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Results of a variational calculation of the nonadiabatic ground state energy of Hf are
presented. Diagonal corrections for nuclear motion have also been calculated for the electronic
ground state of Hj. The adiabatic potential energy curve has been employed to caleulate the
rotational and vibrational levels for the H ion and for muonic molecules. Nonadiabatic energy
corrections are discussed. Fer pud the adiabatic wave function is compared with the corre-
sponding nonadiabatic result.

I. Introduction

Three-particle molecular systems, such as H;, are sufficiently simple to
make accurate calculations of their properties feasible. Results of these cal-
culations may give an insight into some fundamental approximations which
are unavoidable when dealing with more complex molecules. In particular,
this applies to the adiabatic approximation which plays a fundamental role
in the theory of molecular structure.

In the present article new results are presented obtained for the HY ion,
and for muonic molecules. They are used to discuss some problems of the
adiabatic approximation and of its accuracy.

II. The adiabatic approximation

Let us express [1] the exact Hamiltonian of a diatomic molecule in the
centre of mass system as

H=H°| H, )

where H° is the ‘“electronic” Hamiltonian which is independent of the nuclear
masses M, and M,, and H’ represents the kinetic energy of the relative motion
of the nuclei and the coupling between electronic and nuclear motion. Expli-
citly, H’ has the form

H =H, + H, + H;, (2)
* Dedicated to Prof. P. GomBAs on his 60th birthday.
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where
H=—-14
1 2/t Ry
Hy=——— () (3)
2 8/1 - i
1

H3=— VRZV:"
i

24,

and the symbols used in (3) have the following meaning: R = R,—R; where
R; and R; denote the radius vector for the nuclei a and b, respectively; the
index i labels the electrons; r; are measured from the geometrical centre of the
molecule; p~1 = M;' + M;' and pa_l = —M;'+ M;L.

Let us also assume [2] the complete wave function in the form

¥ = S¥(rR)1(R), (4)

where r denotes the coordinates of all the electrons and ¥, is the solution of
H® %,(r, R) = U,(R) %(r, R). (5)

Using (1) and (4) in the complete Schrédinger equation
HY = E¥ (6)

one gets the following set of coupled differential equations for the functions

Xn

[— ﬁARWLUn(RHH;n(R) - EJ 1(R)=— 3 (HimtBan V) tm(R)> - (7)

ms#n

where
H, = jy{zH/ Wmd‘rr’ (8)
B, —— tzf(_l_v+12v ¥ dr )
nm J n P R 2/‘0 = i mYtr.

The adiabatic approximation [2] is obtained by neglecting the right-hand
side of Equs. (7). In contrast to the Born — Oppenheimer (clamped nuclei) appro-
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ximation it includes the diagonal corrections for nuclear motion, H/,, in the

adiabatic potential
UZ(R) = U(R) + H;n(R) (10)

which governs the nuclear motion.

III. Nonadiabatic energy for Hj

Nonadiabatic calculations for a diatomic molecule can be carried out in
two different ways: (a) One can solve the set of Equs. (7); (b) One can employ
th - Ritz variational method using the complete Hamiltonian (1) and assuming
the trial function in the form

¥ = g“ ¢, Dp(r, R), (11)
n=1
where @, (r, R) is some set of functions in the space of r, R. For H; both ap-
proaches are feasible.

Calculations based essentially on the set of Equs. (7) have been carried
out by HuNTER and PrRiTcHARD [3], and with only a few terms in the expan-
sion (4) accurate energies have been obtained. This approach, however, does
not seem to be practical for more complex systems and, therefore, in the pre-
sent work the second approach has been tested. This method has already been
used by several authors [4, 5, 6], but the wave functions employed were not
flexible enough to yield accurate results.

For a non-rotational state the wave function does not depend on the
orientation of R, and in the present calculation the following basis set was
employed

D, = exp (—af) cosh (Bn) &= ° exp (—a2[2) H4, (x)R732. (12)

The symbols used in (12) have the following meanings: & and 7 denote the ellip-
tic coordinates; ¥ is the k-th Hermitian polynomial; x = y (R—R.); and
@, B, v, Re are treated as variational parameters, in addition to the linear para-
meters ¢; in the expansion (11).

Convergence of the energy resulting from the wave function (11) with
the basis set (12) is displayed in Table I for the ground state of Hy . N deno-
tes the number of terms in the expansion (11), (r -+ $)max the maximum value
of the sum of powers of ¢ and 7 included in the expansion, and kmax the maxi-
mum degree of the Hermitian polynomials. All energies given in Table I were
obtained with one set of the nonlinear parameters which were optimized for
the maximum number of terms. The proton mass used was M, = 1836.12.
For the second lowest vibrational state a still larger number of terms was
needed to get the final value of the energy.
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Table 1

Convergence of the nonadiabatic energy, E, and of the binding energy, D, for the ground
state of HY

N (r + max Fmax E (a.n) D (em~)
24 3 3 —0.5971166 21374.3
30 3 4 —0.5971356 21 378.5
40 4 4 —0.5971367 21378.8
44 4 5 —0.5971380 21379.0,
51 5 5 —0.5971381 21 379.0,
55 5 6 —0.5971385 21379.1,
57 5 7 —0.5971387 21379.2,

IV. Adiabatic energy for H;

The adiabatic energy is obtained by solving Equ. (7) with the right-hand
side equal to zero. Assuming y(R) =fx(R)Y’(0,p)R~! the appropriate equa-
tion for the vibrational wave function reads

L , JJ+) _
[— o AR + U.(R) + Hin(R) + R E]ﬂ,k(R) 0, (13)

where v and J denote the vibrational and rotational quantum numbers, re-
spectively.

Very accurate clamped nuclei potential has recently been published
[7, 8], and adiabatic energies have also been computed [7]. However, in the
latter calculation relatively poor values [9] of H), were used. To get reliable
non-adiabatic effects, which are very small and which are represented by the
differences between the non-adiabatic and adiabatic values, highly accurate
results are indispensable. Therefore the diagonal nuglear motion corrections
(3) have been computed using for the wave function an expansion in terms of
10 basis functions of the form

®, = exp (—a) cosh () &g (14)

and the results are listed in Table II. 4D given in the last column (in cm~1)
is defined as (H'(oc))—(H’(R)) and represents the correction to the binding
energy due to the diagonal nuclear motion corrections.

Using the calculated values of Hj,, and accurate clamped nuclei poten-
tial U,, the vibrational equation (13) has been solved for several vibrational
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Table II

245

Clamped nuclei energy, E, and diagonal corrections for nuclear motion (2) for Hj calculated
for various internuclear distances R

R E H, x10° H,x10% 4D
0 0.54463 —59.766
0.3 1.4666385 0.07470 0.455317 —56.571
0.4 0.6992462 0.08327 0.41811 —~50.275
0.5 0.2650120 0.09104 0.38414 —44.526
0.6 —~0.0048180 0.09556 0.35388 —38.875
0.7 —0.1826248 0.09794 0.32718 —33.537
0.8 —0.3044800 0.09899 0.30371 —28.617
0.9 —0.3902705 0.09925 0.28307 —24.144
1.0 —0.4517863 0.09905 0.26489 —20.109
11 —0.4964118 0.09859 0.24884 —16.486
1.2 —0.5289745 0.09803 0.23462 —13.241
1.3 —0.5527406 0.09743 0.22199 —10.338
1.4 —0.5699835 0.09686 0.21074 —1.744
1.5 —0.5823232 0.09635 0.20069 —5.426
1.6 —0.5909372 0.09592 0.19169 —3.358
1.7 —-0.5966963 0.09559 0.18362 —1.513
1.8 —0.6002536 0.09536 0.17636 0.131
1.9 —0.6021058 0.09522 0.16983 1.593
2.0 —0.6026342 0.09519 0.16395 2.891
2.1 —0.6021349 0.09527 0.15864 4.039
2.2 —0.6008396 0.09544 0.15386 5.052
2.3 —0.5989309 0.09570 0.14954 5.941
2.4 —0.5965536 0.09606 0.14565 6.718
2.5 —0.5938235 0.09650 0.14214 7.391
2.6 —0.5908332 0.09702 0.13898 7.968
2.7 —0.5876573 0.09762 0.13615 8.459
2.8 —0.5843560 0.09830 0.13361 8.868
2.9 —0.5809780 0.09904 0.13134 9.204
3.0 —0.5775628 0.09984 0.12932 9.471
3.1 —0.5741424 0.10070 0.12753 9.676
3.2 —0.5707425 0.10161 0.12595 9.822
3.3 —0.5673841 0.10257 0.12457 9.915
3.4 —0.5640840 0.10357 0.12337 9.959
3.5 —0.5608555 0.10461 0.12233 9.958
3.6 —0.5577092 0.10567 0.12146 9.917
3.7 —0.5546535 0.10676 0.12073 9.838
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Table II (continued)

R E H,x10° H,x10° 4D
3.8 —0.5516947 0.10787 0.12013 9.725
3.9 —0.5488373 0.10899 0.11966 9.582
4.0 —0.5460848 0.11012 0.11930 9.412
41 —0.5434394 0.11126 0.11905 9.219
42 —0.5409022 0.11239 0.11890 9.005
43 —0.5384735 0.11351 0.11883 8.772
4.4 —0.5361531 0.11463 0.11884 8.525
45 —0.5339400 0.11572 0.11893 8.265
46 —0.5318328 0.11680 0.11908 7.996
4.7 —0.5298295 0.11785 0.11930 7.718
48 —0.5279281 0.11888 0.11956 7.435
4.9 —0.5261259 0.11987 0.11987 7.148
5.0 —0.5244202 0.12084 0.12022 6.859
5.1 —0.5228082 0.12176 0.12061 6.571
'5.2 —0.5212866 0.12265 0.12103 6.284
5.3 —0.5198521 0.12350 0.12147 6.000
5.4 —0.5185016 0.12432 0.12103 5.720
5.5 —0.5172315 0.12509 0.12241 5.446
5.6 —0.5160385 0.12582 0.12290 5.177
5.7 —0.5149192 0.12652 0.12340 4.916
5.8 —0.5138701 0.12718 0.12390 4.661
5.9 ~-0.5128878 0.12779 0.12440 4415
6.0 —0.5119690 0.12838 0.12490 4.178
6.1 —0.5111105 0.12892 0.12540 3.949
6.2 —0.5103089 0.12943 0.12589 3.729
6.3 —0.5095612 0.12091 0.12638 3.518
6.4 —0.5088644 0.13035 0.12685 3.317
6.5 —0.5082155 0.13077 0.12731 3.124
6.6 —0.5076116 0.13115 0.12776 2.940
6.7 —0.5070501 0.13151 0.12820 2.766
6.8 —0.5065282 0.13185 0.12862 2.600
6.9 —0.5060437 0.13216 0.12903 2.442
7.0 —0.5055940 0.13245 0.12942 2.292
7.1 —0.5051769 0.13271 0.12980 2.151
7.2 —0.5047902 0.13296 0.13016 2.017
7.3 —0.5044319 0.13319 0.13051 1.891
7.4 —0.5041001 0.13340 0.13084 1.772
7.5 —0.5037929 0.13360 0.13115 1.660
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Table II (continued)

R E H,x10® H,x10% 4D
1.6 —0.5035087 0.13378 0.13145 1.554
1.7 —0.5032458 0.13395 0.13174 1.454
7.8 —0.5030027 0.13411 0.13201 1.361
7.9 —0.5027780 0.13425 0.13226 1.273
8.0 —0.5025704 0.13438 0.13251 1.190
8.2 —0.5022013 0.13462 0.13295 1.040
8.4 —0.5018866 0.13483 0.13335 0.908
8.6 —0.5016184 0.13500 0.13370 0.792
8.8 —0.5013900 0.13516 ' 0.13401 0.691
9.0 —0.5011954 0.13529 0.13428 0.603
9.2 —0.5010298 0.13540 0.13452 0.526
9.4 —0.5008887 0.13549 0.13473 0.458
9.6 —0.5007685 0.13558 0.13492 0.400
9.8 —0.5006661 0.13565 0.13508 0.349
10.0 —0.5005787 0.13571 0.13522 0.305
10.5 —0.5004121 0.13583 0.13549 0.218
'11.0 —0.5002992 0.13591 0.13568 0.158
11.5 —0.5002221 0.13597 0.13582 0.115
12.0 --0.3001683 0.13601 0.13591 0.085
13.0 —0.5001035 0.13607 0.13602 0.049
14.0 —0.5000689 0.13610 0.13608 0.030
15.0 —0.5000490 0.13611 0.13611 0.020
17.5 —0.5000247 0.13614 0.13613 0.009
20.0 —0.5000143 0.13615 0.13614 0.005
co —0.5600000 0.13616 0.13616 0.000

All results in a. u. only 4D in cm~.

and rotational states. The resulting adiabatic energies for the ground electro-
nic state of Hy are shown in Table III.

By comparing the adiabatic energies for K = 0 and v = 0, 1, 2 with
the corresponding nonadiabatic results [3] one gets the nonadiabatic energy
correction AE = E,onag—Faq = 0.12, 0.21 and 0.35 cm 1 for the three lowest
vibrational states, respectively. The correction is very small and is seen to be
roughly a linear function of the vibrational excitation. The differences between
the adiabatic and clamped nuclei [10] dissociation energies (for J = 0) are
shown in Table IV. Their maximum for v = 8 results from the shape of the
H/, versus R curve which has a minimum at R = 3.4 a.u., and the expecta-
tion value of the internuclear distance for v = 8 is just (R) = 3.362 a.u.
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Table IV

Differences between the adiabatic and clamped nuclei dissociation energies (in cm=!) for
various vibrational levels of H}

v Dad, — Detn, v ‘ Dag. — Dern.
0 3.23 | 9 6.13
1 396 |10 5.95
2 4.60 11 5.66
3 5.12 12 5.27
4 5.54 13 4.76
5 5.86 14 4.15
6 6.08 15 3.43
7 6.19 16 2.57
8 6.22 17 1.59

V. Adiabatic results for muonic molecules-

The clamped nuclei potential energy curve with diagonal corrections
for nuclear motion, computed for the Hy ion, can be directly employed, by
changing only the mass ratio, to calculate the adiabatic energies for muonic
molecules. These consist of two singly-charged nuclei (proton, p, deuteron,
d, triton, t) bound by a muon u. The results are listed in Table V where, in
addition to the energy, the expectation values of R and R~2 are also given.
In the same Table we give the nonadiabatic energies calculated recently by
CARTER [11] using the Ritz variational method. Convergence of the energy
becomes slower with decreasing ratio of the muon mass, m, to the reduced mass
of the two nuclei. Inspection of CARTER’s results shows that they have conver-
ged to roughly 4 figures except for the excited state of dud where the accuracy
is significantly lower and therefore this energy is not given in Table V. The
previous nonadiabatic results (see e.g. [12]) also seem to be of a lower accuracy
and are not included in the Table. For comparison the results for the Hy ion
are listed in the last column. The corresponding nonadiabatic results are those
of HuNTER and PriTCHARD [3].

The AE values given in Table V represent the nonadiabatic energy cor-
rection, i.e., AE = E,,naqg—Eq. They are seen to be of the expected order of
magnitude, i.e., of the order of (m/u)% They are also seen to be larger for the
excited vibrational states than for the ground states. For the states under
consideration the nonadiabatic effects are due to interaction with higher states
of the same /1, where /1 is the quantum number for the component of the an-
gular momentum along the internuclear axis. The energy differences between
these upper states and the state under consideration are smaller when the
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latter is an excited vibrational state. Therefore, by a common argument of the
perturbation theory one may conclude that the nonadiabatic effects should
increase with increasing vibrational excitation. Table V proves that this is
indeed the case, and the results given in the previous Section show that the
conclusion is also valid for higher vibrational states of Hj .

VI. Adiabatic and nonadiabatic vibrational wave functions

It may be also of some interest to compare the adiabatic and nonadia-
batic vibrational wave functions. A comparison of this type has already been
made [13] for the ground state of the hydrogen molecule. However, in that

(‘17.
06
0.5
04
03

G2

Fig. 1

case the nonadiabatic calculations [14] were not sufficiently accurate to make
such a fine comparison of the wave functions meaningful. Similar and more
accurate calculations have recently been carried out for the pud system [15].
In this case one may expect that the nonadiabatic effect in the wave function
is sufficiently large to be reliably detectable in a fairly accurate calculation.
The 128-term nonadiabatic wavefunction calculated [15] for pud has been
used in the present work to calculate the vibrational pseudo-wave function
defined as

JSoonaa(R) = R [ 5‘ [#(r, R)? dT“]IIZs (15)

where ¥ denotes the complete wave function for pud and the integration is to
be carried out only over the coordinates of the muon. The calculated pseudo-
wave function can be compared with the adiabatic vibrational wave function
Jfok(= faq) discussed in Section IV.

The calculated difference fyonaq—faqa does not vanish with increasing
internuclear distance (for R < 10 n.u.) which is probably due to a relatively
large error in the wave function for large R. Therefore, it seems that a weighted
difference, i.e.,

A= (fnonad “fad)fazd (16)
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has more physical meaning, and this difference is presented in Fig. 1 where the
adiabatic vibrational wave function is also shown. Thus the nonadiabatic
effects seem to increase the mean value of the internuclear distance in spite
of the fact that they increase the binding of the two nuclei. This is supported
by the results of TippING and HERMAN [16] who concluded that the nonadia-
batic effects decrease the rotational constant of H,. The binding is more di-
rectly related to the piling up of negative charge between the two nuclei. For
H, it has been found [13, 14] that the nonadiabatic value of (2%) is smaller
than the adiabatic one, where z denotes the sum of the electronic coordinates
in the direction of the molecular axis. This is consistent with the increase of
binding by the nonadiabatic effects.
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HECKOJIbKO TOUHbIX PE3YJIbTATOB IJIs1 CUCTEM TPEX YACTHL
B. KOJIOC

Peswme

CoobuaeTcsi 0 pesyJbTaTaX BapHALHOHHOTO BHIYHCJIEHHsST HeagHabaTHYECKOH 3HEepryuH
OCHOBHOTO cocTosiHusi Hi. [ljist 3J1eKTPOHHOTO OCHOBHOIO cocrosinust HF onpenensnnck u
JHAarOHaJIbHBIE TONPABKH AJIs1 SIAEPHOTO ABIXEHHsi. KpuBas annabaTHuecKol NOTeHUHaJbHOH
SHEPTUH HCNOJIB3YETCS ISt BHIYHUCJIEHHS] POTAUHOHHBIX H BHODALHOHHBIX YPOBHEH MOJIEKYJIsIp-
HOro HOHa Hi M mnAd MIOOHHBIX MoJeKysl. JMCKYyTHPYIOTCS NONpaBKH K HeagHaGaTHYECKOH
aHepruu. ApuabaTHueckast BOJIHOBasi QYHKUMSI nsi pjed CPaBHHBAETCsl C COOTBETCTBYIOLIHM
HeaauabaTHYeCKUM PE3Y1bTaTOM.
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