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The first part of this paper is devoted to investigating the static response functions of
superfluid helinm in the hydrodynamic region which results in obtaining a new sum rule.
Sum rules are then specialized to zero temperature and exploited to determine matrix elements
of the particle creation and annibilation operators between the ground state and the one quasi-
particle state in the long wavelength limit. We examine the particle distribution function and
besides calculating the leading term, we are able to give a Jower limit to the next one in the
expansion for small wave numbers.

1. Introduction

We consider liquid helium below its lambda point, where it is characterized
by the condensationof a finite fraction of particles into a particular single-
particle state. The connection between the microscopic theory based upon the
presence of the condensation and the phenomenological two-fluid hydro-
dynamical equations was first studied by Bocovriusov [1] and by HorenBERG
and MARTIN [2]. In particular, in this way various sum rules in the hydro-
dynamical region have been obtained. In the first part of the present pa-
per a new sum rule is derived by investigating the disturbance in the con-
densate and the particle density due to an external potential and particle
sources.

Then, we are concerned with liquid helium at zero temperature with a
homogeneous condensate. We limit ourselves to the long wavelength behaviour
of the system and wish to explore the consequences of the sum rules. PiNEs [3]
has proved that the one quasiparticle states exhaust the f-sum rule and the
compressibility sum rule in the long wavelength limit and he has obtained the
density fluctuation spectrum and the dynamic form factor in this limit.
We extend his method to other sum rules and in this way we are able to
calculate the matrix elements of particle creation and annihilation operators
between the ground state and the one quasi-particle state in the long wave-
length limit, without using perturbation theory and avoiding assumptions
about the behaviour of self-energies. With the aid of these matrix elements we
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can examine the particle distribution function in the long wavelength limit.
The leading term obtained agrees with the result of the detailed microscopic
calculation by GAVORET and Nozikres [4] and has also been derived by
applying quantum hydrodynamics [5]. Furthermore, we are able to give a
lower limit for the next term in the expansion. Finally, we discuss the sum
rules and the results in the BocorLiusov approximation.

2. Sum rules

We consider liquid helium at a temperature T below the lambhda tem-
perature T, where it is characterized by the condensation of a finite fraction
of particles into a particular single-particle state. The condensate wave function
is the average value of the particle field operator

(1)) = Vng(r, 1) €70, 1)

which is to be regarded as a quasi average [6] being nonzero by virtue of the
broken symmetry.

We are interested in the linear response of the system disturbed slightly
from equilibrium due to an external potential U and external sources 7 and
7* coupled to the particle field. Thus, we have a modified Hamiltonian

H - 6H,
where '
6H = [ U(r)n(r)dr + [ (n(r) 9+ () + n*() w(r)) & r
with '
n(r) = yp*(r)p(r).
By taking

U(?‘) — Uk eikr + U—k e—ikr
with Uy = Utk and

77('.) = 7 ethr + Nk e—tkr
and by substituting

y(r) = %1“1« e

we get
OH =Upn, + U_yn_y +meai +n_raty + nkap + n¥a_y. (2)

By applying the usual procedure, one can write

dnl?(r) = 6Re (y(r)) = 5n})/2(k)e”" + Onl2(—k) e ", 3)
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where
1
6ntl)l2(k) = 7 [Xfm(k, _k) + X¢sz+a(_‘k9 "‘k)] n!k +
1
+ 5 (x5t (ks k) + 250+ (— ks K] 70 + 4
1
+ '2_ [Xfm(k" _k) + xfz+n('—k’ _k)] U—k
and
n(r)y = dn(k) e*" -+ dn(—k) e, (5)
where
on(k) = xhaks — k) ¥ + X0+ (ks k) my + 23n(ks —k) U_y. (6)

Here y55(k, k') denotes the static response function given by

dﬂ) TAB(k, k,, w)

e 2 w

tap(k, k') = ypa(K, k) = P

where 74p is defined by

A4, B = | 2 e pall, ' ) =10, (8)

According to the well-known compressibility sum rule [7]

n

’ L’_’i} Xn(ky k) = — %)

mc?

Here c is the isothermal sound velocity ¢2 —m™" (8P/on), where P denotes
the pressure.

Using invariance under time reversal and space inversion and Equs.
(3)—(9) we find the following sum rules

1/2 1/2
lim 75 (b, k) = — n n [ 8n, ) (10)
k—0 mc? iy on m
and
. 1 n {9n on
lim ky k) + 224k, —k)] =— Th ; g H
k-8 [avalles k) + ol )] 2mc® n, ( dn )n on ]U .

where the derivatives are taken at constant temperature. The sum rule
(10) is implicitly present in KRASNIKOV’s paper [8] devoted to the
generalization of BogcorLiuBov’s work to the non-ideal fluid. On the other

Acta Physica Academiae Scientiarum Hungaricae 27, 1969



302 P. SZEPFALUSY

hand, by using the two-fluid hydrodynamical equations the expression obtained
by KRASNIKOV for ya+a + YXaa contains as unknown parameter the real part
of the coefficient of the source terms in the hydrodynamical equations.

Finally let us quote the following sum rule, derived by Bocoriusov [1]
and HoHENBERG and MARTIN [2]

2n, m

2
n, k

, (12)

lim [g5a+(k, k) — xoalk, —k)] = —
k-0

where ns is the superfluid density. The next term on the right hand
side of Equ. (12) is a k independent one which could only be deter-
mined from microscopic theory or from knowing the parameters of a genera-
lized two-fluid hydrodynamies taking into account derivatives of third
order.

In the next Section we consider superfluid helinm at zero temperature
where the sum rules (9), (10) read

+ 2
lim > [Calng]0 )] __nr , (13)

i
k=0 5 D 2 mc?

- (Ola_yoy Calmyl0) + (Oinyla) (ala_, 0> _ n' (LJW(SM]’ (14)
7

lim > v
k0 - Dy 2me® | n, on

where w,, = E, — E, is the excitation energy. Furthermore from the sum
of Equs. (11) and (12) we get

lim > [<0laplod(® + [Kxlanl0)[* _ my m

k0 4 Wy n K
1 ﬁ'ﬁ} ——8"0, 44, (15)
2me® \3n /), | on |y

where — A denotes the constant term on the right hand side of Equ. (12).

3. Application of the sum rules

Our purpose in this section is to calculate the matrix elements of particle
creation and annihilation operators in the long wavelength limit by means of
the sum rules (13) (14), (15). For this we need the matrix elements of the
density fluctuation, which were determined by Pines [3]. First let us sum-
marize his results. From translational invariance it follows that

lim <o J, 05 ~ k%,  a>0, (16)
k—0
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where J; is the current demsity fluctuation, which is related to the density
fluctuation by particle conservation:

W, alng |0, =k]J, (17)

Another essential point is that for a multi-particle state |x) the excitation
energy w,, tends to a finite value @ in the long wavelength limit. Then, one
finds for such a state from Equs. (16) and (17) that

Eita
lim {a/n}l0) ~——, a>0. (18)
k—0

w

Tt follows that the single quasiparticle state exhausts both the f sum rule [7]

nk?

N w,glalni]0)2 =

o

(19)

and the compressibility sum rule (13) in the long wavelength limit, whence

lim w, = ck, (20)
k—0

. . nk 12

lim { —k|n,j0> = Lim (O, (k> = [ ] . (21)
k>0 k—0 mec

Here |k) and w; denote the single quasiparticle state of momentum k and its
energy, respectively. Equs. (18), (20) and (21) which are the results obtained by
PinEs [3] make possible the calculation of the matrix elements (0jaxjk) and
(—kla;0) from the sum rules (14), (15) and from the relationship

g (<Olagay <aln_]0) — <O0|n_Ja) (alay]0)) = nif, (22)

which 1. a direct consequence of the commutation relation
a n__k ~— N_g ak - aU .

Oue can easily see by inspection of the sum rule (15) that the matrix
elements (0Ola,|x) and {«|a;|0) cannot be more singular than k~! in the long
wavelength limit. Then, using Equ. (18) it follows that the multi-particle con-
figurations do not contribute to the sum rules (14) and (22) in the long wave-
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length limit and we obtain the equations

{Olaylk) <kln_|0) — <O|n_i|— k) {—k|a,|0> = n}* + O (k") (23)

{0|ay| k> {kn_x|0>+<0|n_;| — k> (—k|a,|0)> =

(24)

on,
an

1/2
—ple | I
n,

] P o),

» 2mc

where b > a (this condition will be sharpened in the following).* By using
Equs. (20) and (21) we find for the leading term in the small k limit

(Olayk) = — {—klay|0> =

(25)

n, mc } 12

2n k

We note that to obtain ‘this result it has been necessary only that the right
hand side of Equ. (15) is not more singular than k~2. By substituting Equs.
(20) and (25) into the sum rule (15) it turns out that the one phonon state
alone is responsible for the k™? singular term. As a consequence the matrix
elements {0 ! ak|a> and </xJa,{}0> for a multi-particle configuration can only
be less singular than k!, which involves b > a.

Let us consider now the particle distribution function

Ni=(0lai a,J0)= | —kla0)* + 2" |<xlal0)P, (26)

where the primed summation symbol means that the summation is extended
over the multi-particle configurations. According to our above results, the
leading term of INj in the small k limit is as follows

n, mec 1

N, S (27)
This agrees with the result by Gavorer and Nozikres [4] obtained by ana-
lyzing the structure of the perturbation expansion and has also been derived
in [5] by means of an application of quantum hydrodynamics. The deriva-

tion presented here in our opinion uses the weakest assumptions.
To obtain further results we have to take a >> 1, the lower limit of which
corresponds to assuming that <aciJ,‘|O> for a multi-particle configuration has

* From now on a is always considered to refer to multi-particle configurations.
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a power series expansion in k [3]. In that case b >> 1. Furthermore from the
f sum rule (19) and Equ. (18) we find*
1 (nk?
(Ol ) = — (_ + O(k) ] (28)
w, | 2m

k

and thus Equs. (23) and (24) give
(< Haf03) + (Ofaoo) = o [ 2 =2 1-009) |
n k

After substituting this into Equ. (15) we arrive at the conclusion that
(Olak‘oo and (oc]ak|0) cannot be singular in the small k limit for multi-particle
configurations and consequently b > 2.

Let us assume the phonon dispersion law in the form

o, = k(1 +O0(kY)),  d>0.

Then according to Equ. (28) we have a term in <0lnklk> proportional to k**/2
and the solution of Equs. (23) and (24) can be written in the following form

(~k|ay |0y = — |Do T "1 1 (n 1 ) 8_’%_] K
2 k2 2 \n, 2me on |,
+ 0(1) + O(ks-2) (29)
and
n, mec)? 1 1 (n 1 12 {8n

0 D=0 —_— - — — 0| g
Olalk> (n 2) k1/2+ 2 [no 2mc) (an}n +

T O(k11) 4 O(kt-11, (30)

We recall that b>>2. The last terms do not give contribution to Equs. (29)
and (30) to the order k'* if d > 1. (This is fulfilled by the usual expression
for the phonon dispersion law, which assumes that w; has a power series
expansion in k% giving d =2.) Then Equs. (26) and (29), together with the
result that the contribution of the multi-particle configurations to NN, is not
singular, give in the small k limit

No=To ™ 1 (31)
n 2 k
with
Mg~iw“°. (32)
2 on |,

* We neglect the effects connected with the damping of the phonons, which being pro-
portional to k® at zero temperature (see for a review [2]) might not influence the long wave-
length properties of the system to the order we are going to calculate them.
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For liquid helium presumably (3n,/3n) < 0, while in the BocoLiuBov approxi-
mation for the dilute Bose gas (see below) we have (3n,/dn)~-1.
Finally let us examine the sum rule [9], [10]

1/2 1.2
300 (<Ol om0+ COlmgla Calagl0y) = - (33)

which is a counterpart of the f sum rule coming from the continuity equation
and the presence of the condensate. By inserting the results (21), (29) and (30)
we can see that this sum rule is not exhausted by the one phonon mode in the
long wavelength limit unless (n,/n) is equal to (3n/dn).

We conclude this Section with some remarks concerning the BocorLiusov
approximation [11]. The ground state |0) is the vacuum state of quasiparticles,
ie.

ockI0> =0.
The quasiparticle operatory is given by the Bogoliubov canonical transform-
ation:
Ly = Uy Ay —vkatk’
where
uj 17 m? ¢t )12
= Er e 34)
al = £ (
v mc?
Uty = — .
K Uk S E,

Here E, is the quasiparticle energy given by

E, = chzcu { K ) (35)

2m

where the sound velocity c is related to the interparticle potential V, taken
to be k — independent in the small k region we are interested in, by

n,V

m

=

(36)

One can easily calculate the matrix elements between the ground state
and the one quasiparticle state:

{O[nylky = nf*(uy + vy), (37)
{OlaZylky= vy, (38)
Olaylk)= uy, (39)
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where we have used as an abbreviation
k> = o |0) .

Furthermore, one can easily check that (38) and (39) are the only non zero
matrix elements of particle creation and annihilation operators. By substitut-
ing the expressions (34)—(39) into Equs. (22) and (33) we can see that they

become identities.
In the long wavelength limit we get from Equs. (34), (35) that

1 1721 [k 12
| 2 mC J 4 _] +
vy, V2 | k V8 | me

It is well known that to the extent that the Bogoliubov approximation is
valid, one cantake n,~ n, and ¢ as given by Equ. (36) agrees with the macro-
scopic relationship for the sound velocity: ¢ = (3P/8p). Thus, one can easily

tee that the sum rules (14) and (15) are satisfied and 4 = 0 in this approxima-
sion. Furthermore N, is given by Equ.(31) with M = —1/2 in the small k limit.
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NMPABHJIA CYMM U UX NMPUMEHEHME B TEOPHUM CBEPXTEKYYEI'O 'EJIMA
M. CEN®ANYIIH

Peswome

IlepBasi uvacTb HKaHHOH paGoTbl MOCBSILIEHA HCCJIENOBAaHMIO (YHKLHH cTaTHuec-
KOH peaKiu4d CBEPXTEKYYero reJjiusi B FMJpOJHHAMHYeCKol 0061acTH, KOTOpoe pe3yJsbTHpYeET
B BHIXO/I€ HOBOE MpaBuo cymM. [IpaBHia CymMM 3aTem CNELHATH3HPOBAHBL K HYJIEBOH Temnepa-
Type H HCIOJB30BAHBI MPH OMNPEIEJICHHMM MATPHUHBIX 3JIEMEHTOB OMNEPATOPOB POXKAEHUST H
YHHUYTO)XXEHHSI 4aCTHU MEXAY OCHOBHBIM H OJHHM KBa3sHUaCTHYHBLIM COCTOSIHHEM B NpejeJie
6onbuioif ANMHBL BOJHBL. TIPOBOAMNOCH HCCNENOBAHHE (GYHKLUHM pacnpegejeHHst YaCTHI H
KpoMe BBIYHMCJIEHHS] HAYaJIbHOI'0 YJeHa, YAaloChb ONpelesHTb HH3LIYK I'paHHLY CJedYyHILIero
YjleHa B BBIPAKEHHH JIsI MAJICHBKHX BOJIHOBBIX YHCEJI.
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