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The first part of this paper is devoted to investigating the static response functions of 
superfluid heliuna in the hydrodynanaic region which results in obtaining a new sum rule. 
Sum rules ate then specialized to zero tenaperature and exploited to determine naatrix elements 
of the particle creation and annihilation operators between the ground state and the one quasi- 
particle state in the long wavelength linait. We examine the particle distribution funetion and 
besides ealeulating the leading terna, we ate able to give a lower limit to the next one in the 
expansion for small wave numbers. 

1. Introduction 

We consider l iquid hel ium below its l a m b d a  point ,  where  ir is charac ter ized  
b y  the condensa t i ono f  a f ini te  f rac t ion  of part icles into a pa r t i cu la r  single- 
part icle s ta te .  The  connect ion be tween  the  microscopic  t heo ry  based  upon  the  
presence of the  condensa t ion  and  the  phenomenologica l  two-f luid  hydro -  
dynamica l  equat ions  was f i rs t  s tudied  b y  BOGOLIUBOV [1] and  b y  Honv~BEaG 
and MARTIr~ [2]. I n  par t icu la r ,  in this w a y  var ious  sum rules in the  hydro -  
dynamica l  region h a v e  been  obta ined .  I n  the  f i rs t  p a r t  of the  presen t  pa-  
per  a new sum rule is der ived b y  inves t iga t ing  the  d i s tu rbance  in the con- 
densate  and  the  par t ic le  dens i ty  due to an ex te rna l  po ten t i a l  and part ic le  
$ o u r c e s .  

Then,  we aro conccrned wi th  l iquid hel ium at  zero t c m p e r a t u r e  wi th  a 
homogeneous  condensate .  Wc l imit  oursclvcs to the  long wave leng th  behav iou r  
of the sys t em and wish to cxplore the  consequences of  the  sum rulos. PXNES [3] 
has p roved  t h a t  the  one quas ipar t ic lc  s ta tcs  exhaus t  the  f - s u m  rule and  the  
compress ibi l i ty  sum rulo in the  long wave leng th  l imit  and he has ob ta ined  the  
densi ty  f l uc tua t i on  s pec t rum  and the  dynamic  forro fac tor  in this l imit .  
We cxtend  his m e t h o d  to o ther  sum rules and  in this w a y  we are able to 
calculate the  m a t r i x  e lcmcnts  of  par t ic le  crea t ion  and  annihi la t ion  opcra tors  
be tween the  g round  s ta te  and the  one quasi -par t ic lc  s t a te  in the  long wave-  
lcngth limit,  w i t hou t  using p e r t u r b a t i o n  t heo ry  and  avoid ing  assumpt ions  
ahou t  the  b e h a v i o u r  of  self-cnergics. Wi th  the  aid of  thcsc  m a t r i x  e lemcnts  we 
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can examine the particle distribution function in the long wavelength limit. 
The leading term obtained agrees with the result of the detailed microscopic 
calculation by GAvoa~.T and NozI~R~s [4] and has also been derived by 
applying quantum hydrodynamics [5]. Furthermore, we ate able to give a 
lower limit for the next term in the expansion. Finally, we discuss the sum 
rules and the results in the BOGOLIUBOV approximation. 

2. Sum rules 

We consider liquid helium at a temperature T below the lambda tem- 
perature Ta, where ir is characterized by the condensation of a finite fraction 
of particles into a particular single-particle state. The condensate wave funetion 
is the average value of the particle field operator 

(w(r, t)> : Vn-o(r, t) e iq~(r'O, (1) 

which is to be regarded a s a  quasi average [6] being nonzero by virtue of the 
broken symmetry.  

We ate interested in the linear response of the system disturbed slightly 
from equilibrium due to an external potential U and external sources ~ and 
7" coupled to the particle field. Thus, we llave a modified Hamiltonian 

where 

with 

By taking 

with Uk = * U_k and 

and by substituting 

we get 

H + ~ H ,  

~ H  - :  y U( r )  n ( r )  d a r A- S (~l(r) w+(r)  -4- zl"(r) ~ ( r ) )  d a r 

, , ( r )  = 9+( , . )  v ( O  . 

U ( r )  = Uk e ~kr + U _ k  e - i~r 

rl(r) = ~lk eikr "}- r]-k e--ikr 

v2(r ) ~- .~" a k e ikr 
k 

~H = Uk nk + U_k n-k + ~]k a~ + ~-k a+~ + ~~ ak + ~*-k a_~. (2) 

By applying the usual procedure, one can write 

~n~o/2(r) = ~ R e  (~(r)> : ~n~12(k)e ~'r + an~o/2(--k)  e -~kr , 
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where 
1 

~no~/~(k) = -~-  [Z£ --k) + Z~+~( -- k, --k)] ,*_k + 

I 
+ -~-  [zL+(k, k) + z~,~+(-k,  k)] ~~ + 

+ -~-  [z• - k )  + z~+~(-k, - k ) ]  u_~ 

(4) 

and 

where 

(~<n(r)> = (Sn(k) e ikr -~- ~n(--k) e -ikr, (5) 

~n(k) = zSa(k, --k)  ~7*-g + Z~a+( k, k) ~k + f in(k,  - -k)  U-k.  (6) 

Here z S ( k ,  k') denotes the static response function given by  

Z�93  k ' )  = ZSBA(k ", k)  = P ~__~ 
do~ V A B ( k ,  k',  o)) 
2~ co 

(7) 

where ZAB is defined by  

<[Ak(t), Bk'(t')]> = ~ 2:r - -  "C A B ( k ,  k'  ; o)) e - i ' ( t - t ' )  . (a) 

According to the welI-known compressibility sum rule [7] 

n 
lira ~n(k ,  k) - (9) 
k ~ o  m c  2 

Here c is the isothermal sound velocity c 2 = m  -1 (OP/On), where P denotes 
the pressure. 

Using invariance under time reversal and space inversion and Equs. 
(3)--(9) we find the following sum rules 

lira Z~n(k, - -k )  - nll2 [ n-~-}112 ( On~ 1 
g-.o mc 2 t no I (--O¡ 

and 

lJm [~+o(k,  k) + ZL(k, - k ) l  - 
k--tO 

(10) 

where the derivatives are taken at constant 
(10) is implicitly present in KRASNIKOV'S 
generalization 

2 mc 2 n o [ On )~ [ On I r  

temperature. The sum rule 
paper [8] devoted to the 

of BogoLIgnov's work to the non-ideal fluid. On the other 
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hand,  by  using the two-fluid hydrodynamica l  equations the expression obtained 
by KRASNIKOV for ~.a+aS + zaas contains as unknown parameter  the real par t  
of the coefficient of the source terms in the hydrodynamica l  equations. 

F inal ly  let us quote the following sum rule, derived by  BOGOLIUBOV [1] 
and HOHENBERG and MARTI:N [2] 

__ s = , ( 1 2 )  lim [Z~~+(k, k) Z~a(k, --k)] 2 n o m 
k-+o n s k 2 

where n~ is the superfluid density.  The next  term on the r ight  hand 
side of Equ. (12) is a k independent  one which could only be deter- 
mined from microscopic theory  of from knowing the parameters  of a genera- 
lized two-fluid hydrodynamics  taking into account  derivatives of third 
order. 

In  the next  Section we consider superfluid helium at zero temperature  
where the  sum rules (9), (10) read 

lira ~" I< ~ln~[0 >[2 __ n 
k~o ~ O~~o 2 mc 2 

(13) 

Iim ~ "  <0[a_ki~> <~lnkl0) + <01nk[~> <a]a_kl0) __ n l / ~  [ n 1 1 / 2  I 8nq I (14) 
1,-+o CO~o 2 mc 2 ~ n O! [ On J ~' 

where ~=0 = E = -  E 0 is the  excitation energy. FurtherInore from the sum 
of Equs.  (11) and (12) we get 

lim ~ [<0[a~l~>I2 + [<~[akI0>[2 -- n~~ m 
k~0 ~ o)~0 n k 2 + 

1 ISn01 IOn0] 
+ - -  [ 8n / + A ,  (15) 2mc 2 ~ On J ~ u 

where - -  A denotes the cons tant  term on the r ight  hand side of Equ. (12). 

3 .  A p p l i c a t i o n  o f  t h e  s u m  r u l e s  

Our purpose in this section is to calculate the mat r ix  elements of particle 
creation and annihilat ion operators in the long wavelength limit by  means of 
the sum rules (13) (14), (15). For  this we need the matr ix  elements of the 
densi ty  f luctuat ion,  which were determined by  PIr~Es [3]. First  let us sum- 
marize bis results. From translat ional  invariance ir follows tha t  

l im  ( s t  J~,lo> ~ k ~, a > O, (16) 
k--~O 
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where Jk is the  current  densi ty f luctuat ion,  which is related to the densi ty  
f luctuat ion b y  particle conservation:  

~%0 <~Fn~ 10> = k J  k (17) 

Another  e3sential point  ii tha t  for a multi-part icle s ta te  I~> the excitat ion 
energy o~~ 0 tends to a finite value ~ in the long wavelength  limit. Then, one 
finds for such a s ta te  from Equs. (16) and (17) tha t  

k l + a  

lira <~ln~10> ~ - ~ - - ,  a > 0 .  (18) 
k-~O tO 

I t  follows tha t  the  single quasipart icle s ta te  exhausts  both  the  f sum rule [7] 

n k  ~ 
_xx" co~01 <~ln~ 10> [2 _ (19) 

2m 

and the compressibi l i ty sum rule (13) in the long wavelength  limit, whence 

lim ~k = c k ,  (20) 
k--~0 

lim <-k lnk l0  > = lira <01nk[k > n k  112 
k-~O k-~O 

(21) 

Here Ik> and tok denote the single quasipart icle s ta te  of m o m e n t u m  k and its 
energy, respectively.  Equs.  (18), (20) and (21) which are the results obta ined by  
P~NES [3] make possible the calculation of the matr ix  elements (01aktk > and 
<--kla~i0 > from the sum rules (14), (15) and from the relationship 

~ "  (<01akl~> <~ln_kl0> - -  <0ln_kl~> <~[akl0>) = n~o/2, 
~t 

(22) 

which L a direct consequence of the  commuta t ion  relation 

a k n _  k - -  n _ k a  k ~ a O �9 

O•e can easily see b y  inspection of the sum rule (15) tha t  the matr ix  
elements <0Iakl~ > and <~lakl0> cannot  be  more singular than  k -1 in the  long 
wavelength limit. Then, using Equ.  (18) it follows tha t  the mult i-part icle con- 
figurations do not  contr ibute  to the sum rules (14) and (22) in the long wave- 
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length limit and we obtain the equations 

(0Lak[k> (kln-k]O> --  <0ln_kl--k> <--kla�91 = n~�91 2 § 0 (k £ (23) 

<O[aklk> <kln_�91 <--k[ak[0 > = 

On 1~. ~ § 0 (kl+b), 

(24) 

where b ~ a (this condition will be sharpened in the following).* By using 
Equs. (20 )and  (21) we find for the leading term in the small k limit 

( n~ mc I ~r.. 
(Olaklk> = - -  (--klak]O> = 2 n  k ) (25) 

We note that  to obtain this result ir has been neeessary only that  the right 
hand side of Equ. (15) is not more singular than k -2. By substituting Equs. 
(20) and (25)into the sum rule (15)i t  turns out that  the one phonon state 
alone is responsible for the k - z  singular term. A s a  eonsequenee the matrix 
elements (O la  k ]~> and <~/ak I0> f o r a  multi-partiele eonfiguration can only 
be less singular than k -1, whieh involves b > a. 

Let us eonsider now the particle distribution funetion 

Nk~<01aff akl0>= I< - -  kla�91 2 + ~ '  I<~lakl0>l z, (26) 

where the primed summation symbol means that  the summation is extended 
over the multi-partiele eonfigurations. Aeeording to our above results, the 
leading term of Nk in the small k limit is as follows 

N g - -  no mc 1 (27) 
n 2 k 

This agrees with the result by GXVORET and NozI~aEs [4] obtained by ana- 
lyzing the strueture of the perturbation expansion and has also been derived 
in [5] by  means of an applieation of quantum hydrodynamies. The deriva- 
tion presented here in our opinion uses the weakest assumptions. 

To obtain further results we have to take a >__ 1, the lower limit of whieh 
eorresponds t o  assuming that  (~iJal0> for a multi-particle eonfiguration has 

* From now on a is always considered to refer to multi-particle configurations. 
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a power series expansion in k [3]. In  t h a t  case b > 1. Fur thermore  from the 
f sum rule (19) and  Equ.  (18) we find* 

(<0lnklk>)2= 1 [ nk  2 } 
cok [ 2m -4- O(k 4) (28) 

and thus Equs. (23) and (24) give 

In0 1 ) 
(<-kla~10>)~ + (<Olaklk>)~ = oJk --n k - -T  + O(kO) 

After subst i tu t ing this into Equ.  ( 1 5 ) w e  a r r ive  a t  the conclusion t h a t  
<01akl~> and <~]a~10> can=ot be singular in the small k l imit  for multi-part iele 
configurations and consequent ly b ~ 2. 

Le t  us assume the phonon dispersion law in the forro 

mk = ck(1 -~ O(ka)) , d > O. 

Then aecording to Equ.  (28) we have a t e r m  in <0[nk]k > proport ional  to k d+x/2 
and the solution of Equs.  (23) and (24) can be wr i t ten  in the following forro 

and 

{~_ ~C11/2 1 .@ 1 [ n 1 ]1/2 / 0n0 I kl]2..~_ 
<-klakl0> = - -  - -  k 1/2 2 n o 2mc  ] [ On Jv 

+ O(k  b-l/2) --~ O(kd- l l  2) 

<o~ / n~ mc)l/~ 1 2  ~ + ~l/n~ 2' )1.2~0.) ~ 1 . 2 + m c  .0n ~~ 
+ O(k b-lI2) + O(kd-l% 

(29) 

(30) 
We recall t h a t  b > 2. The last  terms do no t  give contr ibut ion to Equs. (29) 
and (30) to the order k 1/~ if d > 1. (This is fulfilled by  the usual  expression 
for the phonon dispersion law, which assumes t h a t  r has a power series 
expansion in k 2 giving d-----2.) Then Equs.  (26) and (29), together  wi th  the 
result  t h a t  the contr ibut ion of the multi-part iele configurat ions to Nk is no t  
singular, give in the small k l imit  

with 

N ~ - -  no mc 1 + M (31) 
n 2 k 

M > - -  I [ 0n~ (32) 
= 2 ( On ]~" 

* We neglect the effects connected with the damping of the phonons, which being pro- 
portional to k 5 at zero temperature (see for a review [2]) might not influence the long wave- 
length properties of the system to the order we ate going to calculate them. 
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For liquid helium presumably (ano/On) < 0, while in the BOGOLIUBOV approxi- 
mation for the dilute Bose gas (see below) we have (ano/Sn)~-A. 

Finally let us examine the sum rule [9], [10] 

~o~=0 (<0lakl~> <o~lnklO>-f-(O[nklo~> <~[ak]0>) = nl~ (33) 
2 m  

whieh is a counterpart of the f sum rule coming from the eontinuity equation 
and the presence of the condensate. By inserting the results (21), (29) and (30) 
we can see that  thŸ sum rule is not exhausted by the one phonon mode in the 
long wavelength limit unless (no/n) is equal to (Ono/On). 

We conelude this Section with some remarks concerning the BOgOLIVBOV 
approximation [11]. The ground state J0> is the vacuum state of quasiparticles, 
i . e .  

~kl0> = O. 

The quasipartiele operator~k is given by the Bogoliubov canonical transform- 
ation: 

~k = uk ak --  vk a+k 
w h e r e  

o~11 i ( m~c.~~~] ,~4, 
v~ J •  1 +  E~, I ' 

mc ~ 
Uk ~k - -  

2 E k  

Here Ek is the quasiparticle energy given by 

V i k2 12 
~k : c2k~ + {-/-~m } ' (35) 

where the sound velocity c is related to the interparticle potential 11, taken 
to be k - -  independent in the small k region we ate interested in, by  

c2 = no V (36) 
m 

One can easily ealculate the matrix elements between the ground state 
and the one quasipartiele state: 

<0[nk[k> = n~/2(uk -4- vk) ,  

<0[a-+klk> = vk,  

<0[aklk>= uk, 

(37) 

(38) 

(39) 
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where we have  used as an abb rev ia t i on  

Ik> = ~~10> 

Fur the rmore ,  one can easily check t h a t  (38) and (39) are the  only  non zero 
m a t r i x  e lements  of  par t ic le  crea t ion  and  annihi la t ion opera tors .  B y  subs t i tu t -  
ing the  expressions (34)--(39) into Equs .  (22 )and  (33) we can see t h a t  t h e y  
become identi t ies .  

In  the  long wave leng th  l imit  we get f rom Equs.  (34), (35) t h a t  

u k } = +  1 (_~_)~q 1 [ k  /~12 

vt, - ~  - ~ t m c ]  + . . . .  

I t  is well known  t h a t  to the  ex ten t  t h a t  the  Bogol iubov a p p r o x i m a t i o n  is 
val id,  one c a n t a k e  n o ~ n, and  c a s  given b y  Equ.  (36)agrees  wi th  the  macro -  
seopic re la t ionship  for the  sound ve loc i ty :  c 2 =  (OPIO0). Thus ,  one can easi ly  
tee t h a t  the  sum rules (14) and  (15) are sat isf ied and  A = 0 in this  a p p r o x i m a -  
sion. F u r t h e r m o r e  Nk is given b y  Equ.  (31) wi th  M = -  1/2 in the  small  k l imit .  
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FIPABHYIA CYMM H HX FIPHMEHEHHE B TEOPHH CBEPXTEKYMEFO FEYIHgt 

VI. C EFIOAYlYLLIH 

Pe3~oMe 

FIepBa~a qaCTb j~aHHO~ pa60Tbl nOCBgUleHa Hcc~e~ouaHHiO ~byHKI.[Hfi CTaTHqec- 
K0fŸ peaKtUIH cBepxTeKyqeF0 Fe,aH2a B FHJIp0~HHaMHqecK0fi 0fi.naCTH, KoT0p0e [e3y~bT~IpyeT 
B Bi~xo~e HOB0e npaBH~q0 CyMM. [-IpaBHJ1a CyMM 3aTeM CnelLHaJIII3Hp0BaHbl K Hy~eB0~ Te~nepa -  
Type H HClI0.rIh,30BaHbl HpH onpej~e.qeHm4 MaTpHqHblX 3JIeMeHTOB onepaTopoB pon<~enna H 
yHHqTOH<eHH~I qaCTH]L[ Me;,K,~y 0CHOBHblM H 0~HHM KBa3HqaCTHqHblM COCT0~HHeM B npe~em 
60JlbIXIO~… ~.IIHHbl BOJIHbI. l-]p0B0~HJI0Cb Hcc~e~0BaHHe ~byHKIIHH pacnpe~e~eHH~ qaCTHU H 
Kp0Me BbtqHCJIeHH~ HaqaYlbHOF0 qYleHa, y~a~0Cb onpeAe~HTb HH3mylo FpaHHIXy c~e~ytouieFo 
qJleHa B Bblpa)KeHHH J~JIs MflYleHbKHX B0.rIHOBblX qHce.!I. 
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