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We have shown previously that an invariance principle is defined in curved space by
invariance under the Brandt groupoid consisting of elements given by parallel displacements
along all possible curves in space-time. It is argued here that the Brandt groupoid might con-
tain the Poincaré group as a local group in each tangent space but then space-time must have
non-vanishing torsion. Such a conclusion might also be implied by recent measurements of
SADEH et al. For an Einstein manifold, on the other hand, the Brandt groupoid contains only
the homogeneous Loreutz group. .

1. Introduction

Sapen, KnowLes and YArLEE [1,2] observed an anomalous decrease
of frequency in the 21 cm absorbtion line from Taurus A. They also found the
effect when a terrestrial source was used and they found the decrease roughly
proportional to distance. This decrease cannot be accounted for by general
relativity and in a recent paper SZEKERES [3] argues this indicates that space-
time is not Einstein — Riemannian (a space with a symmetric metric and sym-
metric connection). He assumes a linear connection with non-vanishing torsion
and calculates the contribution of the torsion part to the shift of frequency
and finds it in agreement with the observations of SADEH et al. He therefore
concludes that these measurements do suggest a physical space-time of non-
vanishing torsion.

In this paper, while we do not argue with his physical interpretation of
the torsion tensor, we want to point out that a similar conclusion is already
implied by our previous work, though in an indirect way. More precisely, our
previous results imply that either the Poincaré group is a good local symmetry
group and then space-time has torsion or general relativity holds (no torsion)
and then the local invariance group is the homogeneous Lorentz group without
translations.

In our earlier papers we made an attempt to introduce an invariance
principle in curved space-time. The first thing in such an attempt is to face
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262 M. SUVEGES

the fact that there are only local inertial systems, namely the geodesic systems
at each point x. We assumed that these local inertial systems are still physi-
cally completely equivalent and then determined the invariance transforma-
tions connecting them. Let T and T, denote ennuples of unit vectors in the
local inertial systems, the geodesic systems, introduced at space-time points
x and y, respectively. Then one of our main results is as follows [4]. The in-
variance transformations mapping T into Ty are defined by Levi-Civita paral-
lel displacement along all possible curves connecting x and y. Different experi-
mental consequences of this invariance have been worked out [4, 5, 6]. For
example it has been shown that the three experimental tests of general rela-
tivity follow.

Consider now the set B(x, y) of transformations defined by parallel dis-
placement along all possible oriented curves connecting x and y and denote by
B the set as x and y run through all points of space-time. There is nothing that
would distinguish one space-time point among the others, therefore each ele-
ment of the set B is aninvariance transformation. Therefore theset B defin-
es an invariance principle in curved space and an important problem is then
what is the structure of B. Clearly it cannot be a group but one can show [7]
that it is a Brandt groupoid.

The fundamental fact in our present argument is that the Lorentz group
is contained in the groupoid B as a subset working in each tangent space T,
it is indeed the holonomy group v,, defined by parallel displacement along
all possible closed curves through x of the underlying space-time manifold,
discussed extensively [5, 10]. Indeed, the identity component* of the holono-
my group (hg) is the six-dimensional homogeneous Lorentz group for a non-
vacuum Einstein manifold. However, the Poincaré group P can never be rea-
lised as the hg of an Einstein manifold since the hg associated with a symmetric
connection is always homogeneous. v

Now it is known that the hg associated with a linear, non-symmetric,
connection is inhomogeneous and therefore the Poincaré group could be inter-
preted as a local invariance group in such a space.

However, our invariance principle in curved space is defined by the
Brandt groupoid B which is an object more general than a group. To see the
intimate relationship between measurements of the red-shift type and local
invariance groups, such as the Lorentz, or Poincaré, group we first give in
Section 3 a remarkable decomposition theorem for the groupoid B.

* It can be shown [10] that the existence of inversions in g, depends on the topological
properties of space-time. Introduce topology by defining space-time to be a differentiable
manifold M,,. Let =, be the first homotopy group of M,, and y 2 the identity component of y,.
Then one can prove [10] that the homomorphism 7, — 9,/y ¢ exists and the problem of the
existence of inversions is therefore reduced to the computation of =,.
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2. The Brandt groupoid

A Brandt groupoid [8] (also [9], p. 121) is a set G of elements in which
the product exists only for certain pairs and which satisfies the following con-
ditions.

I. If for three elements a, b, ¢, €, G the relation

ab=c

holds, then each of them is uniquely determined by the other two.

I1. If ab and bc exist then there exist also (ab)c and a(bc), if ab and (ab)c
exist, then there exist also bc and a(bc), if bc and a(bc) exist, then there exist
also ab and (ab)c. In all three cases the equality

(ab)e = a(bc)
holds.
ITII. For every element b € G there exists a uniquely determined element
i(b), the right unit, a uniquely determined element i’(b), the left unit, and a
uniquely determined inverse element 5~! such that

bi(b) = i'(b)b = b,
b=1b =i, bb—1 = i.

IV. For any two units ¢ and i’ there exists at least one element b€ G
such that i is the right unit and i’ is the left unit of b.

It is easy to see that our set B of invariance transformations defined by
parallel displacements satisfies these axioms. Indeed, for any parametrised curve
x* = £°(t), the equations

du® :
= ws (t) v, 1
7 5 () 1)
where wj(t) = — {3,} da’/dt, have a unique set of solutions of the form [7, 11]
u” (t) = bj (t.t0) u” (t) » (2)

where the matrices b; are non-singular (at least under the conditions discussed
below). This defines a linear homogeneous isometry u(t,) — u(t) from the tan-
gent space at x(t,) to that at x(f). The matrices also satisfy [11]

by (6, ) BE (¢, ¢") = B3 (¢, t")

; , 3)
b3 (¢, t') b2 (¢, 1) = 0%.
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Denote now by b(t,,t;) any curve with parameter ¢ connecting x and y
and denote the matrix (2) defined by the curve also by the same symbol
b(ey,tx).

Elements of the groupoid B are of the form b(t,,t,) (we use matrix nota-
tion) for the oriented curves from x to y, in this order, as x and y run through
all points. Define multiplication in B as: Two elements b(t,, t,) and b(t,, t,) can
be multiplied, in this order, if z = w and only in this case and the product
is then given by the appropriate form of Equs.(3). The set B with this multi-
plication is clearly a Brandt groupoid.

Indeed, consider first Condition IV. Our transformations (2) defined by
Equs. (1) are determined by the Christoffel symbols, which in turn are func-
tions of the metric tensor and its derivatives. IV thus implies that a conti-
nuous metric tensor must exist everywhere. It was pointed out [10] that topo-
logical properties must be introduced into the definition of space-time. One
way to do this is to suppose [10] space-time to be a differentiable manifold
M. Now a differentiable manifold always admits a positive definite metric
tensor, but admits a continuous metric tensor of signature (3,1) if and only if
the Euler—Poincaré characteristic y = > (——l)kvk, where v, is the kth Betti

number, vanishes ([12],p. 18). In this case then the matrix in Equ. (2) is non-
singular.

Condition ITis trivially satisfied and the non-singular nature of [b(ty,t.)]
ensures I. IIT is also satisfied: For any element b(t,t,) the left and right
units b(tx,t,) and b(ty,t,), the (unit) matrices associated with the points x and
¥, respectively, and the inverse b~!(tx,t,) = b(ty,tx) associated with the inver-
sely oriented curve, clearly exist. This proves the groupoid nature of B under
the above restriction.

3. Direct product decompositicn of the groupoid

We now construct two subsets of B and then show that B is the direct
product of these.

It is clear from axioms I to IV that the condition for B to be a group is
that it should contain a single unit element. Therefore B can never be group
in curved space, nevertheless it contains groups.

Consider indeed the subset of all those elements b for which the left and
right units coincide i(b) = i’(b) = ix. It is clear from the axioms that this set
is a group consisting of the elements defined by transformations along all
closed curves through the point x. It is indeed the holonomy group y.(Mpy)
at x discussed extensively [5,10].

We now construct another subset of B as follows. Take the right and left
unit elements i(x) and i¢’(y) at two arbitrary but fixed points x and y, in this
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IS POINCARE INVARIANCE COMPATIBLE WITH GENERAL RELATIVITY? 265

order, and connect x and y by a single, but arbitrarily chosen, curve b(y,x).
Denote the transformation along the curve also by the same symbol b(y,x) € B.
When x and y run through all points of M, we obtain a subset S, of B which
is also a groupoid. Since S, has the same set of units as B it is a subgroupoid
of B and it is also clear from the construction that this is the minimal sub-
groupoid which has the same set of units as B.

If we connect x and y with any different but well defined curve c(y,x)
we get another subgroupoid S; which is isomorphic with S; since they have the
same set of units.

Let us now fix S, and let x ¢ M, be any arbitrary but fixed point. We
want to prove that B = S, ® :(M,) where ® is direct product.

To this end we first remark that any arbitrary element t(z, y) of B can
be written as the product b(z,x)a(x)b(x,y), where a(x) € wx and b(z,x), b(x,y) €
Sp, in a unique way. To see that this is so one has only to choose a(x) =
b=z, x)t(z,y)b~1(x,y) which is clearly a transformation defined by the closed
loop b~z,x)t(2,y)b~(x,y) through «x. :

Let now t(v,w) = b(v,x)a’(x)b(x,w), where a’(x) € px and b(v,x), b(x,0) €
Si, be the above product decomposition of any other arbitrary element (v, w)
of B. Then the product (v, w)i(z,y) exists only if @ = z and it is in this case
t(v,y) = b(v,x) a’(x)a(x) b(x,y).

This shows that in the product of arbitrary elements t(v,w) and t(z,y) of B,
elements of S; and elements of ¢, are multiplied separately. In other words
we have

B =35, ® y:(M,) . (4)

4. Local groups

We are now able to discuss the problem put forward in the Introduction.
In our effort to introduce an invariance principle in curved space the starting
point was [4] the problem of how to compare physical quantities in the (iner-
tial) tangent spaces at different space-time points. We have seen that we can
compare physical quantities by means of the transformations contained in the
groupoid B.

Obviously, the decomposition (4) classifies physical measurements into
two classes:

a) local measurements, in which quantities in the same tangent space
Tx are compared, can be evaluated by the local invariance group vy,

b) measurements, in which quantities in the tangent spaces at different
space-time points are compared, can be evaluated by elements of the mini-
mal sub-groupoid Sj.
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Supposing now general relativity, the three crucial tests fall into class
b). Red shift between any x and y has been shown [4,6] to follow from invarianc
under parallel displacement along any curve connecting x and y, i.e. from in-
variance under an element of S;. Also, if one chooses geodesics for elements
of S, then the geodesic axioms follow.

As to class a) it is well known that the holonomy group . is subgroup
of the homogeneous Lorentz group for an Einstein manifold and the Lie-al-
gebra of 4, which defines local invariance in the tangent space T, is spanned
[13] by the j-domains of the curvature tensor and its covariant derivatives

P Risis q° Vo p* ¢ Risss .. .5 (¢° Vo) P ¢° Ripa (5)

where the arbitrary vectors p,q and the curvature tensor R and its covariant
derivatives are to be understood at x.

It is seen from expression (5) that v, is reduced to the identity for a
flat manifold. We have on the other hand the important theorem of BEIGLBOCH
[14], which says that the Lie-algebra of y, is always six-dimensional for a non-
vacuum Einstein manifold. Therefore the restricted Lorentz group L1 (for
inversions see [10] and also the footnote on p. 262) can be interpreted as a local
property of a non-vacuum Einstein manifold. However, the local invariance
group yx(Mp) is always homogeneous for an Einstein manifold. This follows
from the fact that the hg associated with a symmetric connection is homo-
geneous. This is an unpleasant feature of local invariance since translation
invariance has deep physical consequences and there is therefore interest in
more general spaces for which the hg is non-homogeneous.

Maybe the simplest such generalization is in which the Chistoffel symbols
are replaced by a non-symmetric connection ;. It is indeed well known that
the hg associated with such a connection is non-homogeneous and the infini-
tesimal translations at x are generated by expressions of the form ([13] p. 362)

— T, df ™, (6)

where df*” is an infinitesimal facet at x and T:f,, = ]"::,,— {ﬁ,} is the torsion
tensor.

Consider now the set B’ (Section 2) of invariance transformations defined
by parallel displacement associated with this new connection. B’ is again a
Brandt groupoid and the decomposition of Section 3 also holds. In this way
the Poincaré group might be obtained, just as L! has been in the case of an
Einstein manifold, as the hg of this generalized space.

Suppose now that the Poincaré group is a local invariance group. Then
if our invariance principle, i.e. invariance under the Brandt groupoid, is
valid, then invariance, in measurements of class b), under S; must also hold
as can be seen from the decomposition (4). But this is just the interpretation

of SZEKERES of the anomalous frequency shift found by SADEH et al.
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Clearly, the measurements of SADEH et al. belong to class b) and what
SzEKERES calculates is just the contribution to parallel displacement of the
non-symmetric part of the connection when Sy is constructed from geodesics.

We do not want here to argue about the physical interpretation of the
torsion temsor, only want to point out that, if the Poincaré group is to be
interpreted as a local invariance group in a curved space, then a non-vanishing
torsion tensor must be involved.

5. Discussion

Recent cosmological observations seem to confirm that physical space-
time is curved. The Lorentz, or the Poincaré group cannot then be interpreted
as the motion group of that space. In a curved space we have only local inertial
systems and in this case the considerations of this, and previous papers (see
the Introduction) are relevant. We want here to emphasise that our basic
assumption is that these local systems are still physically equivalent. At the
basis of this assumption is really the E6tvés experiment. The choice of the
connection, which defines the invariance transformations connecting these
systems, is a matter of experiment.

Once, however, a particular connection is selected then the structure of,
for example, the local invariance group is determined. In particular the argu-
ment presented here suggests that either general relativity holds and then the
local invariance group is only the homogeneous Lorentz group in each tangent
space, or the Poincaré group is good and then the underlying space-time mani-
fold has non-vanishing torsion.

In conclusion it must be emphasized that our full invariance principle
is defined not by a group but a Brandt groupoid which is a more general object.
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UHBAPHUAHTHOCTb IMTYAHKAPE COBMECTHMA C OBIIEN TEOPUEN
OTHOCHUTEJIbHOCTH?

M. IIIOBETEU

Peswme

ITpenBapHTEIBHO NMOKA3ajH, YTO ONpejeSieH HHBAPHAHTHLIH NPUHIHN B HCKPHBJIEHHOM
NPOCTPAHCTBE HHBAPHAHTHOCTbIO M0 OTHOUIEHHIO rpynnouae BpaHara, cocTosumero ua anemex-
TOB, AAHHHIX NapaJUIeIbHEIMH CMELEHHSIMH TI0 BCEM BO3MOXXHbIM KpPHBLIM B NPOCTpPaHCTBE
BpemeHH. JloKaspiBaeTcs, 4to rpynnong Bpanara moxxer comepxats rpynny IlyaHkape Kak
JIOKANBHYK I'PYyNNy B KAXKAOM TAHMEHUHANBHOM NPOCTPAHCTBE, HO B 3TOM Cllydae NPOCTpaH-
CTBO-BPEMS [IOJDKHO HMETb HEHCYC3aI0WYI0 KpyTH3HY TaKoe YCIO0BHE MOXKET ObiTh MPHMEHEHO
H COBpeMeHHbIMH uamepeHHsAMH Cane H ap. C mpyroif CTOpoHbI, B CIy4ae OfHOI0 MHO)XKECTBA
O#inwTeiHa Tpynnoun BpaHATa COAEPKMT TONABKO OAHOPOLHYIO Tpymnmy JlopeHua.
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