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Pseudopotential theory is combined with the Hartree--Fock and natural expansion 
method to calculate the molecular constants De, B t and k e for iNa2, K~, ~qaCs and BeH 2. We treat 
these molecules as two- of four-electron problems respectively in the pseudopotential field of 
their cores. We then analyze the energies and wave functions in terms of the contributions of 
the different natural orbitals to the correlation energy. The caleulated equilibrium distances 
agree well with the experimental ones. The dissociation energies ate in better agreement with 
experiment than those of previous calculations. 

1. Introduction 

Ab initio calculat ions are a t  p resen t  possible wi th  r a t h e r  high accuracy  
for small  molecules and  with  modes t  a ccu racy  for large molecules.  

On the  o ther  h a n d  - -  since the  ear ly  days  of  q u a n t u m  chemis t ry  - -  the  
obvious  similari t ies in the  chemical  and  spectroscopical  b e h a v i o u r  of  the ele- 
men t s  of  one co lumn of the  periodic s y s t e m  have  encouraged people to s impl i fy  
many-e lec t ron  t h e o r y  b y  dividing the  electrons into core and  va lence  eleetrons 
[1]. I f  one l imits oneself  to a t r e a t m e n t  of  the  valence  electrons of  ah a tom or 
molecule one has  to  accoun t  for a twofold  inf luence of the  inner  electrons. On 
one hand  t h e y  shield p a r t  of  the  nuclear  charge for the  va lence  electrons,  on 
the  o ther  hand  the  Paul i  principle requires  t h a t  the  va lence  orbi tals  a te  or tho-  
gonal  to the  core orbi tals .  

The  las t  r e q u i r e m e n t  has a l ready  been  recognized in 1935 b y  H. HELL- 
MXN~ [1] and  P. GOMB�93 [2] who independen t ly  developed the  concept  of  
pseudopoten t i a l  theory .  T h e y  s t a r t ed  f rom expressions for the  pseudopo ten t i a l  
in t e rms  of t h e  e lect ron dens i ty  @ of  the  core electrons based  on the  Thomas -  
Fe rmi  model.  Whereas  GOMB�93 refined bis expressions and  replaced the  s ta -  
t is t ical  e lectron dens i ty  @ b y  its q u a n t u m m e c h a n i c a l  ana logue  [3] I-IELLMANN 
chose an ana ly t ic  ' a n s a t z '  wi th  ad jus tab le  pa rame te r s .  He  s t a r t ed  f rom the  
observa t ion  t h a t  the  kinet ic  and  po ten t i a l  energies of  a va lence-e lec t ron  
cancel to a high ex ten t  inside the  core region. The  logical consequence of this  
a r g u m e n t  w o u l d h a v e  been to use a cu t -o f f  Coulomb po ten t i a l  (cf. Eclu. (4)). 

* D e d i c a t e d  to  P r o f  P~ G o ~ n X s  on his 60 th  b i r t h d a y .  

21 * Acta Physica Academiae Sr Hungaricae 27, 1969 



3 2 4  W . A .  BINGEL et al. 

For other reasons HELLMANN preferred the following analytieal form of the 
pseudopotential: 

Z j ~-~t!r 
W(r) . . . .  ~--A--, (1) 

r �9 

where Z' ,  A and • ate parameters which ate adjusted sueh that  the lowest 
states of the atom are well reproduced. This potential (1) is still being applied 
[4], bu t  during the last few years many other types of pseudopotentials have 
been discussed in the literature. W i t h  the potential 

W ( r )  = - ZR �9 > Rc  
r 

= o o ,  r < R c ,  
(2) 

where Re is the core radius and Z˜ the redueed nuclear charge R. PAnsor~s 
and V. WP.ISSKOPF [5] obtained surprisingly good results for the Rydberg 
series of alkali atoms. An alternative but  related potential is that  used by  
B. J. AUSTIN and H. HEINE [6] 

W(r) = --Za r>Rc 
r 

= O, r < R r  
(3 

in a qualitative diseusiion of atomic properties in relation to the periodic 
system. As the diseontinuity of this potential at Re does not seem to be very 
physical the present authors preferred the so-called 'eut-off '  potential 

W(r) = _ ~ , Z  ~ r > R e ,  
g 

Zn 

R~ 
r <Rc �9 

(4) 

In  the first part  of this series [7] (hereafter referred to as part  I) we have used 
this potential to ealculate Rydberg series of alkali-atoms, alkali-like positive 
ions and ground- and exeited states of atomie two-valenee eleetron systems 
(Be, Mg, Ca). 

Rather than to use one of those pseudopotentials that  contain adjustable 
parameters one can als0 use (as SzAsz and McGI~N [4e] have done for atoms 
and for moleeules) the pseudopotential (Equ. (6)) derived by  PaILLIPS and 
KLEINMAN~ [8] on the grounds of rigorous quantum mechanics. I t  turns out 
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tha t  the behaviour of the pseudopotential inside the core is relatively irrelevant 
as far as the total energy of the valence electrons in this field is concerned. 
As A. U. HAzz and S. A. RzcE [9] have pointed out, the agreement of the pseu- 
dopotential eigenvalues with the correet orbital energies depends more signi- 
ficantly on the proper boundary conditions imposed on the wave function by 
the pseudopotential than  on the behaviour inside the core. This is consistent 
with the observation (see part  I) tha t  pseudopotentials whieh ate very differ- 
ent inside the core lead to quite similar results. 

The pseudopotentials just diseussed (except the HELLMANN potential*) 
can be regarded as special cases of the general expression: 

n 
Wn(r) = ~ a vr" , r < R r  

1'=0 

,gR ~ D , r~~Lc . 
r 

(5) 

By choosing the parameters of this potential appropriately one may  hope to 
combine the advantages of the different types just mentioncd. The computa- 
tion of the necessary matrix elements of this potential with a basis of Gaussian- 
functions is straightforward (see the Appendix), which is important  for the 
app]ieability to molecules. 

2. General theory 

a. Choice o f  the pseudopotent ia l  

If, in the atomic case, one wants to take care of the orthogonality of the 
valence-orbitals to the core orbitals in a quantum-mechanically straightfor- 
ward way one may use the PmLLIPS--KLEI~MXr~N potential [8] 

V--I 

W = U + ~ (~~ .... E~) I~,><~,[.  (6) 
r 

Here U denotes a Coulomb-potential of the atoms, q~~ are the core orbitals 
with orbital energies ~~ and with valence orbital energy E,- Although the deri- 
vation of this potential is based on a one-electron model ir can also be justified 
[9], [4b], [4c] in the framework of Hartree--  Fock theory. This pseudopotential 
contains a non-local operator which projeets a given function on the core orbi- 
tals. 

* N o t e ,  h o w e v e r ,  t h a t  f o r  n = 2 t h e  p o t e n t i a ]  (5) is  v e r y  c lose  t o  t h e  HELLMANN p o t e n -  
t i a l  (1).  
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The question whether it is justified to replace the correct non-local pseu- 
dopotential by a local model potential has been discussed by several authors 
[4b, 4c, 5, 9]. Actually the model potentials mentioned in the Introduction are 
either local or just l-dependent, i.e. of the forro 

~ = X ~ E ,  (7) 
l = O  

where P i s  the projection operator on the subspace of orbitals with angular 
quantum number l. (see also [231). 

Now the question arises how to choose the corresponding pseudopoten- 
tial f o r a  molecule. A s a  first approximation one expects ir to be a sum of ato- 
mic contributions. This question has recently been discussed by SC~WARZ 
[18] and HAZi and RICE [9c]. (As to earlier work on this question see HXRRI- 
SON [19] and GOMB�93 [3]). In fact there are only very few practical experiences 
concerning the relation of the molecular and atomic pseudopotentials and about 
the role of correction terms [18]. Most practical applications of the pseudopo- 
tentials deal with atomic states or solids [21], [9b], [18], except for HELI~MXr~N'S 
early molecular calculations [1]. So far only SzAsz and McGI~~ [4el (see also 
PnEUSS [20]) have contributed to the study of molecular binding, using a 
pseudopotential approach, namely for the molecules Li2, Na2, K 2, LiH, NaH, 
and KH.  The results of these authors encourage one to construct the mole- 
cular pseudopotential from those of the constituent atoms. We regard it as 
sufficiently justified to write our molecular model potential in the forro 

t i  

Wn(ri~) = . ~  Wn~(Iri--r~l ) = ~~ --~" a~lr;.,, --r~l ~, r~<Rc'" 
. . . . .  0 (8)  

z~ 
= - - ~ - - ,  r i>Rc ,n 

Ir/-- r~[ 

for the i-th electron, where zr labels the nuclei, where the a~ are semiempirical 
parameters and where n, the degree of the polynomial, is fixed in advance. 
In fact, we only consider the possibilities n----0" and n----1, i.e. we chose 
either a cut-off Coulomb-potential (W ~ or a potential with a linear repulsive 
part  inside the core region (see Fig. 1). 

In part I we have limited oursdves to W ~ i.e. the cutoffCoulomb potential. 
The results were rather satisfactory for the atomic calculations. However, 
we found that  the second and third s-type Rydberg states were not too well 
reproduced and tha t  the 'radii' of the ions were somewhat too large. In order 
to remedy these slight defects we have started investigations with the more 
general type (8) of pseudopotential which in fact led to still better agreement 
for the Rydberg series and to smaller 'ionic radii'. Whereas in atoms the non- 
local properties of the pseudopotential can to some extent be accountcd for 
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by  the l -dependent  form of Equ.  (7), for molecules the use of such angular-depend-  
ent  atomie pseudopotent ia ls  in the  sum (8) would mean  great  computa t iona l  
difficuhies.  Calculat ion of the ma t r i x  elements would imply  t h a t  every  basis 
orbital  has to be expanded  in terms of spherical  harmonics  with respect  to  any 
of the present  nuclei. In  order to avoid these difficulties we have  used local (i.e. 
l - independent)  a tomic contr ibut ions  to  the  potent ia l ,  namely  those t h a t  ate 
appropr ia te  for s-orbitals.  In  the case of  Li and Na the p-orbi ta ls  (and of course 
d and higher  orbitals) should have  a more  a t t rac t ive  poten t ia l  (i.e. a smaller 

1 

oO 

~W O, W 1 

R 1 R O 
I , I I ~  

[auJ. 4~ 

Fig. 1. Pseudopotentials W ~ and W l for Na (in eorrect scale) 

cut-off  radius).  So by  using the  pseudopotent ia l  appropr ia te ly  for s-orbitals 
the cont r ibut inn  of the  p-orbi ta ls  is expec ted  to be underes t imated .  This should 
resuh  in an increase of the energy value  like t h a t  due to the use of a poorer  
basis, For  K, Rb and Cs the cut -off  radii  eorresponding to s- and p-orbi tals  
do not  differ much  so t ha t  a local po ten t ia l  is just i f ied as long as d-contribu- 
tions to binding are neglegible. 

We do not ,  however,  regard the  local approx imat ion  as complete ly  
sat isfactory and work is in progress to account  for  the  l -dependence of the 
atomic pseudopotent ia l  in molecular  calculations. 

In  connect ion  with pseudopotent ia l  t heo ry  the  quest ion arises how one 
should represent  the  repulsion of the cores. I r  the  cores are r igorously non- 
overlapping ir is just i f ied to replace t hem b y  point  charges. So far  we have  not  
considered effects due to ah overlap of the cores. Th ey  are supposed to depend 
exponent ia l ly  on the distance and to be non-negligible only for v e ry  short 
in tera tomic  distartces. 

b. Natural orbital expansions and their combination 
with the pseudopotential method 

Since by  using the pseudopotent ia l  me thod  we are left  with a ra the r  small 
number  of valence electrons,  we can therefore  t r ea t  this small number  b y  ra ther  
sophist icated methods  which would no t  be manageable  in a t r e a t m e n t  of all 
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electrons. Let us start  with the Hamiltonian for the valence eleetrons 

1 1 
H -- (A i W;(rt=)) - -  2 ~ -- ~ + ~ (9) 

�9 ~ r i j  

in which ~~'W~ stands for the potential of Equ. (8). The H F  equations for a 

valence electron in a closed shell state will then be 

[ l A -  ] -- 2 z ~Wn( r i~ ) -~  ~ j  ( 2 J J - - K  ]) ~)l=Ei~)i, (10) 

where j1 and K i are the Coulomb and exchange operators, respeetively and 
~i is a t t F  pseudo-orbital. 

In order to compare the calculated total energies with their experimental 
counterparts one has to note that  the zero of the energy seale corresponds to 
the sum of the core energies, i.e. the sum of the energies of the ions obtained 
from the neutral atoms by  ionizing off al] the valence eleetrons. 

In par t  I we have obtained good agreement for the orbital energies and 
the total  valence-eleetron energies between complete Har t ree - -Fock  caleulations 
and H F  calcnlations in the field of a pseudopotential. This agreement turns 
out to hold in our molecular calculations as welL I f  we want to get even bet ter  
agreement with experiment we have, ofcourse, to go beyond the Hart ree--  Fock 
approximation. This is why we combined the pseudopotential approach with 
a CI-calculation in terms of approximate natural orbitals like it has been applied 
in all electron calculations [13c]. 

The equations to be solved for a two-valence electron system are those 
derived previously [13a, b] 

Qi[ni(h-~ Ki)--~ K1]Qi~.i~~-2tiX, i, i=/=l. (11) 

Here Z1 is the 'strongly' occupied (spinfree) natural orbital, Z is a 'weakly '  
occupied one, Qt a projeetion operator projeeting onto ' the  subspace which is 
orthogonal to the first ( i--1) natural orbitals, h is the one-electron par t  of 
the Hamiltonian containing here the pseudopotential, j i  and K i are Coulomb 
and exchange operators originating from an electron pair in the space orbital 
Zi- (lklkl) is an exchange integral involving orbital Z1 and Zk. The coefficients 
ci in the natural expansion of a two-electron function* 

P(r, ,  r2) = ~ c, x,0) xr(2) (12) 
i 

* For  a genera]ization to systems with more than two e]ectrons ,  see  [13b] .  
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ate f inal ly obtained from the secular equations 

2ci h~i + ~~" Ck (ik]ki) = ktci. (13) 
k 

The lowest eigenvalue of these equations is the ground-state  energy of a two- 
electron system in the pseudopotential .  The equations ate solved algebraically, 
each na tura l  orbital  (NO) being represented a s a  linear combinat ion of a given 
or thonormal  set of one-electron basis functions which are constructed from 
Gaussian-type orbitals 9" We therefore have to evaluate the mat r ix  eleinents 
(~~, IV~, qb) with respect to the pseudopotent ial  Wc n. 

c. Calculation o f  the matrix elements 

The only ma t r ix  elements not  known from the l i terature ate those in- 
volving the pseudo-potential  W~. As basis set for the expansion of the pseudo- 
orbitals Zt we use Gaussian-type functions of the form 

9,, = exp [ -- %(r -- rg) 2] /*=a,  b, c, . . . .  (14) 

The following mat r ix  elements have to be calculated 

Wo£ c d~_L (ga, IlŸ %) ,  (15) 

where W n stands for the pseudopotential .  In  this Section we only give the final 
expression (for a detailed deseription of the evaluat ion see Appendix A). 

~b,c a o y~ _ -- so~ 7 [erf(r + R)) -- erf(~(,~~ -- R))] + 

/- 
+ ~ T[erf(r  + R)) + erf(~( ,c ,  -- R))] + 

+ a---2--~ [ e - ' ( r r  (16) 
27rcp 

JI- v--"'l'n av [r~#f,~(R_r~)e,d_,~r~ -U2dl�91 31-( - -  1)v~V~i~+r~)l/~ e. e-u2 dl*)-71- 

+ 2 '  
a=l I, J t/:,r~ JF~ro J J /  
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In  this express ion Sab is the  over lap  integral  (~v~, ~b) 

and 

with  

S a b  - - -  ( ~ a "  O~b) -3 t4  A 3 1 2  e - l l 2 ( r * - - r D : ' A  , 

A = -2aa" ~b , )' = ~a ~- ~b , 
O~ a -~- O~ b 

(17) 

r c p  ~ r c - -  r p  

]P p : ~  - -  
1 
7 

[~aA x + a~Bx,:r + :%By, xaA z + ~zbBz] (18) 

which is a po in t  on the  line be tween  a and b where  the  posi t ion vec to rs  of  the  
nuclei are defined b y  

a=[A  x,Ay,Az], b=[Bx, By, Bz], c = l C x ,  Cy, Cz]. (19) 

A fu r the r  reduct ion  of the  integrals  in this expression for I i s  possible if  we 
define J~(a, b) as 

Jx(a, b) -= f:' u ~ e "~ du. 

We then  obta in  the  recurrence  re la t ion 

1 
Jz(a, b) : ~ -  [(2 - -  2)Jz_2(a,  b) + a ~-2 e -a2 - -  b ~-2 e-b'] .  

3.  The choice  o f  the  parameters  for the  mode l  potential  in 
the  ca lculat ions  o f  Na2, K2, NaCs and B e H  2 

Our  m e t h o d  is semiempir ica l  in the sense t h a t  the  pseudopo teu t i a l  con- 
ta ins  a t  leas t  one p a r a m e t e r  to  be acljusted using expe r imen ta l  da ta .  Our  
ph i losophy  is to ad jus t  the  pseudopo ten t i a l  f rom da t a  of  the  cons t i tuen t  a toms  
(ionization energy  and  poss ib ly  higher  R y d b e r g  levels), bu t  no t  f rom da t a  of  
the .molecu le  t h a t  we w a n t  to calculate  of f rom a n y  re la ted  molecule.  Fo r  one 
a t o m  in different  molecules the  same pseudopo ten t i a l  should be  used. The  num-  
ber  of  p a r a m e t e r s  should be  as small  as possible.  I f  we use IV ~ t hen  a single 
p a r a m e t e r  describes the  pa r t i cu la r  t y p e  of (singly posi t ive)  core, in IV 1 two 
p a r a m e t e r s  are necessary  to charac ter ize  the  core, b u t  it  turns  out  t h a t  for 
d i f ferent  alkal i  a toms  the  o p t i m u m  choice is in good ag reemen t  wi th  the  rela-  
t ion a 0 = +Z~/Rc so t h a t  we a te  again  left  wi th  one pa rame te r .  Re is t h e n  f i t -  
red to the  lowest  R y d b e r g  s ta tes  wi th  the  resul t ing values  of Table  I .  
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T a b l e  I 

Rydberg states of Na, K, Cs resulting from the pseudopotential W 1 (all quantities in a.u.) 

Molecule a 0 

Na + 0.44 
Na (exp.) 

K -~- O.34 
K (exp.) 

cs + o ~  
Cs (exp.) 

al 

-- 0.399 

--0.236 

--0.174 

Re 

2.266 

2.908 

3.394 

- - E  (ls) 

(0.18886) 
0.18886 

(0.15952) 
0.15952 

(0.14310) 
0.14310 

--E (2s) 

0.07242 
0.07158 

0.06371 

- - E  (3s) 

0.0380 
0.0376 

0.0351 
_ _  0.0344 

0.05864 0.0323 ] 
0.0606 0.0333 

- - E  (4s) 

0.0233 
0.0231 

0.02189 
0.0216 

0.0205 
0.0208 

a o, a 1, R c pseudopotential parameters as defined in Equ. (8). To be fitted at E(ls) 

4. Results of  the c a l c u l a t i o n s  

One m a y  wonder  why  in a lmost  all pseudopotent ia l  calculations only 
molecules like Na2, K 2 etc. have  been invest igated.  Actual ly  t hey  play the  same 
tole in pseudopotent ia l  t heory  as does the  H 2 molecule in all-electron calcula- 
tions. In  the  pseudopotent ia l  me thod  these molecules can be t r ea ted  as pseudo- 
H 2 problems. J u s t a s  in H2, the ls-pseudo-AO's  cont r ibu te  much  more to the 
binding MO's of the  ground s ta te  t h a n  do any  other ,  in par t icu lar  p-AO's.  I t  
is therefore  no t  too crucial to ignore t h e / - d e p e n d e n c e  of the pseudopotent ia l  
and to use t h a t  local approx imat ion  which is just i f ied for s-AO's. 

NaCs has recen t ly  been inves t iga ted  by  W. NSUMANN [22] in molecular  
beam exper iments .  This s t imulated our  interest  in a theoret ical  s tudy  of this 
heteronuclear  molecule. 

The choice of the orbital  basis is suggested by  the fact  t h a t  we are dealing 
with pseudo-H 2 problems. We ac tua l ly  chose the  basis of Gaussians used 
by  HOYLAND [14] in his H 2 calculations omit t ing,  however ,  the Gaussians 
with highest  a~-values which in the  genuine H 2 problem takc  care of the  re- 
prcsenta t ion  of the  cusp at the  nuclei, bu t  adding some Gaussians with smaller 
a~-values in the  binding region as is i l lustrated in Table  I I .  

Since the  pseudopotent ia l  cloes not  contain any  singularities,  the problem 
of the correct  cusp does not  m a t t e r  a n d a  Gaussian basis should be be t t e r  t han  
in the real H 2 problem.  The rcsults of our  calculations on diatomics using 
the two' model-potent ia ls  W ~ and W ~ can be found in Table  I I I .  

The  paramcte rs  ao,  a l ,  R c  arc t aken  f rom Table  I. The  dissociation ener- 
gies De ate obta ined  f rom De ---- [EHF+corr ~- 2Ipl where E•F+corris the  sum of HF-  
and the correla t ion energy of the  system.  The equi l ibr ium distances re have 
been obta ined  b y  4-th degree polynomia l  f i t t ing,  (see Figs. 2- -4) ,  f rom which 
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Table III 
The computed data  for the A2, AB-type moleeules with the pseudopotentials IV: and IV ~ 

All quantities are in atomic units 

Molecule 

Na s 

W1 

[ i~a NaCs 

Cs 

I Na~ 
Wo 

Ks 

Lis 

1 
Re 

2.266 

2.91 

2.266 

3.39 

3.25 

4.16 

3.00 

0.44138 

0.3438 

0.44138 

0.2946 

--1 
3.25 

--1 
4.16 

--1 
3.0 

3 
ul 

--0.38963 

--0.2364 

--0.38963 

0 

0 

4 5 
--~ ---EH F 

0.3777 0.3759 

0.3190 0.3142 

0.3319 0.3284 

. . . . . . . . . . . . . . . . . .  ] . . . . . . . . .  

0.3777 0.3700 

0.3190 0.3100 

0.3963 0.3907 

6 
- - E n F  + eorr. 

0.3993 

0.3360 

0.3510 

0.3955 

0.3320 

0.4147 

Molecule 

I Na s 
Ks 

W1 

Na 

NaCs { 0.1456 

es 

l Na~ 0.1670 
Wo 

K 2 0.1350 

Li 2 0.182 

7 b ) 8 
Re 

--~HF calc. 

0.1699 5.78 

0.1401 7.1 

6.9 

5.8 

7.1 

9 a ) 
Re 

expt l .  

5.8 

7.39 

10 
De 

calc.  

0.0216 

0.0170 

0.0191 

11 a) 12 
Do De 

exp t l .  H F  

0.0272 --0.0075 

0.0192 

5.8 

7.39 

3.02 

0.018 

0.013 

0.0184 

0.0272 

0.0192 

0.0419 

--0.0075 

0.006 

a) Experimental  data from G. HE~ZBERG, Molecular Spectra and Molecular Structure, 
I. Spectra of diatomic Molecules (D. Van Nostrand Co., Inc. New York, 1950) 

1. core radius 
2--3.  pseudopotential  parameters 

4. Sum of ionization potential  for the free atoms 
5. To ta l  H F  energy 
6. H F  energy plus a and ~z correlation energy 
7. H F  orbital  energies [b) for Li 2 the orbital energy is the same in an all-eleetron 

calculation] 
8. Caleulated equilibrium distance 
9. Exper imenta l  equilihrium distante 

10. Calculated dissociation energy (for Li 2 only a-correlation is included) 
11. Exper imenta l  dissociation energy 
12. H F  binding energy of an all-electron calculation according to A. C. WAHL [21 

(for Nas) and G. DAS [25] (for Lis) 
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Fig. 4 

Figs. 2--4. Energy-potential for Na 2, K~ and iNaCs as caleulated by the pseudopotential me- 
thod with pseudopotentials W ~ tV ~ 

HF = Hartree--Fock approximation, o-corr. = HF + o-correlation, o + zr-eorr. = }tF § 
+ a -~- ~-correlation. exp. = experimental energy curve which we obtained by subtracting 
the binding energy D e ('.ee right hand scale) from the level of the separated atoms (broken line 
with energy 2Ip). The curvature corresponds to a quadratic parabola obtained from the ex- 

perimental force-constant. See [4e] 

we o b t a i n e d  t h e  force  e o n s t a n t s  K e  as wel l .  T h e  r e s u h i n g  v a l u e s  a r e  e o l l e c t e d  in  

T a b l e  I V  for  d i f f e r e n t  a p p r o x i m a t i o n s .  I n  c o m p a r i n g  t h e  r e s u h s  w i t h  t h e i r  

e x p e r i m e n t a l  c o u n t e r p a r t s  one sees t h a t  t h e  g e o m e t r y  of  t h e s e  s y s t e m s  is 

a l r e a d y  a c c o u n t e d  for  in  t h e  H a r t r e e - - F o c k  a p p r o x i m a t i o n  l ike  one  f i n d s  in 

a l l - e l e c t r o n  H F  c a l c u l a t i o n s .  T h e  e q u i l i b r i u m  d i s t a n c e s  a t e  i n c r e a s e d  i f  one 

a l lows for  a - c o r r e l a t i o n  (i.e. b y  p e r f o r m i n g  CI  w i t h  c o n f i g u r a t i o n s  c o n s t r u c t e d  

f r o m  a - o r b i t a l s  on ly )  b u t  a re  d e c r e a s e d  a g a i n  to  t h e  c o r r e c t  v a l u e s  i f  zr-eorrela-  

t i o n  is t a k e n  i n to  a c c o u n t ,  too .*  ( F o r  a m o r e  d e t a i l e d  d i s c u s s i o n  o f  t h i s  p r o b l e m  

see [13c]).  I n  f a c t ,  t h e  a - c o r r e l a t i o n  e n e r g y  e o n t r i b u t i o n s  i n e r e a s e  w i t h  d i s t a n c e  

whi le  t h e  J t - c o r r e l a t i o n  dec reases  w i t h  d i s t a n c e ,  so t h a t  t h e  s u m  of  b o t h  re-  

* A W e i n b a u m  fune t ion  ( H e i t l e r - - L o n d o n  fune t ion  -{- ionic t e rms)  as used by  SzAsz 
and  McGxNN aceounts  to some ex ten t  for o-eorre la t ion  (bu t  no t  for  ~z-eorrelation). This  is the  
reason for their  too large equi l ibr ium distanees.  
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Ec 

Molecule 

Na 2 

NaCs 

K2 

Table IV 

uilibrium distances, force constants and total ener 

approximation 

SCF 

SCF q- corr. 

SCF 

SCF -4- corr. 

SCF 

SCF + corr. 

ro [ . . - . .  r o [a.u.] K ,  [a.u.] 
calc. exp. theor. 

5.8 0.009 
5.8 

5.8 0.007 

7.0 - -  0.0057 

6.9 0.0051 

7.1 0.0048 
7.39 

7.1 0.0045 ] 

ies for Na:, NaCs, K 2 

K,  [mdyn/.t~] 

t h ~ r .  exp. 

0.14 

0.11 

0.0~ 

0.08 
. . . . . . . . . . .  ] - -  

0.075 i 0.3142 

0.O7 0.336O 

--Eo D.".] 

0.3759 
0.083__ 0.3993 

0.3284 
0.051 i 0.3510 

d 

0.048 

Table V 

Correlation analysis of Na 2 for different distances r. AII quantities are 
in atomic units 

r E S p  I - -E( I~u)  - -E( ln~)  --E(2~rt) - -E(cr  A- ,~) 

4.8 

5.3 

5.8 

6.3 

6.8 

0.3691 

0.3744 

0.3759 

0.3745 

0.3715 

0.00944 

0.00807 

0.00902 

0.01030 

0.01193 

0.00686 

0.00618 

0.00544 

0.00477 

0.00419 

0.00257 

0.00325 

0.00353 

0.00373 

0.00383 

0.02526 

0.02368 

0.02343 

0.02358 

0.02414 

m a i n s  a p p r o x i m a t e l y  c o n s t a n t  as c a n  be  seen  f r o m  t h e  c o r r e l a t i o n - e n e r g y  a n a -  

lys i s  fo r  N a  2 in T a b l e  V. 

T h e  c o r r e s p o n d i n g  n a t u r a l  o r b i t a l s  w h i e h  c o n t r i b u t e  to  t h e  e o r r e l a t i o n  

e n e r g y  a t e  p l o t t e d  in  F i g s .  5 - - 8  fo r  NaCs .  A h h o u g h  t h e  a c c u r a c y  o f t h e s e  N O ' s  

( p a r t i e u l a r l y  of  t h o s e  w i t h  s m a l l  e x p a n s i o n  coe f f i c i en t s )  s h o u l d  n o t  b e  o v e r e s t i -  

m a t e d  t h e s e  p l o t s  a t e  q u i t e  i l l u s t r a t i v e .  T h e  b r o k e n  l ines  i n d i c a t e  t h e  core  

r eg ion  o f  t h e  e 3 r r e s p o n d i n g  a tom3 .  I n s i d e  t h i s  r e g i o n  t h e  n i v e a u  l ines  h a v e  no  

p h y s i c a l  m e a n i n g .  

I n  T a b l e  V I  t h e  r e s u h s  o f  o u r  c a l c u l a t i o n s  on  B e H  2 a re  s u m m a r i z e d  for  

t h e  e q u i l i b r i u m  d i s t a n c e  rBe--H = 2 5 a .u .  fo r  t h e  l i n e a r  s y m m e t r i c  m o l e c u l e .  

T h e  r e s u h s  a t e  s o m e w h a t  p o o r e r ,  s i m i l a r  to  t h o s e  w h i c h  h a v e  been  f o u n d  fo r  

h y b r i d e s  in  gene ra l  [4e],  a p h e n o m e n o n  w h i c h  is n o t  y e t  f u l l y  u n d e r s t o o d .  
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Table VI 

Compar i son  of  B e H  2 in the  pscudopo ten t i a l  scheme a n d a  complete  t r ea tmen t .  
All quant i t i es  ate  in a tomic  un i t s  

339 

approx, re --EHF --eHF 

pseudo- 
potcntial 

complete 
SCF--NO 

Re a0 al 

1.356 --1.478 2.175 

i 

2.5 

2.5 

2.0558 

15.7624 

~1=0.5124 
~2=0.4019 

~1=0.4916 

~2=0.4559 

approx. --Ec£ ~Ec~orr --ETot. 

pseudo- 
0.0335 0.0230 2.11237 

potential 

complete 
SCF--NO 0.0322 0.0245 15.8119 

2.01184 

De 
calc. 

0.1005 

0.202 

De 
estiro. 

0.239 

15.906 

Conclusions 

In  pe r fo rming  molecular  calculat ions in a pseudopo ten t i a l  app roach  one 
int roduces  two possible sources of errors.  One is due to  the  a p p r o x i m a t i o n  
inherent  in the  chosen pseudopoten t ia l ,  the  other  to the  l imita t ions  in the  
ansa tz  of  wave  funct ions .  The l a t t e r  source of error  is the  same  as in all e lectron 
calculat ions and ir is these  errors which we t r ied to reduce as much  as possible  
b y  a iming a t  a r a t h e r  accura te  t r e a t m e n t  of  the  two and four  va lence-e lec t ron  
p rob lem in the  field of  a pseudopo ten t i a l  t h a t  has  a s imple  ana ly t i c  form. 

W e p e r f o r m e d  H a r t r e e - - F o c k  calculat ions in the  p seudopo ten t i a l  f ield 
and obta ined  good ag reemen t  wi th  al l -electron H a r t r e e - - F o c k  calculat ions (as 
far  as those are avai lable) ,  bo th  wi th  respec t  to orbi ta l  energies and  b inding  
energies. Since H a r t r e e - - F o c k  calculat ions general ly  lead to good molecu la r  
geometr ies  ir is no t  surpr is ing t h a t  the  bond  distances of  our  p seudopo ten t i a l  
H a r t r e e - F o c k  calculat ions agree well wi th  the  expe r imen ta l  ones. 

The  b inding  energies ob ta ined  in the  H a r t r e e - - F o c k  a p p r o x i m a t i o n  a te  
as poor  in a pseudopo ten t i a l  as in an al l-electron t r e a t m e n t .  I n  order  to ob ta in  
the  correct  values  one has to account  for  e lectron correlat ion.  I r  one does so, 
b y  using the  n a t u r a l  orb i ta l  expans ion  m e t h o d  one obta ins  abou t  6 0 - - 8 0 %  of 
the  expe r imen ta l  b ind ing  energies. (Whereas  in the  H a r t r e e - - F o c k  approach  
not  even the  sign of  the  b inding energy  is correct) .  In  those  cases where we 
could make  the  compar i son ,  the  corre la t ion  energies and the  con t r ibu t ions  of  

22* Acta Physica Academiac Scienti,rum Hungaric,e 27. 1960 



340 W.A. BINGEL et al. 

the  different  NO's to ir were quite similar in a pseudopotent ia l  and in an all- 
e lec t ron calculation. (This is demons t ra ted  b y  the  examples BeH~ and Li 2. 
For  the  larger systems the  all-electron caleulations would be inuch too t ime- 
eonsuming).  

Two forms of  the  pseudopotent ia l  have  been  used, which differ appre-  
c iably inside the core region bu t  which lead to r a the r  similar results.  A more 
careful  inspection shows t h a t  the potent ia l  IV l (see Fig. 1) is preferable  to  
W ~ bo th  with respect  to Rydbe rg  series and to binding energies. 

Our results suggest t h a t  the pseudopotent ia l  me thod  should be applicable 
successfully to larger molecules a l though some problems still remain.  In  par t i -  
cular  we th ink  t h a t  a s t r ic t ly  local potent ia l  is too poor  for systems where the  
cont r ibu t ions  of p-AO's  to  bonding is as i m p o r t a n t  as t h a t  of s-AO's, so t h a t  
for  such systems ei ther  ah l -dependent  po ten t ia l  has to be used of one has to  
f ind a local potent ia l  t h a t  reproduces bo th  s- and p - t y p e  Rydberg  s ta tes  if this 
is possihle. 

A p p e n d i x  

I f  we wxite the pseudopotent ia l  in the  form 

n 
--Wf(lr - -  re) = ~ a~.[r - -  rc]' r<R 

v~0 

ZR 
= +  - -  r > R  

Ir - -  r~l 

(1) 

the  basis functions ~~ as 

~% = e-~~(~-'~ )~ # = a, b, c, d . . . .  (2) 

t he n  we get in a f irst  step with ? = ~a + 6£ 

- j  (q~a, W'~ %) ( a~ + ~243 }312 f = = Sab e - ' ( ' - ' , ) 'W~( l r  - -  rol) d~. 
7f 

(3)  

In  this expression Sab means the  overlap integral  (~a, ~vb) which is given b y  

Sab ~ (OCa" ~b)-3/4 A3/2 e--l/2(ra--rb)~.4 

A ~  2~176176 
O~a-3[-o~ b 

(4)  
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Defining the posi t ion vec tor  of the funct ion  centers of nucleus c b y  

a = [A=; Ay; Az] ,  
b = [Bx; By; Bz] ,  
c = [C,; Cy; C=] 

(5) 

the  point  P with posit ion vec tor  rp in Equ.  (3) is s i tuated on the  line between 
a and b with coordinates  

1 
rp = - -  [c% A x + ~~ Bx; % Ay + z% By; zt a Az + xb B2]. (6) 

Now we can t r ans fo rm our coordinates  according to r '  = r - - r c  and get 

312 
- J  = (~1 =o~ fe-,'~-'-" 

[ 2 1  ) 

with rcp -~- rc--rp. 
Now we separa te  the  integrat ions 

W(Ir'l) d~' (7) 

- - J  : Sab  e -~'(r=+r~t) I]Ÿ r 2 d r  e 2rr~rx d x  (8) 

and get a f t e r a  shor t  calculat ion 

, , , . , . .  [ ;  i: ] --J = [---~-J S.b 7 r c p  e-~'(r-r~Pl~Z(r) r d r -  e-;'(r+r~)'~f'(r)dr �9 (9) 

Up to this point  the  der iva t ion  does no t  depend on the explici t  po ten t ia l  expres-  
sion from which we make  use now. 

/ 7 ~ 3/2 :z 

J =  171 So0 
~'rcp 

After  subs t i tu t ion  

12"a~11  r'+l e-~(r-r~) dr - - ~ :  -4- 

. =  (lo) 

u : r - -  rcp , v : r -~- rcp 

we get for r ~+1 ah expression 

~ + I  

(I�91 "~- rcp)'+l = 2 "  ( ' i l )  u~" r;P]+l 
~=0 

(II) 
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and the  corresponding one for (v--rcp) ~+1. Therefore  we can write  for the  whole 
in tegral  

j = [~_jlY 3/2S~b [ Ÿ n i~i  ( , ~ l ) T , = ~ 0  a~'~~ rcp ~ [j'_Rr~Ÿ ua e-:'U~du-~(-1)'-~f~+r~'v~e-r"dvl-4-,,r~ 

q - Z R z t l f  ~ e_~U2du__~ e_~U, du]}. (12) 
~rcp - r tp  +r~  

After  some simplif ieat ions in the  last  two integrals  a n d a  spl i t t ing of the  first  
t e r m  in the  sum over r we obta in  the  final  form 

J :  V ~  Sab {--~- V~-[erfO/~(rcp ~- R)) - erf(}Cr R))]-~- 

-- Z~ ]/--~ [erf(i/~(rcp+R))~_erf(t/~(r~ _R))]~_ + 2 rcp [ ? 

a~ [e -~(r 'p+~}'- e -~(r'p-a)'] H- (13) 

A- ~__ a, du -4- 
,=1 [_ 1/~ tJ-T~,r~p - J]/~r~, 

1§ I I  ~1 

..~_~(,~Z, rc-~al/~-a-l[l'l~(R-r~r'au'e-U'du_~(_a),-af~ie),~+r"uae-U2du)l}. 

I~ I ,-I 

In this expression the  t e rms  wi th  v = 0 and 2 = 0 are wr i t ten  down separa te ly  
because they  can be reduced  to simple analyt ic  expressions. So I I  can be 
wr i t t en  as 

/- Jl: 
I I  = -~- [(1 - - ( - -  1)') e r f ( l~rcv)q-erf (~(R--rcp)) -~-  ( -  1)" erf ( l~(R q-rcp))] (14) 

wi th  erf(z) 2 f £  = - -  e-U'du., (15) 
r 

The  remain ing  integrals which ate of the  forro 

Jx(a, b) = ,f£ u ~ e -us du (16) 

can  easily be eva lua ted  by  a recurr ing relat ion one can derive f rom (16) 

1 Jx(a, b) : 2 [ (2--2)Jx-2(a '  b) ~- a ~-2 e -a' -- b ~-2 e -£ (17) 
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which  c o n n e c t s  J~(a, b) w i t h  ,l~_2(a, b). 
T h e  i n i t i a l  i n t e g r a l s  ,lr(a , b) a n d  J2(a, b) are  

J~(a,b) ---- 1 - [erf(b) erf (a)]  -~- r  - , 

I j~(~, b) = ~ [~-~ -- e-O? 

343 

so t ha t  the whole integral  (qa, ff/c qb) is reduced to the  evaluat ion  of the  error- 
function.  

For  praet ica l  calculations ir is useful to in t roduce  some approximat ions  
for the l imiting case rcv ~ 1, to avoid numerical  instabilities. 

In  this case we have approx ima ted  the  expressions for I and I I  b y  

I -  ~/-#+1 rc'~~ [J-]/~,r~(| ]/~(R-ro} u~e_U2 du -4- (--1)~-~[j]/~r~~/~Y(R+r~)u%_.~du) ~-~ 

1 [ (1  + ( - 1 ) ' - ~ ) ( ; / ? r c p )  "-~ I0 Y~R u~e-"~du -- 
~ I,+1 

- (~r~~)~+x-~(~R) ~ ~-~~~ (I--(-1)'-~)I 

n ~ r (~+(-~)~) erf(r + (1-(-Ir) ~r~~(1 -- e~R~). 
2 
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FIO~PA>KEHHE BYIH~tFtH~I ~J-IEKTPOHOB ATOMHOFO OCTATKA 
FICEBJ2OI-IOqEH~HAYIAM. II. 

FIPIdMEHEHIdYl K HEKOTOPbIM MOJIEKbrflAM C ~BYM~I Id TPEM~I ATOMAMId 

B, A. EIdHFE.FI, P. li. KOX r~ B. 14,,Xdl2EJ'll~l"ll,4F 

Pe3~oMe  

I-[CeBjI0n0TeHUHaJIbHa~ Tr KOI~,6HHHpyr C MeT0,~0M XapTH--r H MeT0~0M 
eCTeCTBeHSOrO pa3J~0>KeHH~ B p~~ C ues onpe~e~eHH~ vo~euy~~pBb]x I'IOCT0~IHHblX De, 
R, H k e ~aa Na2, K2, NaCs ~ BeH 2. 3T~ ~oaeKy~~ paccr~aTp~Ba~Hcb KaK ~ByX- H qeTupex- 
921eKTpOHHble np0GJleMbl COOTBeTCTBeHHO B nCCB/IOBOTeHIIHaJlbHOM IloJle CBOHX aTOMHblX 0CTaT- 
KOB. ~a~ee 6bl21H aHaJIHSHIg0BaHbl 9HCpFHH H B02]HOBble ~)yHKHHH C T0qKH 3peHH~t B3HOCa pa3- 
2IHqHblX HaTypaJlbHblX op6HT B l<0ppe3l~ll2HOHHylO 3HepFHIO BblqHc~eHHble paCCTO~IHH~ paB- 
HOBeCH~ XOpOII]0 C0FJlaCyIOTC~ C 9KCIIepHMeHTas JlaHHbIMH C00TBeTCTBHe JIHCCOUHaUHOH- 
HmX 3HeprH~ C 9KcnepHiZeHTaJ1bHhlMH ~aHHbIMH Jlyqme, qeM B npe~L�91 BI~qHC~eHH~X. 
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