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Waves  of small  ampl i tude and the  propagat ion  of the  surfaces of weak discont inui ty  
( jumping  der ivat ives)  are studied in relat ivist ic  fluid dynamies.  I t  is shown tha t  in analogy 
with classical fluid dynamics,  small  ampl i tude  waves and weak discontinuit ies  have similar 
character .  Bo th  small  ampl i tude  waves, and surfaces of weak diseont inui ty  ate propagated  
wi th  the velocity of sound, which, however,  contains a relat ivist ic correetion. 

1 .  I n t r o d u c t i o n  - -  B a s i c  a s s u m p t i o n s  

In this paper we eonsider a relativistie ideal fluid. The equation of state 
of a simple one component fluid can be written in the forro 

#o = ~o (p, ~), (1) 

where #o is mass of the fluid in unit co-moving volume, p i s  the pressure, s is 
the entropy of the fluid in unit co-moving volume. 

It  is required that  the equation of state should be valid following the 
motion of the volume element 

ukOk#o = I 0#0 I (OU~ I 
~-~-p J s uk ~kp + uk ak s. (2) [ OsJp 

Here uk stands for the four rector  velocity of the fluid and 0k denotes the four 
rector  gradient. (Summation convention is understood for doubly occurring 
Latin indices, with x 4 = ic .) 

As is well known, the energy-momentum tensor T~k of an ideal fluid 
has the forra 

1 
Tik ---- ~ (~ + p) u~ Uk + P~ik, (3) 

C'Z 
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270  I. ABONYI 

where e is the energy of the  fluid in uni t  co-moving volume.  We m a y  define 
the  mass densi ty  

1 (e ~- p) (4) ~=-~- 

the  mass equivalent  of all energies in a uni t  co-moving volume.  This, clearly, 
differs f rom #0, since ~ m a y  be decomposed to give 

e _#0_4_ i oso, c2 7 ~ (5) 

where #o stands for the rest  mass densi ty,  while t ~ is the specific in ternal  
energy of  the  f luid.  

So we shall  wri te  

# = # 0  1 ~ - - ~ A -  P = # ~ 1 7 6  1 + - - ~ - w  , (6) 

where the  symbol  v is the  so called " i n d e x "  of the  fluid,  and w stands for the 
specific entha lpy .  

Then ,  the energy m o m e n t u m  tensor  is 

Tik  == #~ vui  uk -~ ~fk P , (7) 

and the  equations of mot ion  of  the fluid are 

Ok Ttk ---- 0. (8) 

We have  to assure the  in te rpre ta t ion  of ui a s a  veloci ty  four  vec tor  
therefore  

uk u~ : - -  c 2 (9) 

and the  conservat ion o f  the  number  of particles 

ak 0,~ = o ,  (lO) 

F r o m  equations (8), (9) and (10) ir is easy to deduce b y  means of  the 
t he r modyna m ic  relat ion 

1 
d w  := - -  dp  : T d s ,  (11) 

#o 

t h a t  the  mot ion of the f luid is isentropic,  namely  

u k 8 k s = 0 .  (12) 
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SMALL AMPLITUDE WAVES 271 

So the equat ion  of  s ta te  (2) takes the  simpler barotropicform: # o = ~ 0 ( p ) ,  i.e.: 

uk~k# ~  (13) 
where 

a t e :  

a 2 =  l Ou~ l . 

Then the  basie equations of the  simple one-eomponent  relat ivist ie  f luid 

/~o u�98 Ok (vui) + at p = 0 
Ok (/~o uk) = 0 
uk uk = - -  c 2 (14) 

uk Ok#~ a 2ukSkp = 0 

There  are seven equat ions for seven variables (uk, p ,  i~o and v). We stress tha t  
p,  #o and v ate invar ian t  scalars with respect  to Loren tz - t rans format ions .  

In  this t r e a t m e n t  the fluid is assumed to have aIl infinite ex ten t  to  avoid, 
for  the t ime being, bounda ry  condi t ion problems. 

2. Small amplitude waves 

h can be seen t ha t  the basic equat ions (14) are solved b y  the system 

of variables u~ / 
P #o = eonstants  in spaee and t ime, 

I) 

if  uk is ehosen so as to obey (9). We then  superpose small per tu rba t ions  of 

the  form 

6~ = 6p exp i k r x . ,  (15) @o [ @o 
~~ ] ~v 

where the ampli tudes  (�91 �91 8# o, �91 are small quant i t ies  of the first  order,  
and any  te rm conta ining at  least two f irs t  order  factors  will be omit ted.  Then 
the  equat ions of mot ion  will be 

/~~ ak (v~~k + ui~~) + ai~~ = O, 

~k (/~0 6~k + uk ~ 5 o) = 0 ,  

(uk + ~ ~k) (uk + ~a ~) = - c2, 

ukSk~~0__ a 2ukSk~p = 0 .  
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272 I. ABONYI 

In  such a way we arrive a t a  set of l inear algebraic equations,  namely :  

[ ui#~ LOv -4- # ~  0 ,] 
L S# ~ -4- p~ k~ S u~ = O _ 8p 

+ k~ 

u r 8 uf = O, 
L S ~  ~ --  a~LSp ----- 0.  I 

(16) 

Here  L = m k ,  The existence of  a nont r iv ia l  solut ion for the ampl i tudes  
(Suk, 8p, 8# ~ �91 is guaran teed  b y  the vanishing of the  de t e rminan t  

D = 

#~ 0 0 0 p ~  1 0 k x 
0 #~  0 0 ~~ 0 k 2 
0 0 #~  0 # ~  a 0 k 3 
0 0 0 p ~  #~ 0 k 4 

p~ ~~  2 ~~  3 ~~  4 0 L 0 

ut u2 Us u4 0 0 0 
0 0 0 0 0 L - - a 2 L  

----0. ( 1 7 )  

This r equ i remen t  gives 

D - / a ~  L '  {Le(aec2v -- 1) - -  c~k~k~) = O, (18) 

which is a relat ion be tween k~ and the propert ies  of the fluid. Therefore ,  it  
can be envisaged as the  dispersion relat ion of small ampl i tude  waves.  The  
sys tem (15) can be a wave solution to the l inearized basic equat ions (14) if  
and only  if  kr is chosen so as to satisfy (18). 

There  ate two possibilities. The first  where L # 0, is 

L 2 = (1 - -  a 2 c 2 v) -1 c2 k~ kr ,  

i.e. 

(uf k~) 2 (a 2 c 2 v - -  1) - -  c e k~ k r = 0 (19) 

which, for  the co-moving sys tem of reference,  where 

uf {O,O,O, ic) ,  k~ {kl, k2, k~, i = --COc 

gives 
a 2  1 ~o 

v p 
(20) 
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SMALI. AMPLITUDE WAVES 273 

for the square of the  phase ve loc i ty  V of the  wave with respect  to  the fluid. 
Since a is the  reciprocal  of the  classical ve loc i ty  of sound cs, we have  

V 2 = Cs 1 + #Oc------ ~" ~- �9 (21) 

This corresponds to the  sound wave in the  classical l imit.  
The  o ther  possibil i ty is t h a t  

L = 0  

which means t h a t  in the co-moving f rame co = 0, therefore  

CO 
V * - -  - -  - -  O; (22) 

k 

this pe r tu rba t ion  does not  p ropaga te  with respect  to  the  fluid. 
In  the fir~t case equat ions (16) yield 

a2{ LuJ kr 6 u f - -  1 6# 0 , 6 u i =  k i ~ - -  �9 6/x ~ 
L po vL  c 2 

5v = (#o c 2 a2)-16/xo, 6p = a -~ 6# 0 , 
(23a) 

the ampli tudes of the  longitudinal  ve loc i ty  pe r tu rba t ion ,  the  " i n d e x "  and 
pressure pe r tu rba t ions  can be given in terms of the dens i ty  pe r tu rba t ion  �91  
Therefore  �91 mus t  be different  f rom zero, otherwise this t ype  of small ampl i tude  
wave cannot  exist.  

In  the  second case, because L = 0, af ter  some manipula t ions  we obta in  
f rom (16) 

k~6ur -~O,  6 u i ' = O ,  

@=0, 
6v -~ 0 ,  (23b) 

6# 0 = a r b i t r a r y .  

Beeause of (22), we m a y  realize this pe r tu rba t ion  a s a  s t ra t i f ica t ion in the 
f luid whieh is immobile  with respect  to  the  fluid, and since now �91 is the 
only  variable of the  en t ropy ,  the  s t ra t i f ica t ion causes ah immobile  var ia t ion  
of en t ropy  which does not  p ropaga te  with respect  to the  fluid (en t ropy  wave).  
And since the fluid is an ideal one, this s t ra t i f ica t ion of  en t ro p y  can move only 
toge ther  with the  fluid. 
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274 i. ABONYI 

3. Weak discontinuities 

When the hydrodynamic quantities (u k, p, #0, v) themselves are conti- 
nuous, but their derivatives have jumps along a surface, we speak of that  
surface a s a  surfaee of weak discontinuity. 

Let us denote by 

f ( X l ,  X2, X3, X4) = 0 

the equation of the surfaee, aeross which the derivatives of the hydrodynamic 
quantities are not eontinuous. 

The unit normal to this hypersurface has the components 

Nk = O~f 
( Or f Or f )  1/2 

and following [1, 2] we use V = cU as the velocity of the hypersurface along 
its normal, with the definition 

1 - -  U 2 =  

4 

2 g r s  O~fO~f 
1 
3 

1 

where grs is the four dimensional metric tensor, while a~~ is the three dimensional 
o n e .  S o  

- -  iU 
N 4 = (24) 

[1 - -  U2]  1/2 

I t  is obvious tat  eivhther the phase velocity of small amplitude waves, nor 
the velocity of this surface is a eovariant notion. 

By definition, the discontinuities along the surface in question of the 
hydrodynamical quant i ty  F can be written in the form 

[Os F] = Ns  6F , 

where the differenee 

[O s F ]  = ] i m 0 s F  -- lira0 s F  

involves the limits taken on the different sides of the hypersurfaces, and 6F  
represents the jump of OsF. 
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SMALL AMPLITUDE WAVES 275 

Effect ing the  l imit ing processes we ob ta in  f rom the basic  equat ions:  

/ ~ ~  + / ~ ~  + N i ~ p  = 0 | 
Ft ~ Nk  �91 uk + A ~ #  ~ = 0 I 
t t k~u  k = 0 | ' 
A ~ #  ~ - -  a 2 A 6 p = 0 J 

(25) 

where 

A = uk Nk �9 

The (25) is a homogeneous  l inear  s y s t em of seven a lgebraic  equat ions  
for seven unknowns ,  the  condit ion of  the existenee of a non t r iv ia l  solut ion is 
t h a t  the  d e t e r m i n a n t  

A =  

#o Av  0 0 0 #o A u 1 0 N 1 

0 #o Av  0 0 /~o A u  2 0 N 2 

0 0 #o Av  0 #o A u  3 0 N 3 

0 0 0 #OAv #o A u  a 0 N 4 

#ON1 #ON2 #ON3 #ON4 0 A 0 

u 1 u 2 u 3 u 4 0 0 0 
0 0 0 0 0 A --  a 2 A  

which has the  same s t ruc tu re  as (17). This r equ i r emen t  gives 

A = # ~  -- 1 ) - - c 2 N r N r } - = O .  

There  ate two possibili t ies again. F i r s t  let  us t ake  A ~ 0, t hen  

A 2 = c 2(1 - -  a 2c 2 v) 

and  we obta in  in the  co-moving  sys t em 

U 2 - -  1 - -  c~ ~t~ 
a 2 v # 

- - c ~  1 -4- ~ A- 

s t a t ing  t h a t  this t y p e  of the surface of weak  d i scont inu i ty  p ropaga te s  wi th  the  
ve loe i ty  of  sound.  In  this case the  ju inps  a te  connected  b y  the  relat ions (23a). 

I n  the  second case A = 0, which in the  co-moving  f r a m e  means  t h a t  the  
surfaee does no t  p r o p a g a t e  wi th  respec t  to the  fluid, the  j u m p s  a te  t hen  con- 
nee ted  b y  the  re la t ions (23b). 
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4.  Cone lus ions  

We have  shown t h a t  the  veloci ty  of p ropaga t ion  of small ampl i tude  
waves is modif ied in the  relat ivist ic case b y  the  presence of a fac tor  

• ~2_ 0 ._./-I/~ 
1 + #o c 2 + #o c 2 } " 

This means t ha t  if  the specific internal  energy and the  pressure of  the  sys tem 
is comparable  to its tes t  energy  densi ty,  the  correct ive  fac tor  m a y  be impor tan t .  
The  well known modif ica t ion of sound veloci ty  [3] because of the  ex t reme  
relat ivist ic  equat ion of s ta te  

1 
p = - - e ,  

3 

where  e means the  to ta l  energy densi ty  of the  sys tem makes its i m p o r t a n t  
con t r ibu t ion  par t icu la r ly  to  cs, and not  to the  correct ing factor.  

F inal ly  we have  shown tha t ,  as in classical hydrodynamics ,  the  surfaces 
of  weak discont inui ty  p ropaga te  with the  same ve loc i ty  as do small ampl i tude  
waves,  and can be classified Ÿ an analogous manner .  
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BOSIHbl HEBO3"IblIIHX AMFI.J-IHTY~ H Cd-IABblE PA3PI:::,IBbl 
B PEYI~'IIdBIdC'IFIttECKOITI FH,EIPO,L][HHAMHKE Id,~IEA.YlbHOIYl H{H,/IKOCTH 

PI. ABOHH 

P e a m M e  

H3yqalOTC~ BOYlHb! He60JIblLIHX aMn~HTy~ H pacnpocTpaHe~He r~oBep• c.~a6oro pa3- 
pblBa (Cl~aq0K Ilp0H3B0~H~X) B peJI~THBHCTCK0~ ~HHablIdNe M(H~IK0CTH, I~0K~~bIBaeTC~I, MT0 B 
aHaaoFe c K.rlaCCHqecKo~ ~HHaMHKO}Ÿ ~d<H~IKOCTH Bo.rlHbl Hs a~�91 M c~a6bte 
pa3pbmbl HMeIOT l]O/I06Hbll4 xapaKTep.  Kan< BOJIHbl HC~O.rlblIIO~ aMHJ1HTyJIbl, TaK H HOBepXHOCTH 
cna6oro  pa3pbrBa pacnpocTpaHŸ237 CO cK0pOCTmO 3ByKa, KOTOpaYi, 0~IHaKO, CO~Iep~<HT peaa-  
THBHCTHqeCKyIO nonpaBKy. 
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