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We have shown previously that an invariance prineiple is defined in curved space by 
invariance under the Brandt groupoid eonsisting of elements given by parallel displacements 
along all possible curves in space-time. It is argued here that the Brandt groupoid might eon- 
tain the Poincar› group asa local group in each tangent spaee but then spaee-time must have 
non-vanishing torsion. Such a conclusion might also be implied by reeent measurements of 
SADEH et al. For an Einstein manifold, on the other hand, the Brandt groupoid contains only 
the homogeneous Lorentz group. 

1.  Introduct ion  

SAD~.H, Kr~OWLES and YAPLEE [1,2] observed ah anomalous  deerease 

of f requeney in the 21 era absorbt ion line from Taurus  A. They  also found the 

effeet when a terrestr ial  souree was used and they  found the deerease roughly  

propor t ional  to distanee. This deerease eannot  be aeeounted for by  general 
re la t iv i ty  and in a reeent  paper  SZEK~.~ES [3] argues this indieates t ha t  spaee- 

t ime is not  E ins t e in - -R iemann ian  (a spaee with a symmetr ie  metrie and s y m -  
metrie eonneetion).  He assumes a linear eonneetion with non-vanishing torsion 

and ealeulates the eontr ibut ion of the  torsion par t  to the shift of f requeney 
and finds it in agreement  with the observat ions of SAD~.H et al. He therefore 

eoneludes t h a t  these measurements  do suggest a physieal  spaee-time of non- 

vanishing torsion. 
I n  this paper ,  while we do not  argue with his physieal  in te rpre ta t ion  of 

the torsion tensor,  we wan t  to point  out  t h a t  a similar eonelusion is a l ready 
implied by  our previous work, t hough  in an indireet way.  More preeisely, our 

previous results imply  t h a t  either the Poinear›  group is a good local s y m m e t r y  
group and then  spaee-time has tors ion of general re la t iv i ty  holds (no torsion) 

and then the local invariaaee group is the homogeneous Lorentz  group wi thou t  

translations.  
In  our earlier papers we made  an a t t emp t  to in t roduce an invar ianee 

prineiple in eurved spaee-time. The first  th ing in sueh an a t t e m p t  is to faee 
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the faet that  there are only local inertial systems, namely the geodesie systems 
at each point x. We assumed that  these local inertial systems ate still physi- 
cally completely equivalent and then determined the invariance transforma- 
tions connecting them. Let Tx and Ty denote ennuples of unit vectors in the 
local inertial systems, the geodesic systems, introduced at space-time points 
x and y,  respectively. Then one of our main results is as follows [4]. The in- 
variance transformations mapping Tx into Ty are defined by Levi-Civita paral- 
lel displacement along all possible curves connecting x and y. Different experi- 
mental consequences of this invariance have been worked out [4, 5, 6]. For 
example ir has been shown that  the three experimental tests of general rela- 
t ivi ty follow. 

Consider now the set B(x, y) of transformations defined by parallel dis- 
placement along all possible oriented curves connecting x and y and denote by 
B the set as x and y run through all points of space-time. There is nothing that  
would distinguish one space-time point among the others, therefore eaeh ele- 
ment of the set B i s  aninvarianee transformation.Therefore the set B defin- 
es ah invariance principle in curved space and an important problem is then 
what is the strueture of B. Clearly it cannot be a group but one can show [7] 
tha t  it is a Brandt groupoid. 

The fundamental fact in our present argument is that  the Lorentz group 
is contained in the groupoid B a s a  subset working in each tangent space Tx, 
it is indeed the holonomy group v2x, defined by parallel displacement a!ong 
all possible closed curves through x of the underlying space-time manifold, 
discussed extensively [5, 10]. Indeed, the identi ty component* of the holono- 
my group (hg) is the six-dimensional homogeneous Lorentz group f o r a  non- 
vacuum Einstein manifold. However, the Poincar› group P can never be rea- 
lised as the hg of an Einstein manifold sinee the hg associated with a symmetric 
connection is always homogeneous. 

Now ir is known tha t  the hg associated with a linear, non-symmetric, 
connection is inhomogeneous and therefore the Poincar› group could be inter- 
preted as a local invariance group in such a space. 

However, our invariance principle in curved ~space is defined by the 
Brandt groupoid B which is an object more general than a group. To see the 
intimate relationship between measurements of the red-shift type and local 
invariance groups~ such as the Lorentz, or Poincar› group we first give in 
Section 3 a remarkable decomposition theorem for the groupoid B. 

* I r  can  be  s h o w n  [10] t h a t  t h e  ex i s t ence  o f  i n v e r s i o n s  in ~v x d e p e n d s  on t h e  topologica l  
properties of  space - t ime .  I n t r o d u c e  topo logy  b y  de f i n ing  s p a c e - t i m e  to be  a d i f f e ren t i ab le  
m a n i f o l d  M n. Le t  ~r l be  the first h o m o t o p y  g roup  of  M n a n d  Vx ~ t h e  i d e n t i t y  c o m p o n e n t  o f  ~/'x. 
Then one  can  p rove  [10] t h a t  t h e  h o m o m o r p h i s m  zr I --~ ~x/~ ~ exists  and t h e  p r o b l e m  of  t h e  
r of  inversions is thcrefore reduced to the c o m p u t a t i o n  o f  :r 1. 
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2 .  The  Brandt  groupo id  

A Brand t  groupoid [8] (also [9], p. 121) is a set G of elements in which 
the product  exists only for certain pairs and which satisfies the following con- 
ditions. 

I. I f  for three elements a, b, c, ~, G the relation 

a b = c  

holds, then  each of them is uniquely determined by  the other two. 
I I .  I f  ab and bc exist then  there exist also (ab)c and a(bc), if  ab and (ab)c 

exist, then  there exist also bc and a(bc), if  bc and a(bc) exist, then  there exist 
also ab and (ab)c. In  all three cases the equal i ty  

(ab)c = a(bc) 
holds. 

I I I .  For  every element b ~ G there exists a uniquely  determined element 
i(b), the right uni t ,  a uniquely determined element i'(b), the left  unit ,  and  a 
uniquely determined inverse element b - i  such tha t  

bi(b) = i'(b)b = b, 

b - lb  = i, bb -1 = i'. 

IV. For any  two units i and i '  there exists at  least  one element b ~ G 
such tha t  i i s  the r ight  unir and i '  is the left uni t  of b. 

I t  is easy to see t ha t  our set B of invariance t ransformat ions  defined by 
paraUel displaeements satisfies these axioms. Indeed,  for any  parametr ised curve 
x ~ =  x~(t), the equations 

du ~ - -  co~ (t) u s, (1) 
dt 

where co~(t) = - -  {~~,} dx~q have a unique set of solutions of the forro [7, 11] 

u s (t) = b~ (t, to) u ~ (to), (2) 

where the matrices b~ are non-singular (at least under  the conditions discussed 
below). This defines a linear homogeneous isometry U(to) --+ u(t) from the tan- 
gent space at  X(to) to t ha t  at  x(t). The matrices also sat isfy [11] 

b~ (t, t') b~ (t', t') ---- b~ (t, t") I 

b~ (t, t') bv a (t', t) ---- (~.~. J (3) 
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Denote now by  b(ty,tx) any  curve with parameter  t connecting x and y 
and denote the mat r ix  (2) defined by  the curve also by  the same symbol 
b(ty,tx). 

Elements of the groupoid B are of the forro b(ty,tx) (we use mat r ix  nota- 
tion) for the oriented curves from x to y,  in this order, as x and y run  through 
all points.  Define mult ipl icat ion in B as: Two elements b(tx, tz) and b(t~, ty) can 
be multiplied,  in this order, ir z ---- o~ and only in this case and the  product  
is then  given by  the appropriate  forro o f  Equs.(3). The set B with this multi- 
pl ication is clearly a Brand t  groupoid. 

Indeed ,  consider first  Condition IV. Our t ransformat ions  (2) defined by  
Equs.  (1) are determined by  the Christoffel symbols,  which in tu rn  are func- 
tions of  the metric tensor and its derivatives. IV thus  implies t h a t  a conti- 
nuous metric tensor mus t  exist everywhere. Ir  was pointed out  [10] t h a t  topo- 
logical properties must  be introduced into the definition of space-time. One 
way  to do this is to suppose [10] space-time to be a differentiable manifold 
Mn. Now a differentiable manifold always admits  a positive definite metric 
tensor,  bu t  admits  a continuous metric tensor of signature (3,1) if  and only if  
the Euler - -Poincar ›  characterist ic Z-----~ (--1)kvk, where vk is the kth Bett i  

k 
number ,  vanishes ([12],p. 18). In  this case then  the mat r ix  in Equ.  (2) is non- 
singular.  

Condition I I i s  t r ivial ly satisfied and the non-singular na ture  of [b(ty,t,)] 
ensures I. I I I  is also satisfied: For  any  element  b(tx,t~) the left and right  
units  b(tx,t~) and b(ty,t~), the (unit) matrices associated with the points x and 
y ,  respectively, and the inverse b-~(t~,ty) ~-- b(ty,t~) associated with the  inver- 
sely oriented curve, clearly exist. This proves the groupoid na ture  of  B under  
the  abone restriction. 

3. Direct product decompositir of the groupoid 

We now construct  two subsets of B and then  show t h a t  B is the  direct 
product  of these. 

I t  is clear from axioms I to IV tha t  the condition for B to be a group is 
t h a t  ir should contain a single unir element. Therefore B can never  be group 
in curved space, nevertheless it  contains groups. 

Consider indeed the subset  of all those elements b for which the left and 
right  units  coincide i(b) = i'(b) = ix. I t  is clear from the axioms t h a t  this set 
is a group consisting of the elements defined by  t ransformat ions  along all 
closed curves through the point  x. I t  is indeed the holonomy group v2~(Mn ) 
at  x discussed extensively [5,10]. 

We now construct  another  subset of B as follows. Take the r ight  and left 
unir elements i(x) and i '(y) at  two arb i t ra ry  bu t  fixed points x and y ,  in this 
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order,  and connect  x and y by  a single, bu t  a rb i t ra r i ly  chosen, curve b(y,x). 
Denote  the t rans format ion  along the  curve  also b y  the  same symbol  b(y,x) ~ B. 
When x and y run  th rough  all points  of Mn we obtain  a subset  Sb of B which 
is also a groupoid.  Since So has the  same set of units as B i t i s  a subgroupoid 
of B and it  is also clear f rom the  cons t ruc t ion  t h a t  this is the  minimal  sub- 
groupoid which has the  same set of units  as B. 

I f  we connect  x and y with any  different  b u t  well def ined curve c(y,x) 
we get ano ther  subgroupoid  Se which is isomorphic wi th  Sb since t h e y  have  the 
same set of units .  

Le t  us now f ix  So and let  x ~ Mn be an y  a rb i t r a ry  b u t  f ixed  point .  We 
want  to prove  t h a t  B : Sb | ~vx(M~) where | is direct  product .  

To this end we first  r emark  t h a t  any  a rb i t r a ry  e lement  t(z, y) of B can 
be wr i t ten  as the  p roduc t  b(z,x)a(x)b(x,y), where a(x) E ~~ and b(z,x), b(x,y) 
S£ in a unique way.  To see t h a t  this is so one has only to  choose a ( x ) =  
b-a(z,x)t(z,y)b-l(x,y) which is clearly a t r ans fo rmat ion  def ined b y  the closed 
loop b-~(z,x)t(z,y)b-l(x,y) th rough  x. 

Le t  now t(v,co) -= b(v,x)a'(x)b(x,co), where a'(x) E ~vx and b(v,x), b(x,co) E 
Sb, be the above p roduc t  decomposi t ion of any  other  a rb i t r a ry  element  t(v, co) 
of B. Then  the  p roduc t  t(v, r exists only if  co ----- z and ir is in this case 
t(v,y) : b(v,x) a'(x)a(x) b(x,y). 

This shows t h a t  in the p roduc t  of a rb i t r a ry  elements  t(v,r and t(z,y) of B, 
elements of S~ and elements of ~x ate mult ipl ied separate ly .  In  o ther  words 
we have  

B = S~ | V2x (Mn) .  (4) 

4. Local groups 

We are now able to discuss the  problem pu t  forward  in the  In t roduc t ion .  
In our effort  to  in t roduce  ah invar iance principle in curved  space the s tar t ing  
point  was [4] the  problem of how to compare  physical  quant i t ies  in the  (iner- 
tial) t angen t  spaces at  different  space- t ime points.  We have  seen t h a t  we can 
compare  physical  quant i t ies  by  means of the  t ransformat ions  conta ined in the 
groupoid B. 

Obviously ,  the  decomposi t ion (4) classifies physical  measurements  into 
two classes: 

a) local measurements ,  in which quant i t ies  in the  same t angen t  space 
Tx ate compared,  can be eva lua ted  by  the  local invar iance  group ~vx, 

b) measurements ,  in which quant i t ies  in the t angen t  spaces at  different  
space-t ime points ate compared,  can be eva lua ted  b y  elements  of the  mini- 
mal sub-groupoid  S£ 
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Supposing now general relativity, the three crucial tests fall into class 
b). Red shift between any x a n d y  has been shown [4,6] to follow from invarianc 
under parallel displacement along any curve connecting x and y, i.e. from in- 
variance under an element of Sb. Also, if one chooses geodesics for elements 
of Sb then the geodesic axioms follow. 

As to class a) it is well known that  the holonomy group v2x is subgroup 
of the homogeneous Lorentz group for ah Einstein manifold and the Lie-al- 
gebra of ~0x, which defines local invariance in the tangent space Tx, is spanned 
[13] by the ~-domains of the curvature tensor and its covariant derivatives 

f q~ R~~~, q~ Vo p~ r R~~~ . . . . .  (C Vo)kf  q~ R~~~, (5) 

where the arbitrary veetors p , q  and the eurvature tensor R and its covariant 
derivatives ate to be understood at x. 

I t  is seen from expression (5) that  ~vx is redueed to the identi ty for a 
flat manifold. We have on the other hand the important  theorem of BEIGLBSCH 
[14], whieh says that  the Lie-algebra of~0x is always six-dimensional f o r a  non- 
vacuum Einstein manifold. Therefore the restrieted Lorentz group Lt+ (for 
inversions see [10] and also the footnote on p. 262) can be interpreted asa  local 
propcrty of a non-vacuum Einstein manifold. However, the loeal invarianee 
group ~vx(Mn) is always homogeneous for an Einstein manifold. This follows 
from the faet tha t  the hg assoeiated with a symmetric eonneetion is homo- 
geneous. This is an unpleasant feature of local invarianee sinee translation 
invarianee has deep physical eonsequenees and there is therefore interest in 
more general spaees for whieh the hg is non-homogeneous. 

Maybe the simplest sueh generalization is in whieh the Chistoffel symbols 
ate replaeed by a non-symmetric eonnection/~~,.. I t  is indeed well known that  
the hg assoeiated with sueh a eonneetion is non-homogeneous and the infini- 
tesimal translations at x ate generated by expressions of the forro ([13] p. 362) 

- -  T~ ,  d f  ~" , (6) 

where d f  ;~~ is an infinitesimal facet at x and T~,.--/~~~--{~,} is the torsion 
tensor. 

Consider now the set B'  (Section 2) of invarianee transformations defined 
by parallel displaeement assoeiated with this new eonneetion. B" is again a 
Brandt groupoid and the deeomposition of Seetion 3 also holds. In this way 
the Poinear› group might be obtained, j u s t a s  L+ t has been in the case of an 
Einstein manifold, as the hg of this generalized spaee. 

Suppose now tha t  the Poincar› group is a local invariance group. Then 
if our invarianee principle, i.e. invarianee under the Brandt groupoid, is 
valid, then invariance, in measurements of elass b), under S~ must also hold 
as can be seen from the deeomposition (4). But this is just the interpretation 
of SZEKERES of the anomalous frequeney shift found by SADEH et al. 
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Clearly, the  m e a s u r e m e n t s  of  SADEH et al. belong to class b) and w h a t  
SZEKERES calculates  is jus t  the  con t r ibu t ion  to paral lel  d i sp lacement  of  the  
non - symmet r i c  p a r t  of  the  connect ion when S~ is cons t ruc ted  f rom geodesics. 

We do not  w a n t  here to argue abou t  the  physica l  i n t e rp re t a t ion  of  the  
torsion tensor ,  only  w a n t  to po in t  out  t ha t ,  if  the  Poincar ›  group is to  be 
in te rpre ted  a s a  local invar iance  group in a curved  space,  then  a non-van ish ing  
torsion tensor  m u s t  be involved.  

5. Discussion 

Recent  cosmological  observa t ions  seem to conf i rm t h a t  physica l  space-  
t ime is curved.  The  Lorentz ,  or the  Poincar ›  group canno t  then  be in te rp re ted  
as the  mot ion  group of t h a t  space. In  a curved  space we haya  only local iner t ia l  
sys tems  and in this case the  considerat ions of  this,  and  previous  papers  (see 
the  In t roduc t ion )  a te  re levant .  We wan t  here to emphas ise  t h a t  our basic 
a s sumpt ion  is t h a t  these  local sys t ems  ate  still phys ica l ly  equivalent .  A t  the  
basis of  this a s s u m p t i o n  is rea l ly  the  E8 tv8s  exper iment .  The  choice of  the  
connection,  which defines the  invar iance  t r ans fo rma t ions  connect ing  these 
sys tems ,  is a m a t t e r  of  exper iment .  

Once, however ,  a pa r t i cu la r  connect ion is selected then  the  s t ruc tu re  of, 
for example ,  the  local invar iance  group is de te rmined .  I n  pa r t i cu la r  the argu-  
m e n t  p resen ted  here  suggests  t h a t  e i ther  general  r e l a t iv i ty  holds and then  the 
local invar iance  group  is only  the  homogeneous  Loren tz  group in each t angen t  
space,  or the  Po incar ›  group is good and then  the  under ly ing  space- t ime mani -  
fold has non-van i sh ing  torsion.  

I n  conclusion it  m u s t  be  emphas ized  t h a t  our full invar iance  principle 
is def ined not  b y  a group  bu t  a B r a n d t  groupoid  which is a more  general  object .  
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IAHBAPHAHTHOCTb FIYAHI~APE COBMECTHMA C OBIL[EITI TEOPI4EI~ 
OTHOCPITEJIbHOCTld? 

M. ILItO B F_.,F E lIl 

P e 3 l o M e  

I]pe~BapHTe~bH0 IIOK33aJIH~ qT0 onpe~e~eH HHBapHaHTHt~fi HpHHUHI] B HCKpHBJIeHHOM 
Hp0cTpaHCTBe HHBapHaHTH0CTbIO'II0 0THOIIIeHHIO FpyI1Fl0H~e EpaH~Ta, C0CT0,qII~eF0 H3 3.qeMeH- 
TOB~ JXaHHblX Ilapa~~e~bHh4MH CMelIIeHH~MH no BCeM B03M0)tKHblM KpHBbIM B Hp0eTpaHCTBe 
BpeMeHH. fl[0Ka3bIBaeTc~, qT0 rpynno~~ BpaH~Ta M0~<eT coAep>~aTb rpynny FIyaHKape KaK 
~0Ka~hFlytO FpytIHy B Kax<~0M TaHFeHIXHa�91 np0CTpaHCTBe, HO B 3TOM cJlyqae IIp0cTpaH- 
CTB0-BpeM~ J~0J]M<H0 HMeTb HeHcq{3alOUIylO KpyTH3Hy T a ~ o e  yc.q0BHe MoM<eT 6bITb HpHMeHeH0 
H C0BpeMeHHbIMH H3MepeHH~IMH Ca~e H ~p. C ~pyro~'t CT0p0Hbl, B c~yqae  0~H0r0 MH0YKeCTBa 
:3fiHmTefiHa r p y n n 0 n ~  BpaH~Ta c0~ep>KI4T T0~bK0 0~H0p0aHym r p y n n y  .rlopemia. 
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