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OSCILLATIONS OF A RELATIVISTIC ELECTRON PLASMA
IN AN EXTERNAL MAGNETIC FIELD*

By
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A relativistic treatment of plasma oscillations is presented. The calculations are carried
out for the so called low § plasma, where the pressure is negligible as compared to the magnetic
energy density. The covariant dispersion relations are derived and their meaning is compared
to that of the classical ones.

§ 1. Introduction

The aim of this work is to study the small amplitude waves of an electron
plasma on the basis of relativistic dynamics, to deduce the covariant forms of
the dispersion relations of the typical modes of oscillations.

In order to motivate the necessity of the relativistic treatmeur we men-
tion only a theoretical remark. As is well known, the problem of plasma oscil-
lations is studied in classical plasma physics by means of the Newtonian equa-
tions of motion and some restricted, approximative forms of Maxwell’s equa-
tions. The results of this classical treatment are in general well compatible with
the experimental data, a discrepancy arises in the fact, that Newtonian equa-
tions are Galilei invariant while Maxwell’s equations are Lorentz invariant.
So it can well happen that this half Galileian half Lorentzian treatment will
lead to false results. Therefore it is desirable to investigate this problem in a
fully covariant manner. It is generally cited that relativistic effects become
important only at high temperatures, which statement is only the half of the
truth. Relativistic effects will be important also in the case when the involved
energies — e.g. electromagnetic energy, compression energy, etec. — are com-
parable with the rest energy of the system.

Here for the sake of simplicity we consider an ideal electron plasma and
we shall investigate the possible modes in a covariant manner. It is supposed
that the electron gas is a classical one, and it is neutralized by a homogeneous
positive background which is immobile in the rest frame and does not take part
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310 G. ROTH

in the oscillations. Restriction is made to the so called low § plasma case, i.e.
it is supposed that the density of electromagnetic energy is much greater than
the compression energy, so the latter is omitted for the moment. Since the
pressure is neglected, there will be no information concerning the acoustic
waves of the electron plasma in this model.

In the treatment we shall consider the oscillations of the electron plasma
both without and with external magnetic fields and in the discussion of the
results comparison will be made with the classical dispersion relations.

§ 2. Fundamental equations

When the electron gas is not too dense the electromagnetic field can be
described by the field tensor

0 H, -H, —iE,
—H, 0 H, —ikE,
—H, 0 —.E, [ (1)

iE, iE, IiE, 0
which satisfies the source free group of Maxwell’s equations:
Eixim Ok Fim = 0. (2)

Here 9, == 8/3xy, x; = tctand &y, is the completely antisymmetric Levi-Civita
tensor with &5, = +1. The summation convention is understood for doubly
occurring Latin indices.
The electromagnetic field Fy is coupled to its sources by Maxwell’s
second equation
O Fiy = —4;n—fia (3)

where the current four vector

i; = env;, 4)

¢ being the electronic charge, the invariant scalar n is the density of electrons
(measured in the comoving frame of reference), and v; is the four velocity of the
electrons.

The equations of motion is

en
Bi(nv; vy) = e Fiyovps (5)
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OSCILLATION OF A RELATIVISTIC ELECTRON PLASMA 311

where the pressure term is omitted. This approximation is valid if

i.e. we consider a low § plasma. Here m is the rest mass of the electron. The
velocity four vector must satisfy the equation

v,v, = — c%, (6)
The charge conservation
47e
9; 0y Fiy = 8i(nv;) =0
leads to

e
v Oy vy = ——Fy v (7

mc

the final form of the equation of motion we use.

The extension of the electron plasma is supposed to be infinite, to avoid
boundary value problems for the moment.

The system of fundamental equations of the low § plasma is then

Eipim O Fim = 0
dme
Sk Fy= nv;
c
3k(nvk) = 0 s (8)
v,v, = — ¢?
e
U 0y v; = Fi vy
mc

which is a coupled system of nonlinear partial differential equations.

In order to linearize (8) we suppose that the electron gas is in a nonper-
turbed equilibrium state. In this state its charge is completely neutralized by
the immobile positive background. There is no charge, no current without ex-
ternal perturbation. In covariant way this reads

(Net 4+ Ne )u, =0,
where u, is the electron equilibrium four velocity, IV the equilibrium particle

Acta Physica Academiae Scientiarum Hungaricae 27, 1969



312 G. ROTH

density. If F; denotes the field in the equilibrium system, then in the
unperturbed state

F.',-kuk=0.

Therefore (F iks Wxs IN) = (const) is a solution to (8), if ujux = —c? in the unper-

turbed equilibrium state.
Then we superimpose to this state some small amphtude disturbances

(0 Fy, 6ux, 6n) and retain those terms where only one disturbance occurs.
This procedure leads to

Eikim Ok OF iy = 0 )
8, 0F y, — -4”—“ (N, + u, 6n)
Na,éu,—{—n,a,én =0 s 9)

uk8k5u1= '—r;fc— (uk 6Fik + F"‘ 5uk)

u,fu, =0

which is a coupled system of linear partial differential equations for the dis-
turbances. In order to solve these coupled first order homogeneous linear dif-
ferential equations we use the trial functions

on (x,) on I
ou;(x,) {=10u; lexp ik, x, (10)

OF ()] |oFu]
stating the validity of the superposition principle. Here én, du; and 6 Fy will
be appropriately chosen constants, the determination of which requires a non-
trivial solution of the algebraic system of homogeneous equations

Eisim K OF 1y = 0
k 0F; = dme (Ndu; + u; 6n)

Nk,éu,—{—u,k,én_() A (11)
u, 6Fir + Fik 6uk

mc mc

iu, k, bu; =

u, du, =0

Before looking for the solutions of (11), some transformations will be
useful.
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OSCILLATION OF A RELATIVISTIC ELECTRON PLASMA 313

The decomposition of the first equation of (11) gives
kk 6Flm + km 6Fkl + kl 6ka = 0. (12)

Then multiplication with u, and summation over m provides an equation for
the quantity

0D; = wy OF (13)
which gives the perturbation of the electric field in the comoving frame, namely
L(SFk[ = k[ 6@]( -— kk 6¢1 9 (14)
where

L=kFkwu,. (15)

This combined with the second equation of (11) gives

L
k, k, 60, — kyk, 00, — "L (Nsu, + u, 6n) . (16)
ic

Finally we introduce the notation

e

Qik = F.'ik . (17)

mc

0y is an antisymmetric tensor, built up from the equilibrium values of
the electromagnetic fields. Since in equilibrium there is no electric field at all,
we have

e ]
mc

In other words 2, contains only the components of the electron cyclotron fre-
quency @.= (¢/mc)H, or the components of the external magnetic field.
With this we write the fourth equation of (11) in the form

iL 6ui = ¢

6¢i + ‘Qik 6uk . (18)

me
§ 3. Oscillations of the relativistic electron plasma when
no external magnetic field is present

If there is no external magnetic field, we have £, = 0 and the funda-
mental algebraic equations are

(28, — k k)80, = 2L (Now, + w,om)
1c
Lén + Nk, du, = 0 i (19)
iLbu, = —— 6,
mc
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where

Q2 =k, k, . (20)

It is easy to see that (19) incorporates all the equations of (11), making use of
(13) and (14). '
The system (19) can be written in the form

bu =~ 00, (21)
on = — i'f:’;"z k, 6@, (22)
and
Q*8, — kK, + ‘;’2 a,.,-%?' LL"— 8B, =0, | (23)
where
02 = 47r::N (24)

is the electron plasma frequency, an invariant scalar. One has to solve (23)
first and then use (21) and (22) to derive the accompanying perturbations of
the density and the velocity.

Instead of attacking directly Equ. (23) we decompose it into trans-
verse and longitudinal perturbations.

A transverse oscillation of @, satisfies

k. 0@, =0, (25)
whereas the longitudinal one obeys
(kr kr 6is - ki ks) 6¢s = 0. (26)

Therefore the transverse amplitude is chosen by the projection tensor

1
1, = [5,.,. kK k,,k,,] . (27)
Application of (27) to (23) gives

wZ

(Q“r ]n,-,acb,:o

c2
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OSCILLATION OF A RELATIVISTIC ELECTRON PLASMA 315

and a nontrivial transverse oscillation can exist if and only if
2k, k. 4+ w:=0. (28)

This equation is the covariant dispersion relation of a transverse plasma oscilla-
tion without external magnetic field. In the rest frame

ky = |ky Ky by — 2
_ ¢
and (28) will give
-2
Q2= w?+ 2k

in accordance with the classical results. This transverse perturbation of 6@,
is accompanied neither by density fluctuation nor longitudinal velocity fluc-
tuation as it is guaranteed by (21) and (22).

In the case of a longitudinal oscillation from (23) we obtain by means of
multiplication with u;, and some manipulation

(0% — LAk, 6D, =0, (29)
where k0@, 5= 0, therefore

(hy,)? = w2

is the covariant dispersion relation of a longitudinal plasma oscillation without
external magnetic field. In the rest frame this reduces to the classical form:

2 2
22 =l .

This longitudinal perturbation of @, is accompanied by a longitudinal velocity
fluctuation and a density fluctuation, as it can be seen from (21) and (22), but
there is no transverse perturbation.

In the absence of external fields, the longitudinal and transverse oscilla-
tions decouple, and the covariant dispersion relations reduce to the classical
ones in the rest frame.

§ 4. Oscillations of the relativistic electron plasma in the
presence of an external magnetic field

a) Reduction of the equations

Let us suppose that the electron plasma is subjected to an external mag-
netic field in the rest frame. Then the basic algebraic equations we have to
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solve are the following

Lén + Nk, bu, =0,

iL (5u‘- = —'e—'é¢l +'Qik 5uk,

mc

4mel

i

(Q*0 — kiky) 0P, = (NOu; + u; dn).

We use (31) to express du; in terms of §P;. Since

8B, = (L b, — Q) bu,

mc
and

Det {iL 6;, — £2,,} = L? (Lz + % 2, ‘er) +0,
we have

. 1
L2, —iL R, — 2,2 + T 87y Rt Ly

Su, = - ° o0,
iL ( L4 .qu) me
Making use of (31)
on = — N k, du,
L
and (33) we arrive at
w2 w? 1
2 id o —kk — =)y,
HQ + ) o — ik, — 2wk, +

iLQ, 4 2,2, W km ILQp, + Qm 2,
1 1 ¥
L2+ T‘Qm ‘qu L 12+ T'qu qu

+

}aqb,:o.

(30)

(31)

(32)

(33)

(34)

In this model all information concerning plasma oscillations in the presence of
external magnetic field is contained in (34). Before discussing the special modes
of oscillation, however, it will be advantageous to simplify (24) by means of
the introduction of a convenient four vector in the place of 2,,, as we have

done with the introduction of D,.

Starting from F;;, = —F);, and following the idea of A. M. PrRaTELLI [1],

we have defined

D; = Fyuy
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which in the rest frame has the components
®,=(E,E,E,0).
If we define the dual tensor of F; by the relation

1
Fx‘;( = —2"' Eikrs Frs

we have the opportunity to define a four vector

1
hi = — — Flu;
ic

which in the rest frame has the components
hi = (Hx9 Hy9 Hz’ 0)

Then it is possible to write Fj in terms of @; and h;. It is easy to verify
i 1
Fpp = —C_Eilmnhiul +T(¢num — D uy).
Applying this to the particular F, ', we have

i
‘an = ——&iimn O; Uy 5 (35)
[4

where in the rest frame

eH, eH, eH,
W; = ’ ’ s
mc mc mc

0 (36)
and may therefore be called the cyclotron frequency four vector. We need other

relations, too, namely

- % 2,2y = 0y, (37)

and since w,u; = 0 in all inertial frames, we have

1
Q.0 = — [0p 0, (4 u, — ¢28,) + 0, 0] . (38)
[
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Making use of these notations (34) can be written in the form

2 2
[(QZ+ w;]air‘kikr_ wn{ul +_‘*—}T'Ep1irwpul+
¢ g O,

c? L ¢ L2— q
NI ~ ©, 8,7)
12— g0, (a’rwi%wp P
1 T
*—uikm"— ——— Epmr Wp Uy - (39)
¢ L? —w, 0,
! uk 1 (v, @ W, 0,0, ) V0D, =0
— Wik — rOm @ r r=VvV.
L Lz—wqwq popmm

b) Discussion of the oscillations

I. Transverse waves. For transverse oscillations the equation (39) reduces

s

"€y ¢ LP—ow,w

to

¢%q
2
w? [ L 1 w; W
e e Eptir Oplly + —— (40)
2 2 p P 2
c ¢ L*-ow q Vg L——wqwq

Epimr ukyo,u u ko, w, IT,50,— 0
e(L?—w wq) L(1? — 0,0, § !

where I1,,6®; is the transverse part of §®;.
The transverse oscillations may be decomposed into two cases, polarized per-
pendicularly

0,00, =0 (41)
or parallel '
(6ir - (ws ws)_1 W; (/J,) 5¢r =0, (4'2)
to the external field w;. In the case (41), Equ. (40) takes the simpler form
(T0;r + Repy, wpuy + Sepime 0pty by u) I, 60, = 0, (43)
where
2
T=Q4 Oxfy 1 %% | (44)
c? L2 — o0,
2
R— — “’_: L _2_1__ , (45)
e ¢ DPP—ow,0,
2
S=% 1 (46)

2 2
¢z L W0,
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In this (41) case, we may consider propagation along the external magnetic
field, k, = aw,, with a convenient constant «. So (43) takes the form
(Téir - Rep,[, (Op ul) Hff 6¢t = 0 . (4'7)

The existence of a nontrivial solution to KEqu. (47) is expressed by the

vanishing of its determinant:
2 2
el

From T = 0 we obtain

2k, b {(usky)® - oy 00} + o (uskg)® = 0. (49)

This is the covariant dispersion relation of a transverse plasma oscillation, which
propagates along the external magnetic field. In the rest frame (49) gives

— 2
P_eRto— 2 (50)

02 _ o2

If V'=0/k means phase velocity of the wave (49) in the rest frame of the plasma,
then according to the dispersion relation (49)

V2 1
(_) ——— (51)
022 — o?
This mode of oscillation cannot propagate in the frequency interval
Vol Foi<® < o (52)

A prototype of this propagating wave in low frequency approximation
(2/we 1) is the Alfvén wave, for which (50) yields

Q? = —ﬁzc?:“z R (53)
1+ 7‘2‘
where
4= _Hy
4nmN
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is the square of the Alfvén velocity.

This filter type behaviour of the electron plasma for this frequency inter-
val is in connection with the cyclotron resonance.

Always in the case (41) the vanishing of the second factor in (48) yields

o (ku)Xdoku,

k. k, 4+ — =0, 54
c? (kpuy)® — w? (54)

where w = 0w, = (wsws)V% In the rest frame we obtain
@ =22 4 »? _2 s (55)

4w

the two signs corresponding to the two different circular polarizations. This
type of oscillation will not propagate if

1 -
0 <2< — [~ +Vo? + 4wt ]
for the upper sign and
Q> — [~ faf + o fal]

for the lower sign.

The other type of class transverse waves polarized perpendicularly to
o; contains the ones which propagate across the external magnetic field. In this
case k.w, = 0, and the relevant equation is:

w2 L2 w? 1 _
e (L e
P km}]wh. (56)

Since in this case the covariant dispersion relation would involve the evaluation
of the determinant

D =det{ad, — P, +uR}, (57)
where
w? L?
2 T
I
a = —Il— wi 1 s
¢ L —ow?
1

Pi=6plirwpul, R, = I kamrs
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we write here only the classical limit of (57):

u? L w2

N
2=c2 4 o? ,
02 o? 02 o2

(58)

where ® = o, = (wsws)12% The expression (54) is the dispersion relation of the
transverse oscillations propagating across and polarized perpendicularly to
the external magnetic field.

I1. Longitudinal waves. For longitudinal waves k, and 6@, must be
parallel, and k, and w, may be either parallel or perpendicular. We can therefore
speak of propagation across (w-k, = 0) and along (w,||k;) the external magnetic
field.

In the case of propagation across the magnetic field we have the disper-
sion relation from (39) (by multiplication with u,)

2
P=w2d+ 2 (59)

L2 - ?

with ©? = (wsw,). This in covariant form

w,

9729
(ky u,)? — w, 0,

(krurzzc‘):%“f“c2

or in the rest frame

Q2 — 0 —02) =0

contains only the classical result.
Finally in the case of propagation along the external magnetic field by
multiplication with w; we obtain from (39) the dispersion relation

Ek ok +wl=0 (60)
or in the rest frame

2=+ o
being also the classical result.
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KOJIEBAHUS PEJIATUBUCTHUECKON 3JIEKTPOHHOM
TJIA3BMbI BO BHEILIHEM MATHUTHOM IOJIE

. POT

Peswme

Jaercss pensiTHBHCTHYECKOE paccMoTpeHde KojieOaHuii ruiasmbl. BeiuncneHuss npo-
BEAEHBl JJIs1 TAK Ha3klBaeMOH HH3KOH f-Nnasmul, B cayyae KOTOPOii JaBjieHHEM MO)YKHO TIpeHe6-
peyb 110 CPaBHEHHIO C TJIOTHOCTBIO MaTHUTHOM SHEPTHH BHIBOISITCSt KOBADHAHTHLIE UCTIEPCHOH-
Hble COOTHOILEHHS1 H HX CMBICJ CPABHHBAETCSI CO 3HaYEHHEM NOAOOHBIX KJACCHYECKHX BbIPA-
SKEHHH.
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