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Waves of small amplitude and the propagation of the surfaces of weak discontinuity
(jumping derivatives) are studied in relativistic fluid dynamics. It is shown that in analogy
with classical fluid dynamics, small amplitude waves and weak discontinuities have similar
character. Both small amplitude waves, and surfaces of weak discontinuity are propagated
with the velocity of sound, which, however, contains a relativistic correction.

1. Introduction — Basic assumptions

In this paper we consider a relativistic ideal fluid. The equation of state
of a simple one component fluid can be written in the form

1= p(pss), (1)

where 1° is mass of the fluid in unit co-moving volume, p is the pressure, s is
the entropy of the fluid in unit co-moving volume.

It is required that the equation of state should be valid following the
motion of the volume element

aul [ Bu’ »
uy 9y ﬂ°=( 6/;) u, %% p + ‘_GT} Uy O s. (2)
p

s

Here uy stands for the four vector velocity of the fluid and 3; denotes the four
vector gradient. (Summation convention is understood for doubly occurring
Latin indices, with x;, = ic.)

As is well known, the energy-momentum tensor T, of an ideal fluid
has the form

1
Ty= ry (e + p) u;ux + pdi» 3)

* Dedicated to Prof. P. GoMBAs on his 60th birthday.
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270 I. ABONYI

where ¢ is the energy of the fluid in unit co-moving volume. We may define
the mass density

1
/‘—?(5+P) 4)

the mass equivalent of all energies in a unit co-moving volume. This, clearly,
differs from u°, since € may be decomposed to give

o o_*__l_”oeo, (5)
82

c2

where 4 stands for the rest mass density, while £° is the specific internal
energy of the fluid.
So we shall write

y=y°1+£0—+ p J:Iu"vzyo(l—}-Lw) (6)
2 0.2 2 ’
¢ uec c

where the symbol v is the so called “index™ of the fluid, and w stands for the
specific enthalpy.
Then, the energy momentum tensor is

Ty = W vujuy + yep s (7)
and the equations of motion of the fluid are
8 Ty = 0. (8)

We have to assure the interpretation of u; as a velocity four vector

therefore
U U= — ¢? 9

and the conservation of the number of particles

B (M) = 0. (10)

From equations (8), (9) and (10) it is easy to deduce by means of the
thermodynamic relation

dw == —l—dp =Tds, (11)
# '

that the motion of the fluid is isentropic, namely
Uy ak s=0. (12)
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SMALL AMPLITUDE WAVES 271

So the equation of state (2) takes the simpler barotropic form: u° = u°p), i.e.:

u O u’ —atu, 9, p =0, (13)
where
a?= ou? .
op
Then the basic equations of the simple one-component relativistic fluid
are:
#Ouy By (vu;) +9;,p =0
B (M) = 0
U u, = — c? (14)

ukak,uo—azukakpzo

There are seven equations for seven variables (ug, p, u° and v). We stress that
p, #° and v are invariant scalars with respect to Lorentz-transformations.

In this treatment the fluid is assumed to have an infinite extent to avoid,
for the time being, boundary condition problems.

2. Small amplitude waves

It can be seen that the basic equations (14) are solved by the system
of variables
Uy
p
o
v

= constants in space and time,

if uy is chosen so as to obey (9). We then superpose small perturbations of

the form
66;( ] 5uk
op | | dp .
o0 [~ ] o exp ik, x,, (15)
ov v

where the amplitudes (fuy, ép, du® dv) are small quantities of the first order,
and any term containing at least two first order factors will be omitted. Then
the equations of motion will be

HOuy By (vouy, + u; 6v) +8;6p =0,
O (W0 0uy + uy 6 p°) =0,

(ux + ) (wy + 07 ,) = — %,

u 9, 0u® — a’u, 8, 6p=0.

Acta Physica Academiae Scientiarum Hungaricae 27, 1969



272 1. ABONYI

In such a way we arrive at a set of linear algebraic equations, namely:

u;u0 Lév + uvLou;+k;ép=0,
Lou® + p°k,du, =0, l
u,0u, =0,

Lo —a®>Lép=0. l

(16)

Here L = u/k,. The existence of a nontrivial solution for the amplitudes
(duk, 6p, 6u% Ov) is guaranteed by the vanishing of the determinant

uo Ly 0 0 0 u0 Lu, 0 k,

0 wWLhv 0 0 u® Lu, 0 k,

0 0 wlv 0 10 Lug 0 k,
D=, 0 0 0 wLv ulLu, 0 kE, |=0. (17)

pok Wk, poky pOk, 0 L 0

u; u, u, u, 0 0 0

0 0 0 0 0 L —a?L
This requirement gives

D =pS vt LA{L*(a® v — 1) — 2k, k,} =0, (18)

which is a relation between k. and the properties of the fluid. Therefore, it
can be envisaged as the dispersion relation of small amplitude waves. The
system (15) can be a wave solution to the linearized basic equations (14) if
and only if k, is chosen so as to satisfy (18).

There are two possibilities. The first where L 5= 0, is

L*=(1 —a%®c?v) 'k, k,,

i.e.

(w k) (a2 v — 1) — @k k= 0 (19)
which, for the co-moving system of reference, where
u,={0,0,0,ic}, k = {kl, ks, ks, —Z- ® }
gives

. 2 0
Ve — [_“’_) S N (20)
k v M
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for the square of the phase velocity V' of the wave with respect to the fluid.
Since a is the reciprocal of the classical velocity of sound ¢;, we have

0 -1
€ p

2
Vi=c¢,|1 + o o (21)
This corresponds to the sound wave in the classical limit.
The other possibility is that
L=0
which means that in the co-moving frame w = 0, therefore
[}
V*=-—=0; 22
: (22)
this perturbation does not propagate with respect to the fluid.
In the first case equations (16) yield
—2
k, ou, = — —1~6,u°, u; = — 2 k + Lui oul,
L u oL c? (23a)

oo = (u0c2a?)~1ue, Op = a2ou°,

the amplitudes of the longitudinal velocity perturbation, the “index” and
pressure perturbations can be given in terms of the density perturbation §u°.
Therefore 61.° must be different from zero, otherwise this type of small amplitude
wave cannot exist.

In the second case, because L = 0, after some manipulations we obtain

from (16)

k,éu,:O, 6u,—=0,
op =0,
o =0, (23b)

0u® = arbitrary .

Because of (22), we may realize this perturbation as a stratification in the
fluid which is immobile with respect to the fluid, and since now 6u° is the
only variable of the entropy, the stratification causes an immobile variation
of entropy which does not propagate with respect to the fluid {entropy wave).
And since the fluid is an ideal one, this stratification of entropy can move only
together with the fluid.
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274 1. ABONYI

3. Weak discontinuities

When the hydrodynamic quantities (u*, p, u° v) themselves are conti-
nuous, but their derivatives have jumps along a surface, we speak of that
surface as a surface of weak discontinuity.

Let us denote by

Sy 295 %3, ) = 0

the equation of the surface, across which the derivatives of the hydrodynamic
quantities are not continuous.
The unit normal to this hypersurface has the components

Bf »
(3.f3, f)1"

Ny

and following [1, 2] we use ¥ = cU as the velocity of the hypersurface along
its normal, with the definition

4
Zgrsarfasf
1
1-U= 3 >
12’ae(,89f8(,f'

where g, is the four dimensional metric tensor, while a,, is the three dimensional
one. So
N, = _ —iv (24)
[1— U2t

It is obvious tat einhther the phase velocity of small amplitude waves, nor
the velocity of this surface is a covariant notion.

By definition, the discontinuities along the surface in question of the
hydrodynamical quantity F can be written in the form

[8s F]= NgoF,
where the difference

—> -—

involves the limits taken on the different sides of the hypersurfaces, and 6 F
represents the jump of 3, F.
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Effecting the limiting processes we obtain from the basic equations:

wu; Adv + uv Adu; + N;dp =0

HON Suy + Adu® =0

ukéukzo (25)
Adu® — a?Aép =0

where

A:uka.

The (25) is a homogeneous linear system of seven algebraic equations
for seven unknowns, the condition of the existence of a nontrivial solution is

that the determinant

wdv 0 0 0 utAu, 0 N,
0 wAy 0 0 wAu, 0 N,
0 0 wdv O u Auy, 0 N,
d=] 0 0 0 Ay udu, 0 N, =0,
MON, u®N, u®N, u®N, 0 A 0 |
u, u, u, u, 0 0 0 ‘
0 0 0 0 0 A -—-a*d

which has the same structure as (17). This requirement gives

Y :/1,0504A4{A2(a202v -~ 1) — C2N,N,} =90.

There are two possibilities again. First let us take A >« 0, then

A2 =¢2(1 — a®c?v)

and we obtain in the co-moving system

1 &0 P —1

2

U2 =

atv uo c? U ¢

et —ah4
u

stating that this type of the surface of weak discontinuity propagates with the

velocity of sound. In this case the jumps are connected by the relations (23a).
In the second case. 1 = 0, which in the co-moving frame means that the

surface does not propagate with respect to the fluid, the jumps are then con-

nected by the relations (23b).
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216 1. ABONYI

4. Conclusions

We have shown that the velocity of propagation of small amplitude
waves is modified in the relativistic case by the presence of a factor

&0 p |

14

O ¢ u ¢

This means that if the specific internal energy and the pressure of the system
is comparable to its rest energy density, the corrective factor may be important.
The well known modification of sound velocity [3] because of the extreme
relativistic equation of state

_1,
p 3%’

where e means the total energy density of the system makes its important
contribution particularly to ¢, and not to the correcting factor.

Finally we have shown that, as in classical hydrodynamics, the surfaces
of weak discontinuity propagate with the same velocity as do small amplitude
waves, and can be classified in an analogous manner.
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BOJIHbI HEBOJIBITHUX AMITJIUTYQ U CJIABBIE PA3PbIBbI
B PEJIATUBUCTHWUECKCON T'MOPOAMHAMUKE WAEAJILHON 3}UOKOCTH

H. ABOHU

PeswomMme

Hsyuarorcst BoJIHEL HeGONLUINX aMIUIMTYA B PacTipocTpaHeHue NoBepxXrocTed cnadoro pas-
pbIBa (CKFAYOK MPOM3BOJHKX) B PEJISITHBUCTCKOH AMHAMMKE >KMAKOCTH. T10KZ:HIBAETCS, YTO B
aHanore ¢ KJaaCcCUuecKoil AMHAMHKOH >KMAKOCTH BOJHbI HEGONBILON aVNNAHTYIbl H Chafobie
paspeiBbl UMEIOT NMOA00HLINH XapaKTep. KaK BOJIHbI HCOONBIION aMNANTY b, TAK U HOBEPXHOCTH
cnaboro paspeiBa paCHpPOCTPAHSIIOTCS €O CKOPOCTBIO 3BYKA, KOTOPas, OAHAKO, COREPIKUT pejisi-
THBHUCTHYECKYI0 NOIPAaBKY.
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