0.3360
wt
Na 2.266 0.44138 —0.38963
NaCs { 0.3319 0.3284 0.3510
Cs 3.39 0.2946 —0.1736
T Na, 3.25 3_215 0 0.3771 0.3700 0.3955
we '
K, 4.16 T—Tlﬁ“ 0 0.3190 0.3100 0.3320
Li, 3.00 3_3 0 0.3963 0.3907 0.4147
b 8 98) 10 118 12
Molecule —eHF R, R, D, D, D,
cale. exptl. cale. exptl. HF
Na, 0.1699 5.78 5.8 0.0216 0.0272 —0.0075
K, 0.1401 7.1 7.39 0.0170 0.0192
wh
Na
NaCs { 0.1456 6.9 0.0191
Cs
T Na, 0.1670 5.8 5.8 0.018 0.0272 —0.0075
we
K, 0.1350 7.1 7.39 0.013 0.0192
Li, 0.182 3.02 0.0184 0.0419 0.006

a) Experimental data from G. HERZBERG, Molecular Spectra and Molecular Structure,
I. Spectra of diatomic Molecules (D. Van Nostrand Co., Inc. New York, 1950)

2 -

. core radius

. pseudopotential parameters

. Sum of ionization potential for the free atoms

. Total HF energy

. HF energy plus o and n correlation energy

. HF orbital energies [b) for Li, the orbital energy is the same in an all-electron
calculation]

. Calculated equilibrium distance

. Experimental equilibrium distance

. Calculated dissociation energy (for Li, only o-correlation is included)

. Experimental dissociation energy

. HF binding energy of an all-electron calculation according to A.C. WanL [21

(for Na,) and G. Das {25} (for Li,)
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Fig. 4

Figs. 2—4. Energy-potential for Na,, K, and NaCs as calculated by the pseudopotential me-
thod with pseudopotentials W, W!

HF = Hartree—Fock approximation. o-corr. = HF + o-correlation. o + n-corr. = HF —

+ ¢ + z-correlation. exp. = experimental energy curve which we obtained by subtracting

the binding energy D, (:ee right hand scale) from the level of the separated atoms (broken line

with energy 21,). The curvature corresponds to a quadratic parabola obtained from the ex-
perimental force-constant. See [4c]

we obtained the force constants K, as well. The resulting values are collected in
Table IV for different approximations. In comparing the results with their
experimental counterparts one sees that the geometry of these systems is
already accounted for in the Hartree— Fock approximation like one finds in
all-electron HF calculations. The equilibrium distances are increased if one
allows for g-correlation (i.e. by performing CI with configurations constructed
from o-orbitals only) but are decreased again to the correct values if n-correla-
tion is taken into account, too.* (For a more detailed discussion of this problem
see [13c]). In fact, the o-correlation energy contributions increase with distance
while the m-correlation decreases with distance, so that the sum of both re-

* A Weinbaum function (Heitler—London function + ionic terms) as used by Szasz
and McGINN accounts to some extent for o-correlation (but not for z-correlation). This is the
reason for their too large equilibrium distances.
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Table IV

Equilibrium distances, force constants and total energies for Na,, NaCs, K,

. . .u. K, [mdynfA]
Molecul pproximation Te c[:l: T [:xp.l Kt'bg:n‘-x 1 —E, [a.u.]
theor. | exp.

SCF 5.8 0.009 0.14 i 0.3759
Na, 5.8 0.083

SCF -+ corr. 5.8 0.007 0.11 0.3993

SCF 7.0 — 0.0057 0.0y 0.3284
NaCs : 0.051

SCF + corr. 6.9 — 0.0051 0.08 0.3510

SCF 7.1 0.0048 0.075 i 0.3142
K, 7.39 0.048

SCF 4 corr. | 7.1 0.0045 0.07 | 1 0.3360

Table V

Correlation analysis of Na, for different distances r. All quantities are
in atomic units

r Egy —E(loy) t —E(1aY) —E(20y) —E(c + 1)
4.8 0.3691 0.00944 0.00686 0.00257 0.02526
5.3 0.3744 0.00807 0.00618 0.00325 0.02368
5.8 0.3759 0.00902 0.00544 0.00353 0.02343
6.3 0.3745 0.01030 0.00477 0.00373 0.02358
6.8 0.3715 0.01193 0.00419 0.00383 0.02414

mains approximately constant as can be seen from the correlation-energy ana-
lysis for Na, in Table V.

The corresponding natural orbitals which contribute to the correlation
energy are plotted in Figs. 5—8 for NaCs. Although the accuracy of these NO’s
(particularly of those with small expansion coefficients) should not be overesti-
mated these plots are quite illustrative. The broken lines indicate the core
region of the corresponding atoms. Inside this region the niveau lines have no
physical meaning. _

In Table VI the results of our calculations on BeH, are summarized for
the equilibrium distance rge_px = 2 5 a.u. for the linear symmetric molecule.
The results are somewhat poorer, similar to those which have been found for
hybrides in general |4e], a phenomenon which is not yet fully understood.
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NaCs SCF-MO

Fig. 5. Ground state SCF—MO for NaCs. The broken line indicates the core region. Insid
this region the plots have no physical meaning

NaCs 2-SIGMA

7

00
Fig. 6. 20—NO of NaCs with one node in the middle



NaCs -1-PI-

Fig. 7. 1n—NO of NaCs in the x—y-plane
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Fig. 8. 30—NO of NaCs with one node
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Table VI

Comparison of BeH, in the pseudopotential scheme and a complete treatment.
All quantities are in atomic units

approx. R, a, a; Te —Egp —E¢HF
I
do- = 0.5124
peeudo- 1356 | —1.478 | 2.175 2.5 20558 |
potential &, = 0.4019
complete g = 0.4916
SCF—NO 2.5 15.7624 £y = 0.4559
#pprox. ~Edore —Ezore —Erot, —I ci)l::. es?i:n.
pseudo-
. 0.0335 0.0230 2.11237 2.01184 0.1005 0.239
potential
complete
SCF—NO 0.0322 0.0245 15.8119 0.202 15.906
Conclusions

In performing molecular calculations in a pseudopotential approach one
introduces two possible sources of errors. One is due to the approximation
inherent in the chosen pseudopotential, the other to the limitations in the
ansatz of wave functions. The latter source of error is the same as in all electron
calculations and it is these errors which we tried to reduce as much as possible
by aiming at a rather accurate treatment of the two and four valence-electron
problem in the field of a pseudopotential that has a simple analytic form.

We performed Hartree—Fock calculations in the pseudopotential field
and obtained good agreement with all-electron Hartree — Fock calculations (as
far as those are available), both with respect to orbital energies and binding
energies. Since Hartree—Fock calculations generally lead to good molecular
geometries it is not surprising that the bond distances of our pseudopotential

Hartree-Fock calculations agree well with the experimental ones.

The binding energies obtained in the Hartree—Fock approximation are
as poor in a pseudopotential as in an all-electron treatment. In order to obtain
the correct values one has to account for electron correlation. If one does so,
by using the natural orbital expansion method one obtains about 60—809, of
the experimental binding energies. (Whereas in the Hartree—Fock approach
not even the sign of the binding energy is correct). In those cases where we
could make the comparison, the correlation energies and the contributions of
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the different NO’s to it were quite similar in a pseudopotential and in an all-
electron calculation. (This is demonstrated by the examples BeH, and Li,.
For the larger systems the all-electron calculations would be much too time-
consuming).

Two forms of the pseudopotential have been used, which differ appre-
ciably inside the core region but which lead to rather similar results. A more
careful inspection shows that the potential W (see Fig. 1) is preferable to
W0 both with respect to Rydberg series and to binding energies.

Our results suggest that the pseudopotential method should be applicable
successfully to larger molecules although some problems still remain. In parti-
cular we think that a strictly local potential is too poor for systems where the
contributions of p-AQ’s to bonding is as important as that of s-AQ’s, so that
for such systems either an I-dependent potential has to be used or one has to
find a local potential that reproduces both s- and p-type Rydberg states if this
is possible.

Appendix

If we wiite the pseudopotential in the form

— Wik —r)= Sajr—r)  r<R
Z 1)
7 >R
v — x|

the basis functions ¢, as

3/ \
e~ ulery) u=a,b, e, d, ... 2)

20,
1

e |
then we get in a first step with y = aq + s

A_J =3 ((pa, W? (pb) —] [M) 3/2 SabJ e_y(r—rp)ﬁ W?(ll‘ _ rcl) dT. (3)
T

In this expression Sy means the overlap integral (p,, ) which is given by

Sap = (ot - ty) 38 A2 g=12a—r)2 A,
2 g %p (4‘)

% +“b

A=
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Defining the position vector of the function centers or nucleus ¢ by

a=[A; A, A4,],
b=[B,; B,; B.], (5)
c=[Cs Cy; C,)]

the point P with position vector r, in Equ. (3) issituated on the line between
a and b with coordinates

1
rp=7[aan+ab B, Ay + ay By, A, + o B,]. (6)

Now we can transform our coordinates according to r’ = r—r. and get

y |32

with r., = r—r;.
Now we separate the integrations

y 302 oo 41 2
= [*] Sab[ J =741 7 (r) r2 dr J et dy J dqo" (8)
Tt -

[ 1 L]

and get after a short calculation

—J:(—y—)m Sap — [ f e~ =1 W(r) rdr — J e—v<r+rw>’W(r)dr]. ©)
== o

YTep 0

Up to this point the derivation does not depend on the explicit potential expres-
sion from which we make use now.

y |3 z (n R R
J = ’——) S {2 a, lj rr+le~vr—re) dr —J rrt+le=v(r+re)? dr] +
L 0 0

yrcp y=0
- - (10)
+ ZRJ e~ vr—ra)' dr — ZRJ e~ 7(r+rep)’? dr}.
R R
After substitution
U=T—Tp, V=TFT,
v+1 .
we get for r’"° an expression
'L A v—A
(u+ 1)t = (i) utrp' (1)
1=0
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and the corresponding one for (v—rcp)" . Therefore we can write for the whole

integral

y 3[ v+1 —Te» 1 2
J:(Tz—’ ab [—2" 2 (e A[J u' e du+(—-1)"‘

+ Zr 7 {jm e 7 du «J“ e“”‘zdu]}. (12)
Yrep R—rep R+4rep

After some simplifications in the last two integrals and a splitting of the first
term in the sum over v we obtain the final form

5= s | ot (5t + RO) — et (10 — R+

e ™ dv]—}—

Z —
+ gk l/ % [exf (V7 (rep + R)) + exf (Y7(re, — R))] +
<p
[e=70atR? . g—rra=R)] 4 (13)

27rcp
I

y=1 Tep r

I N

y+1 V(R — Te 2
+ 2 (v;l) r;;l ﬁ—l—l (J ])/(R rCP) l —u’d +( 1)‘, AJVV(R+ ? le_u du] ]] .
=1 v

—Vrre Prep
|« I —>|

In this expression the terms with » = 0 and 1 = 0 are written down separately
because they can be reduced to simple analytic expressions. So II can be
written as

2
11 = e [(1 —(—1)’) erf(}’?rcp)—{—erf(ﬁ(R—rcp))-{—(—1)’ erf (Y7(R +rc,,))] (14)
9 2
with orf(z) = —— j e du . (15)
Yy Jo
The remaining integrals which are of the form
b 2
Ji(a,b) = [ ute du (16)
can easily be evaluated by a recurring relation one can derive from  (16)

T D) = - (A= Tssfa )+ T e (1)
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which connects J;(a, b) with J;_o(a, b).

The initial integrals J,(a, b) and J,(a, b) are
|
Ji(a, b) = -2—}/71 [exf (b) — erf(a)}],

Joa, b) = _;_ I

343

so that the whole integral (¢q, W ¢b) is reduced to the evaluation of the error-
function.
For practical calculations it is useful to introduce some approximations
for the limiting case r., < 1, to avoeid numerical instabilities.

1.
2.

3
4b

4c.

4d

4e.

5.
6.

4a.

In this case we have approximated the expressions for I and II by

I= L?i_ U‘V?(R—rcp) e du + (_1),_1JV;(R+r,,) ule""’duJ ~
ﬁ " _V;rw V;fcn
1 v—4 y—1 V;R 2.—u?
~ ,yy+1 (1+(_1) )(Wrcp) ( ute ¥ du —
<0

— (V’}—”'cp)’ﬂnl(}/}—’R)" e YR? (1 _(__l)v—z)]

e L2 (1 (1) et (7 R) + (1 17) (1= ).
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MOAPAYKEHHE BJIMAAHUST 3JIEKTPOHOB ATOMHOI'O OCTATKA
NCEBAOINIOTEHLHNATIAM. 11,

NPHUMEHEHUA K HEKOTOPBIM MOJIEKYJIAM C IBYMSA U TPEMSH ATOMAMH
B. A. BUHIEJ], P. A, KOX u B. KYLENBHUT

Peswme

TlcepnonoTeHUHaNbHas TEOPHs KOMOHHHPYETCS ¢ MeToaoM XapTH—dDOoKa H MeToNOM
€CTECTBEHHOI 0 PA3JIOKEHHST B PAL C LEJbI0 ONPEACNEHHS NONEKYJISPHLIX NOCTOSIHHBIX D,
R, ¥ k, nns Na,, K,, NaCs n BeH,. 3TH mMonexynb paccMaTpHBaJIHCh Kak ABYX- H YeTHIPEX-
SJIEKTPOHHBIE NPOG6JEMBI COOTBETCTBEHHO B NCEBJONOTEHUHANLHOM NOJIe CBOHX ATOMHBIX OCTaT-
K0B. Jlanee GbilM aHAJHSHPOBAHBI 3HEPTHH H BONHOBHE QYHKLMH C TOYKH 3PEHHS B3HOCA Pas-
JIMYHBIX HATYpPalibHBEIX OPOHT B KOPDPENSIUHOHHYIO BHEPTHI0. BHYHMCNEHHHME PaCCTOSIHHSI PaB-
HOBECHS1 XOPOWIO COTJIACYIOTCST C BKCIE PUMEHTAIbHBIMA JaHHBIMH COOTBETCTBHE IHCCOLHALHOH-
HBIX BHEPTHH C 3KCNEPHMEHTANbHLIMH JIAHHBIMU JyYllle, 4YeM B NpPeALAYIIHX BHUHCIIEHHSIX.
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