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In recent years, it has become possible to compute strongly orthogonal geminals for
several smaller systems and to investigate the effectiveness of the conventional separated
pair theory. The results are compared with those obtained by other many-electron theories and
the sources of the main deficiencies are pointed out. Extensions of the separated pair theory
using the optimized orbitals of the single antisymmetrized geminal product wave function are
also discussed.

Introduction

It was Fock who first proposed that two-electron functions should be
used as building blocks in constructing the total wave function [1]. This method
seemed to be the most natural extension of the Hartree— Fock scheme. It was
expected that in this way the most important part of the correlation energy
could be accounted for and the two-electron functions are transferable at least
in certain “localized’ systems. The calculation of the energy (and of other phy-
sical quantities) is, however, rather cumbersome unless special restrictions are
imposed on the two-electron functions [2, 3]. To avoid this difficulty the con-
cept of strong orthogonality was introduced [4]. Given an 2 N-electron system
the total wave function ¥ can be written as an antisymmetrized product of
N geminals yx (1, 2), K =1, 2, ... N. If the geminals are

a) normalized to unity:

fvk(12)yx (1,2)d1d2 =1, (1)
b) antisymmetric in the (space-spin) variables of the electrons:
v (1,2) = — pi (L,2), @)

¢} mutually orthogonal in the strong sense:

(vk(1,2)y.(1,2)d1 =0, if K+L, (3)
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180 E. KAPUY

the total wave function ¥, normalized to unity has the following form:

N 1/2
v, =[ 2 ] S (= 1P Py (1,2)9,(3,4). . .yn 2N —L2N).  (4)
@N) | <
Here the summation should be extended over only those permutations which
interchange the electrons between geminals.
By using (4) and taking into account restrictions (1), (2), (3), the energy
expression can be easily calculated [4, 5, 6, 7, 8]

Ey=HO) + 3 [vx(L2)[HQ) + HE) + rif] e (1,2) d142 +
K=1
)
+23 3 [dld2d3darg 1 Pl vk (I, 2) v (12) w2 (3 9 v (3.4)
K L(#K)

The mean value of an operator O, being the symmetrical sum of one-electron
operators

N
0 = 2 o),
i=1
has the following simple form

0=2 g fv%(1,2)0(1) vk (1,2)d1d2.
K=1

The above formalism has been generalized so that group functions of an
arbitrary number of electrons were used as building blocks instead of geminals
[7, 8, 9].

By using energy expression (5) and auxiliary conditions (1), (2), (3), a
set of coupled integro-differential equations has been derived with the help
of the variation theory for determining the best possible geminals [5, 8, 10].
The equations so obtained were inconvenient for practical use owing to the
off-diagonal Lagrangian multipliers. To circumvent this difficulty PARKs and
PARR suggested that the geminals should be constructed of given one-electron
functions ¢ in the following way

v (1,2) = 21C£§¢,(1) 4.(2). (6)

The strong orthogonality conditions (3) are satisfied when each of the one-
electron functions ¢, enters the series (6) of only one geminal. PARKS and
PARR also proposed that the coefficients C§ should be calculated self-consistent-
ly by minimizing the energy expression of the individual geminals [5, 8].

The meaning of the strong orthogonality condition (SC) was later clari-
fied by Arar [11], and by Léwpin [12]. They proved the following theorem:
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DEVELOPMENTS IN THE SEPARATED PAIR THEORY 181

Given N strongly orthogonal geminals yy, there always exists at least
one complete set of orthonormal one-electron functions {¢}, which can be par-
titioned into N subsets having no common elements

P11 P12s Pras - - - PK1s PK2s PK3s - - - PN1> PN2s PNgo - - -
such that each of the geminals can be expanded in terms of its own subset
only:
vk (1,2) = > @55 Prw (1) Pxa (2) - (7)
,A

This means that the representation of the strongly orthogonal geminals by
series (7) is completely general provided the coefficients aX and the one-elec-
tron functions ¢k, are suitably determined.

This theorem made it possible to work out methods suitable for the prac-
tical determination of strongly orthogonal geminals. At the same time the
separated pair theory became essentially a particular case of the method of
*“configuration interaction with optimalized basis functions”.

The conventional separated pair theory

Geminals are uniquely defined by the coefficients aX and the one-electron
functions @x,. (The converse is not necessarily true.) Using the variation theory
we can derive equations for determining the coefficients aXy and the one-
electron functions ¢, [5, 7, 8, 13—15]. Substituting (7) into the energy expres-
sion (5) and varying the coefficients subject to the auxiliary conditions

SlafE=1, K =12,... N,
x4

we obtain IV sets of equations

2 (Hﬁ,p.v - EK 6941,1. 6}.1:) afv =0 s (8)
M,

for all x, A4, and K, where
HX = H(1) + H(2) + ri}
+2 3 [d3da[r (1~ Py) + rid (1 — P)] 2 (34) v (3, 4).
LEFK)

Equs. (8) represent N pseudo-eigenvalue equations because the operators
H* depend on the coefficients a’; of all the other geminals.

Varying the energy expression with respect to the one-electron functions
@i~ taking into account the following auxiliary conditions

Y ‘P;u (1) @ra (1) dl = 6x1 6,
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we obtain a set of one-electron equations of the form
-\ L
F§¢Kn—:28ﬁ Pra - 9)
L7

Here the one-electron operators FX depend on all the coefficients al, and all
the one-electron functions @;; except gg,.

Equs. (8) define the coefficients af of the best possible geminals
with fixed @g,’s, and Equs. (9) define the one-electron functions gk, of
the best possible geminals with fixed aX’s. The af’s and the PKx'8 are, how-
ever, not independent because any unitary transformation of the ¢y,’s (and
the simultaneous transformation of the a’’s with the corresponding adjoint)
leaves yx invariant. Instead of adding further auxiliary conditions it is more
practical to use the natural spin-orbital expansion of the geminals. Assuming
that the g, are the natural spin-orbitals of the corresponding geminal, for
real pi, only those coefficients aly differ from zero in the series (7) for which
@Kki = @k« As a consequence, Equs.(8) and (9) simplify to some extent
[14, 15]. To obtain the best possible geminals these equations should be solved
simultaneously [15]. The natural spin-orbitals of the geminals are automatically
natural spin-orbitals of the total wave function.

All methods hitherto applied to obtain the best possible geminals are
essentially equivalent to some approximate solution of Equs. (8) and (9) with a
basis @k, truncated to finite size.

A) If a set of orthonormal one-electron functions ¢y, is known which is
presumably close to the optimal one, only the pseuds-eigenvalue equations (8)
have to be solved. The solution can be carried out by iteration similarly to the
Hartree — Fock--Roothaan equations [16, 17].

B) The above procedure can be combined with that of mixing the
@xx's by unitary transformation. The unitary transformation is determined
by minimizing the total energy. The two procedures have to be continued
alternately until self-consistency is achieved [18, 19].

C) An iterative procedure for solving Equs. (8) and (9) was proposed
by KurzeLnice [15, 20]. As a first step he simplified Equs. (8) and (9) by
decoupling those corresponding to coefficients ay and one-electrcn functions
¢k, of different geminals. The first natural orbital in each of the geminals was
identified with a suitable ‘“localized” unitary transform of the occupied Hart-
ree—Fock orbitals. By using these decoupled equs. he determined the
““excited’ natural orbitals, which were required to be orthogonal to all oecupied
Hartree— Fock orbitals and to all “excited” natural orbitals of the same geminal
but not to the “excited” natural orbitals of the other geminals. In the case of
Be and LiH the correction owing to the nonorthogonality of the ‘“‘excited”
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DEVELOPMENTS IN THE SEPARATED PAIR THEORY 183

natural orbitals was found to be small as the “excited’ natural orbitals of dif-
ferent geminals are localized in different spatial regions. Nevertheless this
method of approximation does not belong rigorously to the separated pair
theory but is closely related to the independent pair model of SiNANOGLU
[21, 22] and of NEsBET [23].

Similar simplified equations were applied for determining the natural
orbitals of geminals by Epmiston and Krauss [24].

D) The method of “optimized valence configurations™ is also a special
case of the separated pair approximation [25]. Only the bonding pair was cor-
related but all the one-electron functions were optimized. The Equs. (9)
were solved by expanding the gk, in terms of a fixed set and the off-diagonal
Lagrangian multipliers were absorbed in the operators FK,

Method B) was applied to LiH [18] and to beryllium-like systems [26].
In the latter case 15 different Slater orbitals were used as basis functions
and the exponents { were also varied. In the case of the Be atom 89.89, of the
total correlation energy was recovered. Similar results were obtained for other
systems.

Method C) was applied to Be, LiH [20] and to BeH,, BH,, CH, [26].
For Be and LiH the results are similar to those obtained by method B). The
correlation energy per equivalent geminal corresponding to the bond X—H
was found to decrease continuously from LiH to CH,. A comparison with the
empirical correlation energies indicated that the sum of the intrageminal
correlation energies comprises a continuously decreasing fraction of the total
correlation energy. This means that the intergeminal correlation energies
should also be taken into account and that the correlation energy of the X—H
bonds is not transferable.

We can easily recognize the shortcomings of the conventional separated
pair theory by comparing it with other theories of the correlation energy.

The most developed methods are the “many-electron theory” of Sina-
NoGLU [21, 22] and the “theory of n-th order Bethe —Goldstone equations” of
NEsBET [23]. They are closely related but the latter is more convenient for
comparison because it applies one-electron function expansions. The exact
wave function of a 2N-electronsystemis determined bythe successive variation-
al solution of effective Schrédinger equations for clusters of ome, two, three
ete., electrons. Slater determinants @; of 2N-th order are used as basis fune-
tions, which are constructed out of a set of orthogonal one-clectron functions
(9):

D, =[(2N)] 722 det [o,, b, . - Dpp -

The set {¢} is divided into two sets ¢,, x = 1, 2,...2N, and ¢,, o = 2N + 1,
2N +42,. .., the first of whichis usually identifiedwith the occupied Hartree—
Fock spin-orbitals, The Slater determinant containing only the functions of the
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first set is denoted by @, and Slater determinants in which the occupied ¢,,
&1, 9y, etc., are replaced by ¢,,¢,,9;, etc., are denoted by P . . .. The first
order corrections e, tothe Hartree—Fock energy Eyp are calculated by mini-
mizing separately the expressions

o — SLIHIfD — Epp (10)
* <f~|fx>

with respect to the coefficients of trial functions
=D+ b8, (11)
e

The second order corrections e,; are calculated by minimizing separately
the expressions
— <f’¢l !Hlka> — E F—e, — e (12)
{Salfa>

‘xA

with respect to the coefficients of trial functions
fa=0y+ WO+ SHO+ SbEes. (13)
) o 2,0

The procedure can be continued by calculating higher order corrections.
The total correlation energy up to second order equals

2N 2N
Ec= e+ X ea.

x=1 x>A=1

As the first sum in closed shell systems (Be, Ne) was found to be zero, the
total correlation energy in this approximation consists of the sum of the inde-
pendent pair correlation energies e,;. Calculations carried out on simpler sys-
tems indicated that in this approximation 97—989, of the total correlation
energy could be recovered using a fairly large basis.

The lowering of the energy is brought about by terms

fa1d2ri} (1 — Py) ¢2 (1) $3(2') $,(1) $,(2) (14)

in the expression (12) of e,; where they are multiplied by appropriate coeffi-
cients b%}. As the matrix elements (14) represent exchange-like interactions
their value is significant onlywhen @, and ¢, are localized in the same regi-
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ons of space where the corresponding ¢, and ¢, are appreciably different
from zero [28]. The electrons in ¢, and @; can be excited to any ¢, and ¢,.

The correlation energy obtained by the separated pair theory can be
written approximately in the following form [19, 20]

Sk,
K

where éx denotes that part of the correlation energy which comes from the
geminal .
This means that the separated pair theory has two main deficiencies:
a) It takes into account only IV pair correlations (the so called intrage-
2N
e
b) Even the pair correlations included are restricted to some extent
because theelectrons in ¢, and ¢; cannotbe excitedto any ¢,and ¢, but only
to a subgroup of them as a consequence of the SC’s.

These defects are not serious if the system consists of N completely iso-
lated pairs because then

wi(1,2) v, (1,2)=0, if K+L,

automatically. This case is, however, an exceptional one. For strongly localized
systems as e.g. for the Be atom, the error in the correlation energy caused by
deficiency b) is not significant (29;). For weakly localized systems even this
error may be more serious [29]. The neglect of intergeminal correlations (defi-

minal correlations) instead of

ciency a)) is inadmissible, even for strongly localized systems. The importance
of the interpair correlation energy was stressed by McKoy and SiNANOGLU
[30]. If accurate results are needed the conventional separated pair theory
should be corrected.

Extension of the separated pair theory

Part of the intergeminal correlation energy within the framework of
the separated pair theory can be taken into account as follows [7, 9, 31].

Each set of the equations (8) with fixed HX has (nzK) linearly independent

solutions g, one of which, yy,, is identical with the best possible geminal;
the others represent “‘excited” geminals. (nx is the number of one-electron
functions gy, in the subspace K.) They obey the following orthogonality rela-
tions

_f'/’?(k (1, 2) pi (1,2) d1d2 = 6y,
[ vk (L, 2) 9 (1,2)d1 =0, if K+L.
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The most general 2N-electron function of the separated pair theory can
be written in the form

YISPZ 2 Aij...ly/ij...l’ (15)

Dol

where the antisymmetrized products

wil. 1_‘ 2N)'] > (— 1) Py, (1,2) 9,3, 4). . .y (2N — 1,2N) (16)

contain one geminal of each of the IV subspaces. (The function i = j = ... =
= l =1 corresponds to ¥.)

Instead of solving the secular equation corresponding to (15) it is more
practical to use the Rayleigh - Schrédinger perturbation theory based on parti-
tioning techniques [7, 31, 32]. We have for the correction to the separated pair
ground state energy (5) up to third order

|H,,? H, H. H,

>4y s (17)
r>0 Eo - Hrr r>% (Eo - Hrr)(EO - Hss)
§>

where

H,,=(YrH¥dr, [Pr¥dv=34,.

The matrix element H, is different from zero only when the configuration
¥, contains two “‘excited” geminals.

It can easily be shown that the first sum of (16) includes the intergeminal
correlations consistent with the SC’s. If the Hartree —Fock approximation is
a fairly good one the natural orbitals in the leading term of the best possible
geminals are nearly identical with some unitary transforms of the doubly
occupied Hartree— Fock orbitals. In this case we find among the “excited”
geminals those the leading term of which is nearly identical with one of the
possible singly-excited configurations within the corresponding subspace.
These “‘singly-excited” geminals in the first sum of (17) account for all double
excitations which conform to the SC’s. Three- and four-particle excitations are
also included.

It can be shown that configurations (16) above do not exhaust all the 2]V-
electron states which can be constructed out of the known one-electron func-
tions pg,. As a consequence of the SC’s the number of electrons IV in each of
the subspaces are conserved and equal to 2 [31]. To get all linearly independent
2N-electron functions Y’}{}l‘ﬁ’ ..Ny Which can be derived from the ¢g,’s we have
to construct also the functions corresponding to all possible partitions of the
set N, Ny, ... Ny, ZNg = 2N, except for those where VN, = N, = ... =
= Ny = 2.
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The functions Y’}GIJ’NN are expressed as antisymmetrized products con-
taining one group function {n« of each of the IV subspaces [31]:

NN, . Nyt

yjf\]llhllzNN = [ (2N)!

1/2
:I 2(“ l)p Plei wN:]" . ‘@Nﬁls
P

where
Y =1, if Ng=0,
YNek = P if Ng=1,
YNek =Yrio f Ng=2,
and for Ng >2
Pz = (N7 det [k, (1) 9xa (2) - - - 9x0 (Nk)

Every ?{",{,ﬁ’ Ny can be derived by “‘exciting” electrons out of the ¥ by
elementary excitations of two kinds

—simple excitation: replaces one group function by another belonging to
the same subspace and occupation number

YNek—> YNl - k1,

—electron transfer excitation: transfer one electron from one subspace to
another, altering two group functions simultaneously

YNgk WNil ™ YNg—1i YNL+1j -

The minimum number of simple excitations necessary to transfer a given state
into another is always unique. This means that all states having nonzero
matrix element with ¥ can be derived from ¥ by two elementary excitations.
It is exactly these states which should be taken into account in calculating the
correction up to third order (17). The corresponding functions Y"I{,‘Z\fy' Ny
can be grouped according to the minimum number of necessary elementary
excitations to connect them with ¥ :

I) two simple excitations. The corresponding configurations describe
the correlations conforming to the SC’s.

II) one electron transfer excitations.

IIT) one simple excitation + one electron transfer excitation,

IV) two electron transfer excitations.

It can be shown that they include all possible two-electron excitations and in
addition some of the many-electron excitations.

This procedure was applied to the m-electrons of trans-butadiene in the
GOEPPERT—MAYER—SKLAR approximation [33, 34]. The separated pair ground
state was calculated using equivalent orbitals constructed from the SCF orbi-
tals of PARR and MULLIKEN [35], and all second order corrections were evaluat-
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ed. It was found that the intrageminal correlation energy accounted for is 939,
of the standard value which was identified with that obtained by the ‘“full”
CI. About 759, of the intergeminal correlation energy came from one electron
transfer configurations of type II) and III). The contribution from configura-
tions of type I} which conform to the SC’s was less, 259, and practically the
whole came from configurations containing two “‘singly-excited” geminals.
The contribution from two electron transfer configurations was found to be
negligible. The result was superior to those obtained by other variants of the
Rayleigh— Schrédinger perturbation theory.

The above procedure is convenient especially when perturbation theory
is used.

MitLER and RUEDENBERG worked out a different method to obtain all
2N-electron functions which can be constructed from the gg,’s [26]. Using 28
configurations about 949, of the empirical correlation energy was recovered
for beryllium-like systems. The natural orbitals obtained from the separated
pair wave functions were very similar to those calculated from the 28 configu-
ration wave function.

Conclusions

The conventional separated pair theory has not completely fulfilled all
earlier expectations. The single antisymmetrized product of strongly orthogo-
nal geminals accounts for only a fraction of the total correlation energy. Even
for strongly localized systems (Be, CH,) this fraction is about 90—509,. The
transferability of the geminals seems to depend strongly on the environment of
the corresponding pairs.

To achieve “‘chemical accuracy” it is necessary to go beyond the conven-
tional separated pair theory. The extensions up to the present have used the
one-electron functions optimized in the conventional theory and for small
strongly localized systems have given promising results. The applicability
depends mainly on the convergence of the expansion used in the extensions.
If the natural orbitals of the separated pair wave function are very close to
the natural orbitals of the exact wave function then the rate of convergence
is nearly optimal and the second and third order correction of perturbation
theory may be sufficient. The evaluation of the higher order corrections seems
to be very clumsy. The practicability of the theory can be decided only when
the results of further numerical calculations on various systems is available.
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PA3BUTHSA B PASAEJIEHHOW IMTAPHON TEOPHUH
3. KAIYHA

Peswome

B nocseaHde roabl CTajl0 BO3MOXKHBIM ONpENESHTH CTPOr0 OPTOrOHaJIbHbIE I'€MHHAJB
JJI1 HEKOTOPBIX MaJIbIX CHCTEM H HCC/IeN0BaTh 3(PeKTHBHOCTb KOHBEHLHOHAJbHOH pasjeneH-
HOH mapHoi# TeopHH. Pe3ysbTaTel CPABHHBAIOTCA € MOJIYYCHHBLIMH MYTEM NMPHMEHEHHS APYIHX
MHOT03JIEKTPOHHBIX TeopHH. OO0pawjaercss BHHMAHHE HAa HCTOYHHUKH TJIABHBIX HELOCTaTKOB.
PaccmaTtpuBaercs panbHedulee paculdpeHHe pasfefleHHOH MapHOH TEOpHH, NPHMEHSIOWEH
ONTHMH3HPOBAHHBIE OPOUTANH BONHOBOH (YHKUHH NPOCTO AHTHCHMMETPH3HPOBAHHOIO FEMH-
HAJIbHOI'0 NMPOH3BEJIEHHSI.
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