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A very economical method is proposed for solution of the hydrostatie equilibrium equa- 
tions of neutron stars. Asa simple example the model of homogeneous internal distribution is 
constructed. Utilizing BRUECKNER'S equation of state the importante of the effect of corre- 
lation can be demonstrated. 

I .  I n t r o d u c t i o n  

I t  was sugges ted  b y  ZWICKY [1] t h a t  the  suddenness  and  m a g n i t u d e  of 
energy  genera t ion  in supe rnovae  migh t  be  expla ined a s a  pa r t i a l  g rav i t a t iona l  
collapse of  a s ta r  ( o r a  gas cloud) into a neu t ron  core. There  has recen t ly  been  
renewed in teres t  in this possibi l i ty  because  observa t ions  indica te  t h a t  some 
of the r e m n a n t s  of  supe rnovae  a te  sources of  X- rays ,  and ir can be s t a t ed  wi th  
reasonable  assurance  t h a t  a neu t ron  s t a r  is responsible  d i rec t ly  of  indi rect ly  

for X- rad ia t ion  [2]. 
I n  this p a p e r  we shall  no t  deal  wi th  the  p r o b l e m  of observ ing  such 

neu t ron  stars .  I n s t e a d  we confine ourselves to  the  in te rna l  s t ruc tu re  of  cold, 
degenera te  neu t ron  stars .  To inves t iga te  the  s ta t ie  s t ruc tu re  of  such a s tar ,  
one needs ah equa t ion  of s ta te ,  i.e. an e n e r g y - - d e n s i t y  r e l a t i o n f o r  neu t ron  
ma t t e r .  I n  cons idera t ion  of this,  there  are two grea t  uncer ta in t ies .  Firs t ,  the  
behav iour  of  nuc lear  forces in the  h igh-energy  region is not  well known.  
I n  principle,  the  neu t ron  - n e u t r o n  forces can be de te rmined  f rom p ro ton  - p r o t o n  
phase  shif t  analysis ,  assuming charge independence  and  correct ing for Coulomb 
effects. Var ious  models  of  nuclear  forces h a v e  been cons t ruc ted  b y  different  
au thors  which f i t  the  phase  shifts up  to 300 MeV b o m b a r d i n g  energy.  B u t  the  
results  in the  m a n y - b o d y  p rob lem (in the  case of high densi ty)  for  ti. e ~e nuclear  
force models  m a y  be seriously different ,  i.e. the  equa t ion  of s t a t e  is sensi t ive  
to the  ehoiee of  nuclear  force moJe l .  

The  seeond u n c e r t a i n t y  arises f rom the fac t  t h a t  cer ta in  t e rms  m u s t  be  
neglected in a n y  calcula t ion m e t h o d  for  the  m a n y - b o d y  p rob lem.  I n  m o s t  of  

* Dedieated to ProL P. Gn~nŸ s on his 60th birthday. 
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the  various equations of s ta te  whieh have  been proposed for neu t ron  mat te r ,  
v e r y  erude methods  are used for solving the  m a n y - b o d y  problem. OPPErr 
and VOLKOFF [3] assume ah equat ion of s ta te  of ah ideal Fermi  gas, i.e. the 
n e u t r o n - - n e u t r o n f o r c e s  ate comple te lyneglec ted .  Thesemi-empir ica l  equat ion 
of s ta te  due to SKYRME [4] is expected to describe average nuclear  propert ies .  
SXLPETER [5] worked out  a more complete  equa t ion  of s ta te  applying the 
scat ter ing limit t heo ry  and used an effective range approximat ion .  To in te rpre t  
the effect  of a ha rd  core of neutrons  WrIEWLER et al. [6] s tudied the  incom- 
pressible fluid model  of neu t ron  mat te r .  Several  v e ry  simple forros of equat ion 
of s ta te  were der ived taking  into account  the  nuclear  forces b y  the  Har t r ee  
Fock  me thod  [7]. In  this paper  we shall utilize t h e  neu t ron  m a t t e r  ealculat ion 
of BX~UWCKNER et al. [8] for  GXMMEL--TRALER poten t ia l  with repulsive core. 
BRUECKI~ER'S t -matr ix  approach  to the m a n y - b o d y  problem takes into account  
the two part icle correlat ions exact ly ,  and this is the  most  accura te  neu t ron  
m a t t e r  calculat ion whŸ has been per formed up to now. 

The  various equat ions  of  s ta te  m a y  be nsed to cons t ruc t  neu t ron  star  
models by  solving the  equat ions  of hydros ta t i c  equil ibrium. Such calculations 
have  been carried out  b y  several authors .  Th e  OPP~r~aVIMER~VorxorF [3] 
s tar  model  consists of non- in terac t ing  neut rons ,  CAMERON'S [9] model  is based 
upon SKYaME'S [4] equa t ion  of state.  The ideal and real gas models cons t ructed  
by  AMBARTSUMYAr~ and SxxKYXr~ [10] take  into account  s trange part icles in 
the  stellar  mat te r .  More recent ly  two neu t ron  s tar  model  calculations have  
been made,  using H a r t r e e - - F o c k  equat ions of s ta te .TsvRuTX and CX~IERON [11] 
(hencefor th  eited as "TC" )  assumed an equa t ion  of s ta te  as suggested by  
LEvtr~Gra and SIMMOr~S [7], GOMB~Ÿ and KtSDI [7] an equat ion  of s ta te  based 
upon GoMBŸ semi-empirical  nuclear  force model  (which does not  f i t  the  two- 
body  data ,  bu t  the average nuclear  binding energies). 

The  in tegra t ion  of the  hydros ta t i c  equat ions ,  in principle, can be carried 
out  wi thou t  any  diff iculty.  Because of the  suff icient  inerease of pressure with 
increasing densi ty  the  Schwarzschild s ingular i ty  does not  occur in neutron-  
s tar  models,  and any  convent iona l  me thod  for numerical  in tegra t ion  can be 
applied. Nevertheless,  the  const ruct ion  of a s tar  model  is n o t a  simple problem 
for it  needs a lot  of numer ica l  calculations. In  Seetion I I  of this paper  we 
propose a new numerica l  me thod  for solving the  hydros ta t i c  equations.* This 
m a y  be more economical  t han  the usual  s tep-by-s tep  methods  and makes  it 
possible to discuss the  neu t ron  star  models wi thou t  using digital computers .  
In  this work we apply  this me thod  in the simplest  forro which results  in a s tar  
model  of homogeneous  in ternal  dis t r ibut ion (Section I I I ) .  Inspec t ing  the 
numerical  solution of the  hydros ta t i c  equat ions of TC, we can conclude tha t  

* Our method is closely connected with the method of momenta in differential eouation 
theory. See, e.g.L. COLLATZ, Numerische und graphische bIethoden. (Handbuch der Physik, 
Vol. II. Springer, Berlin, 1955.) 
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this homogeneous  model  is a reasonable  approximat ion  ir the  densi ty  is in the  
region of 1014--1015 gcm -3, which is the region of the  heaviest  neu t ron  stars. 
In  Section IV, we calculate the gravi ta t ional  and proper  masses and the 
(constant)  dens i ty  as functions of the  radius,  assuming the  equat ion of  s ta te  
of  BRUECKNER et al. [8]. The  results are compared  with those of  some pre- 
vious works. 

II. The equations of  hydrostatic equilibrium 

A spherical neu t ron  s tar  in hydros ta t i c  equil ibrium is described b y  the  
following s t ruc tu re  equat ions:  

a) Pressure equat ion [12] 

dP G (~ + P) (mc 2 + 4~rr a P )  

= - - - - -  { 2Gml  , (1) 
dr c 4 r 2 1 c-2r ] 

where P a n d ~  are the local pressure and energy dens i ty  at  radius r, m is the  
mass inside the radius r, G and c are the  g rav i ty  cons tan t  and the  veloci ty  of  
light, respect ively.  

b) Conservat ion of mass: 

c) Equa t i on  of s ta te :  

dm 4~r - -  r 2 ~. (2) 
dr c 2 

= ~(o) = Q. (~c2 + E h @ ) ,  (3) 

where Q is the neu t ron  number  densi ty ,  # is the neu t ron  mass and Eh is the  
energy per par t ic le  in a neu t ron  gas of dens i ty  ~. The relation between E~ and 

must  be calculated from a m a n y - b o d y  theory .  In  this Section we do not  f ix 
the special forro of this E~ - -  ~ relation. 

The pressure is given by  

0e Q2 0Eh 
P(~) = Q - -  --  e =  (4) 

0Z 0~ 

d) The b o u n d a r y  conditions are 

19 ~ 

m = 0  

~ o = 0  

at  r : 0 ,  (5) 

a t  r = R ,  (6) 
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where R is the  radius  of the  neu t ron  s tar ;  the  ou te r  edge of the  s ta r  is a s sumed  
to h a v e  zero densi ty .  F r o m  Eqs.  (3) and (4) it  t hen  follows t h a t  bo th  e and  P a r e  
also zero a t  the  surface.  

I t  is elear t h a t  Eqs .  (1)--(6)  uniquely  de t e rmine  the  in te rna l  d i s t r ibu t ion  
of the  quant i t ies  ~, e, P and  m. The  s ta r  model  has  only  one free eharac ter i s t ic  
q u a n t i t y ,  the  radius  R.  Af te r  solving the  h y d r o s t a t i e  equat ions ( 1 ) - - ( 0 ,  the  
g rav i t a t iona l  and  proper  masses  are ob ta ined  f rom 

M~ = m(R), (7) 

t 'RvQ(r)  4z~r2dr Mp = / ~  _ _  , (8) 
1 2 Gnt(r) 

0 c 2 r  

respeet ive ly .  The  g rav i t a t iona l  mass  of the  s t a r  is the  mass  as peree ived  b y  a 
d i s t an t  observer  and  the  p rope r  mass  is the  neu t ron  n u m b e r  of  the  s tar ,  
mul t ip l ied  b y  the  neu t ron  mass  #. 

We  define the  m o m e n t  of  order  x, of  the  ~eu t ron  d is t r ibut ion  to  be  

where  ~ >/ 0. I n t e g r a t i n g  b y  pa r t s  and t ak ing  into account  the  b o u n d a r y  
condi t ion  e(R) = 0, we get:  

where  

f£ r ~ dr -- 1 ~~ d~ r~+ldr = 
+1 J0 d-7 
G IR e4-P  

(~.A- 1) 0 0 P '  

m c  2 -}- 4:~r  3 P 

2 G  r - - - - m  
C 2 

dP 0 2 
P '  - -  - -  0 

d~ O~o 2 

r ~ d r  

This  means  t h a t  for  eve ry  order  ~, the  m o m e n t  of  ~ is ident ical  wi th  

t imes  the  m o m e n t  of  

p ,  

G 

(u -~- 1) c s 

m e  2 + 4~tr "~ P 

2G 
r - - - - - - m  

C 2 

(lo) 
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INTERNAL STRUCTURE OF NEUTRON STARS 293  

Now we can introduce a very economical approximation procedure for solving 
Eqs. (1)--(6). We take  a trial funct ion for ~ whieh, besides r, depends on a set 

o f  parameters  fil, ti2 . . . .  , fls. 

(11) 

We suppose t h a t  the boundary  condit ion (6) is satisfied for every value of  the 
~-s. The energy densi ty  and the pressure ate determined from 0 b y  the equat ion 
of s tate  (3) and (4): 

= e(r; fix, fl~, - . . ,  fls), (12) 
P = P(r;  ~1' ~2 . . . .  , fls), (13) 

and m is calculated from (2) and (5): 

4zt fr er ~ dr = m(r; fil, ~2 . . . .  , fls) . (14) 
m =  c 2 Jo 

Ins tead of (1) we require t h a t  the moment  equation (10) must  be satisfied for 
S different ~ values. This determines the  parameters  fil, ti2,-" ", fls. Pu t t ing  
these fl-s into the expressions (11)--(14) we get the solution of our problem. 

Natural ly ,  we have drawn our procedure as general as possible. How to 
introduce the parameters  fil, fl~, . . . .  fl~, and for what  values o f  ~r the moment  
equation is satisfied, is, in principle, arbi t rary.  Bu t  one can imagine t h a t  the 
aeeuracy of our method  depends on the proper choice of the  trial  funct ion 
and the values of the ~-s. 

I I I .  Star model of homogeneous internal  distribution 

As a simple example of our method  we t rea t  a neut ron  star  model in 
whieh the internal  densi ty  distr ibution is homogeneous. 

~(r) = ~0, if  r < R ,  (15) 
p(r) = 0 ,  i f  r > R .  

Here R is the radius of the star  and P0 is the only parameter  of the model 
whieh is to be determined from a moment  equation.  

Thc equat ion of state then  gives thehomogeneous  dis tr ibut ion for the 
energy densi ty  and pressure: 

e ( r ) = e  0 and P ( r ) = P o ,  if  r < R ,  
(16) 

e ( r ) = 0  and P ( r ) = O ,  if  r > R ,  

~4eta Physica Academiae Scientiorum Hungarir 27, 1969 
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where ~o = e(eo) and Po = P(P0)" The quan t i t y  mis  de termined  by  (~) and (5): 

r o ( r ) =  4zrr�91 eo , i f  r < R ,  
3 r 

m(r)  _ __4:tR:' % , ir  
3 c 2 

r > R .  

(17) 

Pu t t i ng  the  expressions (15), (16) and (17) into the momen t  equat ion  (10) we 
obta in  a t ranscendenta l  equa t ion  for P0" 

a~R 2 G (~0 + P0)(~0 + 3e0) |~t ~~+~ 
~o = 3 c ~ P£ Jo 1 8 ytR 2 G% d x ,  (18) 

X 2 

3 c ~ 

where x ~ r /R and the abbrev ia t ion  P~ s tands for 

~P 

In t roduc ing  the dimensionless quanti t ies  

' 8~  R 2 G% = Qo eo P~ and 71 --  - - - ,  (19) 
(% ~- E,) (eo �91 3P0) 3 c' 

Eq.  (18) takes the ve ry  simple form 

- -  d x .  (20) 
~ =  2 v 1 -  ~x 2 

As our simple model  has only one pa ramete r ,  ~o, the m o m e n t  equa t ion  
(18) or (20) can be satisfied only  for one value  of  the  order  x. We ehoose the  
value  ~ ~ 2, because t hen  (10) guarantees  a good approx imat ion  for the 
integral  

J0 n ~ 4~tr 2 dr 

which is closely connected  with the mass of the  star .  For  • = 2 Eq.  (20) gives 

(21) 

Summariz ing,  the  cons t ruc t ion  of  the  homogeneous  model  consists of  
the  following steps: 

a) Choose a value for ~0" This can be regarded  as the free character is t ic  
q u a n t i t y  of the s tar  model.  
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b) Determine  %, Po and P£ from the equat ion of s ta te  and ~ according 

to (19). 
c) Calcul” ~ f rom (21). For  this we need the invcrse of the  funct ion 

which stands on the  r ight -hand side of (21). This can be dc tc rmined  numerical ly.  
d) Finally,  the  radius R can be obta ined  from (19): 

R : [ 3 c  4 . ~ )1/2 �9 . (22) 

8:tG e o 

In  this way we get a radius - -  neu t ron  dens i ty  relat ion,  which is one of  the 
fundamenta l  character is t ic  relations of the  neu t ron  s tar  model.  

I f  we have  de termined  R by  the  above procedure ,  then  we get the 
gravi ta t ional  and proper  masses f rom (7) and (8), respectively.  The gravi ta t ional  

mass is 

Mg --  4zrR3 ~o c2 
- -  - -  - -  ~ R ,  ( 2 3 )  

3 c 2 2G 

and for the proper  mass we have  

l i  x2dx 4:tR3 #~0 3 { arcsin~~ VI-~-~) .  (24) 
Mp = 4ztR :~ g~o V 1 - ~/x2 - 3 2~ t/~ 

From these equat ions  we get Mg and Mp as funct ions of Q0 (or R). These 
mass -- densi ty  and mass --  radius relations ate also fundamen ta l  charaeterist ics 

of the model. 

I V .  R e s u l t s  f o r  B r u e c k n e r ' s  e q u a t i o n  o f  s t a t e  

BRVECKN~R et al. [8] have  calculated the energy per partiele,  Eh, in 
neut ron ma t t e r  as a funct ion of neu t ron  densi ty  Q, solving the  integral  eqnat ions 
of  the BRIYECKNER'S m a n y - b o d y t h e o r y  exact ly .  We reproduce the i r  result  in 

F i g .  1. We have  found t ha t  a convenien t  and ve ry  accura te  analyt ica l  f i t  for 
B~tUVCKr~ER'S Eh = E~(~) is given by  the  following poly t ropic  expression: 

Eh = a0 a , (25) 

w h e r e  2 = 0.576 and a ---- 57.9, if Eh is measured  in MeV and ~ in 10 s9 cm -3 
units.  Assuming (25), the  equat ion  of s ta te  (3) and (4) is 

e = ~(#c 2 -4- a~a), (26) 
p _-- 2aQa+l. 
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15 

5 

~~ ~:o �91 3,0 

( 3 /'1' 
Fig. 1. Total energy per particle in a neutron gas. The distance parameter ro = i, 4---~-g0 j 

is given in 10 -'a cm, the energy E b in MeV units. (From BRU~.C~r et al. [8]) 

In  this case the  quan t i t y  ~, defined b y  (19), is the  following funct ion  of  ~o 

_-- 2(2 + l) aQ~o [#c 2 + a~O~o] (27) 
[#c ~ + (2 4- l) a()~][/~c 2 + (32 + i) a~o ~] 

Utilizing this, the radius R, the gravitational mass Mg and the proper mass Mp 
can be de termined  as has been described in Sect ion I I I .  The  resuhs  ate given 
in Table  I. 

In  Fig. 2 the re la t ion be tween the energy dens i ty  % and the gravi ta t ional  
mass Mg is shown. For  compar ison the  centra l  energy d e n s i t y - -  gravi ta t ional  
mass relations of TC and of the OPPEI~rlEXMER--VoLKOrF model  ate also 
p lo t ted .  

We believe the rea l i ty  of our  model  lies only  in the  region I I  of Fig. 2. 
In  t h e  low densi ty  region (marked I) the  neut rons  ate unstable  against  the 
decay  n --~ p + e -4- r. The  models ofTC have  t ak en  into account  this possibil i ty 
and in this region, are composed of neutrons ,  electrons and h e a v y  ions. Our 
simplified model  w o r k s  wi th  stable " n e u t r o n s "  and therefore  cannot  be 
compared ,  in this region, wi th  the resuhs  of TC. On the  o ther  hand,  the 
OPPENE[EIMER--VoLKOFF model  is also composed of stable Fermi  particles.  
The big difference be tween  our  and thei r  results shows the impor tance  of the  
effect  of nuclear  forces. In  the  region of superdense neu t ron  stars (marked I I I  
in Fig. 2) our  homogeneous  model is not  reliable. According to TC, in this 
region the  ma t t e r  of the  s tar  aceumulates  near  the  centre and the  deviat ion 
f rom cons tan t  densi ty  d is t r ibut ion becomes serious. To deal wi th  this effect, 
our simple tr ial  funct ion  mus t  be replaced b y  a more flexible one. 

The  remnants  of the  heavies t  supernovae  lie a round the  mass peak  in 
the  in te rmedia te  dens i ty  region (marked I I  in Fig. 2). The  drast ie deviat ion 
among the  various results  in this region gi re  an indicat ion of the  poorness of 
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"1,-.t' o .Ÿ  

I 
I I 
i I 
i I 

/ 

0 0',,5 110 115 '2;0 

Mg/M o 

Fig. 2. Gravitational mass - -  energy density relation: - - o u r  result, 
result of OPI)ENHEIMEa and VOLKOFF [3] for ah ideal Fermi gas, - . . . . . . . .  results of TC for 

their nuclear forces V~ and VT, respectivcly 

Table I 

Characteristics of the homogeneous neutron star model with BRUECKNER'S equation of state. 
~o in g cm -3 , ~ and Po in erg cm -3, R in km and, Mg, Mp in M Q  units 

QO 

7.19X 1016 

1.44X 1013 

2.88 X 1013 

7.19X 1013 

1.44)< 1014 

2.88•  1014 

7.19X 1014 

1.44X 10 Is 

2.88 X 1046 

7.19X 1015 

1.44X 1010 

2.88•  101G 

7.19X 1010 

5.39X 1017 

�91 

6.48 x 1038 

1.30 x 1034 

2.60 x 1034 

6.53• 1034 

1.31 x 1035 

2.64 x 1035 

6.71 • 1035 

1.37 X 1060 

2.80 X 1030 

7.39X 1030 

1.57 X 1037 

3.40 X 1037 

9.93 X 1067 

1.31X 1086 

Po 

9.94 X 1060 

2.96X 1031 

8.83• 1031 

3.74 X 1032 

1.12X 1083 

3.33 X 1063 

1.41 x 1034 

4.20 X 1034 

1.25 X 1085 

5.30 X 1065 

1.58 X 1036 

4.71X 1080 

2 .00  X 1037 

4.77x lO as 

0.00657 

0.00976 

0.0144 

O.O242 

0.0354 

0.0522 

0.0834 

0.118 

0.163 

0.238 

0.303 

0.371 

0.450 

0.201 

0.0626 

0.0908 

0.130 

0.205 

0.282 

O.377 

0.514 

0.635 

0.720 

0.823 

0.877 

0.913 

0'941 

0.780 

R 

37.4 

31.8 

26.8 

21.3 

17.6 

14.4 

10.5 

M~ 

0.792 

0.976 

1.175 

1.479 

1.680 

1.832 

1.828 

8.20 1.761 

6.09 1.484 

4.01 1.117 

2.84 0.843 

1.97 0.608 

1.17 0.373 

O.293 O.O77 

0.805 

0.999 

1.210 

1.568 

1.823 

2.059 

2.150 

2.178 

1.893 

1.482 

1.122 

0.785 

0.435 

0.041 
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n e u t r o n  s t a r  t heo r i e s .  T h e  d i f f e r ence  b e t w e e n  t h e  t w o  c u r v e s  o f T C  shows  w h a t  

u n c e r t a i n t y  can  a r i se  f r o m  t h e  e x t r a p o l a t i o n  o f  n u c l e a r  p o t e n t i a l s  o r i g i n a l l y  

c o n s t r u c t e d  for  t w o  b o d y  p r o b l e m s .  One s h o u l d  n o t  be  s u r p r i s e d  i r  ou r  r e s u l t  

d e v i a t e s  a p p r e c i a b l y  f r o m  t h e  TC cu rves ,  s ince  ou r  m o d e l  is b a s e d  on  a t h i r d  

n u c l e a r  p o t e n t i ~ l  ( i n t r o d u c e d  b y  GAM~t~L a n d  TnAI~~~). 

F u r t h e r m o r e ,  B~UrCKr~E~'S e q u a t i o n  of  s t a t e ,  w h i c h  we h a v e  u s e d  in  o u r  

m o d e l ,  t a k e s  i n to  a c c o u n t  t h e  t w o  p a r t i c l e  c o r r e l a t i o n s  in  n e u t r o n  m a t t e r .  

T h e  c o r r e l a t i o n  has  b e e n  n e g l e c t e d  in  p r e v i o u s  n e u t r o n  s t a r  m o d e l s  a n d  t h e  

d e v i a t i o n  of  our  m o d e l  f r o m  o t h e r s  m a y  b e  due  p a r t i a l l y  to  th i s .  T h e  e f fec t  

of  e o r r e l a t i o n  seems  to  b e  v e r y  i m p o r t a n t  a n d  r e q u i r e s  f u r t h e r  i n v e s t i g a t i o n s .  
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YnPOII{EHHblI7I METO~ ~.rlyl OI-IPE~E.rlEHH~t 
BHYTPEHHE171 CTPYKTS/Pbl HEITITPOHHhlX 3 B E 3 ~  

~. KI4KUXI4 

P e 3 ~ o M e  

~~~ onpeae~eHn~ rn~pocTaTnqecKoro paBHOBeCH~ HefiTpOtlH~X 3Be3A npeAaaraeTc~ 
~e~CTanTe~bn0 a~~eKTHBnUfi MeTO~. B ~aqecTBe npocToro npHMepa no~po6no paccMaTpn- 
BaeTc~ M0~e~b C n0CT0~HH0fi H~0THOCTb~. HpHMeHeHneM ypaBnennn C0CT0~nH~ Bpm~nepa 
~~~ He¡ MaTepHH CM0)KeM ~eMOHTMp0BaTb BaM(H0CTb Koppea~unonnux 3~(I)eKTOB. 
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