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A very economical method is proposed for solution of the hydrostatic equilibrium equa-
tions of neutron stars. As a simple example the model of homogeneous internal distribution is
constructed. Utilizing BRUECKNER’s equation of state the importance of the effect of corre-
Jation can be demonstrated.

1. Introduction

It was suggested by Zwicky [1] that the suddenness and magnitude of
energy generation in supernovae might be explained as a partial gravitational
collapse of a star (or a gas cloud) into a neutron core. There has recently been
renewed interest in this possibility because observations indicate that some
of the remnants of supernovae are sources of X-rays, and it can be stated with
reasonable assurance that a neutron star is responsible directly or indirectly
for X-radiation [2].

In this paper we shall not deal with the problem of observing such
neutron stars. Instead we confine ourselves to the internal structure of cold,
degenerate neutron stars. To investigate the static structure of such a star,
one needs an equation of state, i.e. an energy —density relation for neutron
matter. In consideration of this, there are two great uncertainties. First, the
behaviour of nuclear forces in the high-energy region is not well known.
In principle, the neutron —neutron forces canbe determined from proton —proton
phase shift analysis, assuming charge independence and correcting for Coulomb
effects. Various models of nuclear forces have been constructed by different
authors which fit the phase shifts up to 300 MeV bombarding energy. But the
results in the many-body problem (in the case of high density) for tl ;e nuclear
force models may be seriously different, i.e. the equation of state is sensitive
to the choice of nuclear force model.

The second uncertainty arises from the fact that certain terms must be
neglected in any calculation method for the many-body problem. In most of

* Dedicated to Prof. P. GomBA4s on his 60th birthday.

19 Acta Physica Academiae Scientiarum Hungaricae 27, 1969



290 D. KISDI

the various equations of state which have been proposed for neutron matter,
very crude methods are used for solving the many-body problem. OPPENHEIMER
and VOLKOFF [3] assume an equation of state of an ideal Fermi gas, i.e. the
neutron —neutronforces are completelyneglected. Thesemi-empirical equation
of state due to SKYRME [4] is expected to describe average nuclear properties.
SALPETER [5] worked out a more complete equation of state applying the
scattering limit theory and used an effective range approximation. To interpret
the effect of a hard core of neutrons WHEELER et al. [6] studied the incom-
pressible fluid model of neutron matter. Several very simple forms of equation
of state were derived taking into account the nuclear forces by the Hartree —
Fock method [7]. In this paper we shall utilize the neutron matter calculation
of BRUECKNER et al. [8] for GAMMEL—THALER potential with repulsive core.
BRUECKNER'’s t-matrix approach to the many-body problem takes into account
the two particle correlations exactly, and this is the most accurate neutron
matter calculation which has been performed up to now.

The various equations of state may be used to construct neutron star
models by solving the equations of hydrostatic equilibrium. Such calculations
have been carried out by several authors. The OPPENHEIMER—VOLKOFF [3]
star model consists of non-interacting neutrons, CAMERON’s [9] model is based
upon SKYRME’s [4] equation of state. The ideal and real gas models constructed
by AMBARTSUMYAN and SAAKYAN [10] take into account strange particles in
the stellar matter. More recently two neutron star model calculations have
been made, using Hartree—Fock equations of state. TsuruTA and CAMERON [11]
(henceforth cited as “TC’”) assumed an equation of state as suggested by
LEVINGER and StMmoNs [7], GomBAs and Kisp1 [7] an equation of state based
upon GoMBAS’s semi-empirical nuclear force model (which does not fit the two-
body data, but the average nuclear binding energies).

The integration of the hydrostatic equations, in principle, can be carried
out without any difficulty. Because of the sufficient increase of pressure with
increasing density the Schwarzschild singularity does not occur in mneutron-
star models, and any conventional method for numerical integration can be
applied. Nevertheless, the construction of a star meodel is not a simple problem
for it needs a lot of numerical calculations. In Section II of this paper we
propose a new numerical method for solving the hydrostatic equations.* This
may be more economical than the usual step-by-step methods and makes it
possible to discuss the neutron star models without using digital computers.
In this work we apply this method in the simplest form which results in a star
model of homogeneous internal distribution (Section III). Inspecting the
numerical solution of the hydrostatic equations of TC, we can conclude that

* Our method is closely connected with the method of momenta in differential equation
theory. See, e.g. L. CoLLATZ, Numerische und graphische Methoden. (Handbuch der Physik,
Vol. 1I. Springer, Berlin, 1955.)
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this homogeneous model is a reasonable approximation if the density is in the
region of 101—10'5 gcm ~3, which is the region of the heaviest neutron stars.
In Section IV, we calculate the gravitational and proper masses and the
(constant) density as functions of the radius, assuming the equation of state
of BRUECKNER et al. [8]. The results are compared with those of some pre-
vious works.

II. The equations of hydrostatic equilibrium
A spherical neutron star in hydrostatic equilibrium is described by the

following structure equations:
a) Pressure equation [12]

dP G (¢ + P) (mc® + 4nr® P)
T =T a7 2Gm ? @)
r C rg[l__ Baidebid
cr

where P and ¢ are the local pressure and energy density at radius r, m is the
mass inside the radius r, G and ¢ are the gravity constant and the velocity of
light, respectively.

b) Conservation of mass:

dm 4n
—=—r2. 2
dr c? 2)
¢) Equation of state:
e = (o) = o~ (uc® + Ey(0)) 3)

where g is the neutron number density, g is the neutron mass and E, is the
energy per particle in a neutron gas of density p. The relation between E; and
¢ must be calculated from a many-body theory. In this Section we do not fix
the special form of this E, — g relation.

The pressure is given by

de SE,,
P = —_ &= 92 . 4‘
(0)=¢ 50 ” (4)
d) The boundary conditions are
m=0 at r=40, (5)
0 =0 at r=R, (6)
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where R is the radius of the neutron star; the outer edge of the star is assumed
to have zero density. From Eqs. (3) and (4) it then follows that both ¢ and P are
also zero at the surface.

It is clear that Eqgs. (1)—(6) uniquely determine the internal distribution
of the quantities p, ¢, P and m. The star model has only one free characteristic
quantity, the radius R. After solving the hydrostatic equations (1)—(6), the
gravitational and proper masses are obtained from

M, = m(R), )

R ofr) dmr? dr
o) , (8)

[z

cr

M,=pu

v

respectively. The gravitational mass of the star is the mass as perceived by a
distant observer and the proper mass is the neutron number of the star,

multiplied by the neutron mass u.
We define the moment of order %, of the neutron distribution to be

[F o) rar, (9)

where % > 0. Integrating by parts and taking into account the boundary
condition g(R) = 0, we get:

R R
J ordr = — ! J ~dﬁr"‘“dr:
0 %—{—1 0 dr
G Re4+P m2+ 47 P (10)
= J — - rdr,
(x+1)et)o P ,_ 26
2
where
2
P’:—d—l—)—_—_g8 ° .
do 9%

This means that for every order x, the moment of p is identical with

times the moment of
e+P me+4nr’ P
P2
2
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Now we can introduce a very economical approximation procedure for solving
Egs. (1)—(6). We take a trial function for ¢ which, besides r, depends on a set

‘of parameters f, f,, . . -, Bs.
e=0(r; BB - - > Bs)- (11)

We suppose that the boundary condition (6) is satisfied for every value of the
B-8. The energy density and the pressure are determined from g by the equation
of state (3) and (4):
¢ = 8(r; ﬂl’ ﬂ2’ . -b’ ﬂs) ’ (12)
P="P(r; B, Bs - --+85)>» (13)

and m is calculated from (2) and (5):

m=Y " cr2dr = m(r; B By . - -, B - (14)

c2 0

Instead of (1) we require that the moment equation (10) must be satisfied for
S different »x values. This determines the parameters g8, f,, . . ., fs. Putting
these f-s into the expressions (11)—(14) we get the solution of our problem.

Naturally, we have drawn our procedure as general as possible. How to
introduce the parameters f§, B, . . ., fs, and for what values of » the moment
equation is satisfied, is, in principle, arbitrary. But one can imagine that the
accuracy of our method depends on the proper choice of the trial function
and the values of the x-s.

III. Star model of homogeneous internal distribution

As a simple example of our method we treat a neutron star model in
which the internal density distribution is homogeneous.

o(r) = g if r<R, (15)
or)=0, if r>R.

Here R is the radius of the star and p, is the only parameter of the model
which is to be determined from a moment equation.
The equation of state then gives the homogeneous distribution for the
energy density and pressure:
&gr)=¢ and P(r)=0F, if r<R, (16)
&r)=0 and P(r)=0, if r>R,
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where £, = &(p,) and P, = P(g,). The quantity m is determined by (2) and (5):

3
m(r):ﬂ, if r<R,
3¢
17
3
m(r):4nR 80’ i r>R
3¢

Putting the expressions (15), (16) and (17) into the moment equation (10) we
obtain a transcendental equation for p,.

47R*G (e, +R)(s, +3R) & +2
0,= . dx . 18
0 3ct P(; Jo 1__8nR26£0 x2 ( )
3¢t
where x = r/R and the abbreviation Pj stands for
, 3P
P’(g) = {_J
89 =¢q
Introducing the dimensionless quantities
I » 2
_ 0y & Py and 7= A_81R G_EE_ ) {19)
(&g + B) (¢ + 3E) 3et
Eq. (18) takes the very simple form
1 1 %43
5:~17J T da (20)
2 0 ]. -_— ’I]x2

As our simple model has only one parameter, g,, the moment equation
(18} or (20) can be satisfied only for one value of the order ». We choose the
value » = 2, because then (10) guarantees a good approximation for the
integral

Jﬁf o 4ar?dr

which is closely connected with the mass of the star. For x = 2 Eq. (20) gives

11 14yr)] 11
- 1 —_— . 21
¢ z[zwn(l—ﬁ) 7 3] 1)

Summarizing, the construction of the homogeneous model consists of

the following steps:
a) Choose a value for g,. This can be regarded as the free characteristic
quantity of the star model.
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b) Determine &,, P, and P; from the equation of state and £ according
to (19).

¢) Calculate 7 from (21). For this we need the inverse of the function
which stands on the right-hand side of (21). This can be determined numerically.

d) Finally, the radius R can be obtained from (19):

3 ¢t 1/2
R = ( c . L] . (22)
8nG ¢,
In this way we get a radius — neutron density relation, which is one of the

fundamental characteristic relations of the neutron star model.
If we have determined R by the above procedure, then we get the
gravitational and proper masses from (7) and (8), respectively. The gravitational

mass is
4nR3 ¢ c?
M,=-—""9—_" 4R, 23
o3 26 " (23)
and for the proper mass we have
1 2 3 <Y
M, = 42R* g, xtdx _ AnR*po, 3 [aresinyy =, @9
o V1 —na? 3 2 Y7

From these equations we get M, and M, as functions of g, (or R). These
mass — density and mass — radius relations are also fundamental characteristics
of the model.

IV. Results for Brueckner’s equation of state

BRUECKNER et al. [8] have calculated the energy per particle, E;, in
neutron matter as a function of neutron density g, solving the integral equations
of the BRUECKNEK’s many-body theory exactly. We reproduce their result in

'Fig. 1. We have found that a convenient and very accurate analytical fit for
BRUECKNER's E, = E(g) is given by the following polytropic expression:

E, = a¢’, (25)

where 2 = 0.576 and a = 57.9, if E, is measured in MeV and p in 10%® ¢m~3
units. Assuming (25), the equation of state (3) and (4) is

— 2 A
&= Q([uC + ag ) ? (26)
P = Jag**.

Acta Physica Academiae Scientiarum Hungaricae 27, 1969



206 D. KISDI

1B -

\ N

S —

T T

15 20 25 30

. Y3
Fig. 1. Tetal energy per particle in a neutron gas. The distance parameter r, =( 4739 ) !
)

is given in 1073 cm, the energy E, in MeV units. (From BRUECENER et al. [8])

In this case the quantity &, defined by (19), is the following function of 0o

_ AA + 1) ago [ue® + ago] _ 27)
[ue® + (4 4- 1) ag§)[uc® + (34 4 1) agf]

Utilizing this, the radius R, the gravitational mass M, and the proper mass M,
can be determined as has been described in Section III. The results are given
in Table I.

In Fig. 2 the relation between the energy density ¢, and the gravitational
mass M, is shown. For comparison the central energy density — gravitational
mass relations of TC and of the OPPENHEIMER— VOLKOFF model are also
plotted.

We believe the reality of our model lies only in the region II of Fig. 2.
In the low density region (marked I) the neutrons are unstable against the
decay n — p + e + v. The models of TC have taken into account this possibility
and in this region, are composed of neutrons, electrons and heavy ions. Our
simplified model works with stable “neutrons” and therefore cannot be
compared, in this region, with the results of TC. On the other hand, the
OpPPENHEIMER—VOLKOFF model is also composed of stable Fermi particles.
The big difference between our and their results shows the importance of the
effect of nuclear forces. In the region of superdense neutron stars (marked III
in Fig. 2) our homogeneous model is not reliable. According to TC, in this
region the matter of the star accumulates near the centre and the deviation
from constant density distribution becomes serious. To deal with this effect,
our simple trial function must be replaced by a more flexible one.

The remnants of the heaviest supernovae lie around the mass peak in
the intermediate density region (marked II in Fig. 2). The drastic deviation
among the various results in this region give an indication of the poorness of
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their nuclear forces Vg and V., respectively

Table I

our result,

297

results of TC for

Characteristics of the homogeneous neutron star model with BRUECKNER’s equation of state.

0o in g cm~3, ¢ and P, in erg em~3, R in km and, Mg, Mp in M@ units

' & P, é 7 R M, M,
7.19x 102 6.48< 1038 9.94Xx 103° | 0.00657 0.0626 37.4 0.792 0.805
1.44x 103 1.30 < 1034 2.96x 103 | 0.00976 0.0908 31.8 0.976 0.999
2.88x 1013 2.60 103 8.83x 103 | 0.0144 0.130 26.8 1.175 1.210
7.19x 1013 6.53 < 1034 3.74x10% | 0.0242 0.205 21.3 1.479 1.568
1.44x 1014 1.31x 10% 1.12x10% | 0.0354 0.282 17.6 x 1.680 1.823
2.88x 104 2.64x 1038 3.33x 103 | 0.0522 0.377 14.4 .+ 1.832 2.059
7.19% 1014 6.71x 103 1.41x 103 | 0.0834 0.514 105 ! 1.828 2.150
1.44x 1018 1.37x 103 | 4.20x103 | 0.118 0.635 8.20 [ 1.761 2.178
2.88x 1015 2,80 1038 1.25x 16% | 0.163 0.720 6.09 | 1484 1.893
7.19x 1015 7.39x 1038 5.30x 1035 | 0.238 0.823 4.01 ‘ 1.117 1.482
1.44x 1018 1.57x 10% 1.58x10% | 0.303 0.877 2.84 | 0.843 1.122
2.88x 1016 3.40 < 10%7 4.71x 10% | 0.371 0.913 1.97 1 0.608 0.785
7.19x 101¢ 9.93 X 10%7 2.00x10% | 0.450 0.941 1.17 } 0.373 0.435
5.39x 1077 1.31x10% | 4.77x10%8 | 0.201 0.780 0.293 0.077 0.041

Acta Physica Academiae Scientiarum Hungaricae 27, 1969



208 D. KISDI

neutron star theories. The difference between the two curves of TC shows what
uncertainty can arise from the extrapolation of nuclear potentials originally
constructed for two body problems. One should not be surprised if our result
deviates appreciably from the TC curves, since our model is based on a third
nuclear potentiil (introduced by GAMMEL and THALER).

Furthermore, BRUECKNER’s equation of state, which we have used in our
model, takes into account the two particle correlations in neutron matter.
The correlation has been neglected in previous neutron star models and the
deviation of our model from others may be due partially to this. The effect
of correlation seems to be very important and requires further investigations.
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YNPOUEHHbI METO OJIS1 ONPEJEJIEHHS
BHYTPEHHENW CTPYKTYPbl HENTPOHHLIX 3BE3]

A. KM

Peswme

Jns onpeneneHds THAPOCTATHYECKOr0 pPaBHOBECHSI HEHTPOHHBIX 3BE3[ NpejJiaraercs
JeiicteuresnibHO 3(QeKTHBHBIH Merox. B Kavecrse mpocToro npumepa noapo0HO paccMaTpH-
BAeTCs1 MOJAEJp ¢ MOCTOSHHOH mnoTHOCThIO. [IpHMeHEHUEM YPaBHEHMSI COCTOSIHHS BplokHepa
A0Sl HEHTPOHHOH MaTepHH CMO>KEM NEMOHTHPOBATL BAa)KHOCTb KOPPENSUUHOHHBIX 3¢dexToB.
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