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In recent years, it has become possible to compute strong]y orthogona] gemina]s for 
severa] sma]ler systems and to investigate the effectiveness of the conventiona] separated 
pair theory. The resu]ts are compared with those obtained by other many-electron theories and 
the sourees of the main deficiencies ate pointed out. Extensions of the separated pair theory 
using the optimized orbita]s of the sing]e antisymmetrized geminal product wave function ate 
also discussed. 

I n t r o d u c t i o n  

I t  was FOCK who first  proposed t h a t  two-electron funct ions should be 

used as building blocks in const ruct ing the to ta l  wave funct ion [1]. This me thod  

seemed to be the most  natura l  extension of the H a r t r e e - - F o c k  scheme. I t  was 
expected t h a t  in this way  the most  impor t an t  par t  of  the correlat ion energy  

could be accounted  for and the two-electron functions ate t ransferable at  least 

in certain " local ized"  systems. The calculat ion of the energy (and of other  phy-  
sical quantit ies) is, however,  ra ther  cumbersome unless special restrietions ate 

imposed on the two-electron functions [2, 3]. To avoid this diff iculty the con- 

cept of s t rong or thogona l i ty  was in t roduced [4]. Given ah 2 N-electron sys tem 
the tota l  wave funct ion  ~ o  can be wri t ten  as an an t i symmet r ized  p roduc t  of  

N geminals ~K (1, 2), K = 1, 2, . . . N. I r  the geminals are 
a) normalized to uni ty :  

J'~v} (1,2) ~o K (1,2) d l  d2 ---- 1,  (1) 

b) an t i symmet r ic  in the (space-spin) variables of the electrons: 

~o K (1,2) ---- --  VK (1,2), (2) 

c) mutua l ly  or thogonal  in the s t rong sense: 

,[ v2~< (1, 2) ~PL (1, 2') d l  = O, if K=/=L, (3) 

* Dedicated to ProL P. GOMB�93 on his 60th birthday. The author wishes to express 
his thanks to Professor P. GoMBAS for continuous]y encouraging and supporting research 
coneerning many-e]eetron prob]ems. 
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the total wave funetion krl 0 normalized to unity has the following form: 

~o L ( - -~-*  J ~ ( - p  1)PP~01(1,2)~2(3,4)...v2N(2N-- 1 ,2N).  (4) 

Here the summation should be exteuded over only those permutations which 
interehange the eleetrons between geminals. 

By using (4) and taking into account restrietions (1), (2), (3), the energy 
expression can be easily caleulated [4, 5, 6, 7, 8] 

N 
E o = H(0) -k . ~  y ~P~ (1, 2) [H(1) -k H(2) + rs ~] ~o K (1, 2) di  d2 -k 

~=i  (5) 

q- 2 . ~  ~ y d l  d2 d3 d4 r #  [1 -- P~3] ~~ (1', 2) ~0g (1,2) ~o~ (3', 4) ~o L (3,4). 
K L(#K)  

The mean value of an operator O, being the symmetrical sum of one-electron 
operators 

2N 
o = ~y  o( i ) ,  

l=1 

has the following simple forro 

N 

O = 2 ~" J'V,k(1,2)O(1)V,K(1,2)dld2. 
K = I  

The above formalista has been generalized so that  group funetions of an 
arbitrary number of eleetrons were used as building blocks instead of geminals 
[7, 8, 9]. 

By using energy expression (5) and auxiliary conditions (1), (2), (3), a 
set of coupled integro-differential equations has been derived with the help 
of the variation theory for determining the best possible geminals [5, 8, 10]. 
The equations so obtained were inconvenient for praetical use owing to the 
off-diagonal Lagrangian multipliers. To cireumvent this difficulty PAnKS and 
PARR suggested that  the geminals should be eonstructed of given one-eleetron 
funetions & in the following way 

~PK (1, 2) = . ~  C~0 x (1) 0~ (2). (6) 
3r 

The strong orthogonality eonditions (3) are satisfied when each of the one- 
eleetron funetions 0s enters the series (6) of only one geminal. PAnKS and 
PARR also proposed that  the coefficients C~ should be ealculated self-eonsistent- 
ly by minimizing the energy expression of the individual geminals [5, 8]. 

The meaning of the strong orthogonality eondition (SC) was later elari- 
fied by AnA1 [11], and by L6wmr~ [12]. They proved the following theorem: 
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Given N strongly orthogonal geminals ~K, there always exists at  least 
one complete set of orthonormal one-electron functions {~0}, which can be par- 
titioned into N subsets having no eommon elements 

~II' ~ 1 2 '  ~ 1 3 , "  " �9 ~gKI ,  ~ K 2 '  ~9K3, �9 " �9 ~0N1, ~19N2, ~tgN3 . . . .  

such that  each of the geminals can be expanded in terms of its own subset 
only: 

~K (1, 2) = ~ a � 9 1  ~0K, (1) ~0Kx (2). (7) 
x~91 

This means that  the representation of the strongly orthogonal geminals by 
K series (7) is completely general provided the coefficients a,~ and the one-elec- 

tron functions qK, ate suitably determine& 
This theorem made it possible to work out methods suitable for the prac- 

tical determination of strongly orthogonal geminals. At the same time the 
separated pair theory became essentially a particular case of the method of 
"configuration interaction with optimalized basis functions". 

The conventional separated pair theory 

Geminals are uniquely defined by  the coefficients a~ and the one-electron 
functions ~K,. (The converse is not necessarily true.) Using the variation theory 

K we can derive equations for determining the coefficients a,a and the one- 
electron functions ~K, [5, 7, 8, 13--15]. Substituting (7) into the energy expres- 
sion (5) and varying the coefficients subject to the auxiliary conditions 

] a ~ p =  1, K = 1 ,2 , . . .  N, 
ttjX 

we obtain N sets of equations 

. Z  (tt~,~~ - E ~  ~.~ ~~~) ~~ = o ,  

for all ~r 2, and K, where 

H K = H(1) q- H(2) q- rs x q- 

(8) 

A- 2 ~ J" d3 d4 [r~~ (1 -- P13) -4- r~3 i (1 -- P23)] ~~ (3',4) ~L (3, 4). 
L ( # K )  

Equs. (8)represent  N pseudo-eigenvalue equations because the operators 
H K depend on the coefficients a~ L of all the other geminals. 

Varying the energy expression with respect to the one-electron functions 
~oK, taking into aceount the following auxiliary conditions 
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we obtain a set of one-electron equations of the forro 

~ "  ~ 8 K L  F ~ ~ ~ ~ =  _ ~ ~~ ~c~- (9) 
L 

Here the one-electron operators F~  depend on all the coefficients L a~~ and all 
the one-electron functions ~L~ except ~K~- 

Equs. (8)def ine the coefficients a~ of the best possible geminals 
with fixed qK~'s, and Equs. (9) define the one-electron functions qK~ of 
the best possible geminals with fixed a~'s. The K, a~~ s and the ~vK~ s ate, how- 
ever, not independent because any unitary transformation of the ~K~'s (and 

h~ the simultaneous transformation of the a~~ s with the corresponding adjoint) 
leaves ~vK invariant. Instead of adding further auxiliary conditions it is more 
practical to use the natural spin-orbital expansion of the geminals. Assuming 
that  the ~0K~ are the natural spin-orbitals of the corresponding geminal, for 

K differ from zero in the series (7) for which real ~K, only those coefficients a~~ 
~vK~ = ~*~. A s a  consequence, Equs. (8) and (9) simplify to some extent 
[14, 15]. To obtain the best possible geminals these equations should be solved 
simultaneously [15]. The natural spin-orbitals of the geminals are automatically 
natural spin-orbitals of the total  wave function. 

All methods hitherto applied to obtain the best possible geminals ate 
essentially equivalent to some approximate solution of Equs. (8) and (9) with a 
basis qK~ truncated to finite size. 

A)  I f  a set of orthonormal one-electron functions ~bK~ is known which is 
presumably close to the optimal one, only the pseud3-eigenvalue equations (8) 
have to be solved. The solution can be carried out by  iteration similarly to the 
Har t r ee - -Fock- -Roo thaan  equations [16, 17]. 

B) The above procedure can be combined with that  of mixing the 
~vK~'s by  unitary transformation. The unitary transformation is determined 
by  minimizing the . to ta l  energy. The two procedures have to be continued 
ahernate ly  until self-consistency is achieved [18, 19]~ 

C) An iterative procedure for solving Equs. (8) and (9) was proposed 
by KUTZELr~IGr [15, 20]. A s a  first step he simplified Equs. (8) and (9) by  
decoupling those corresponding to coefficients a~ and one-electrr functions 
~bK~ of different geminals. The first natural orbital in each of the geminals was 
identified with a suitable "localized" unitary transform of the occupied Hart- 
r ee - -Fock  orbitals. By  using these decoupled equs. he determined the 
"'excited" natural orbitals, which were required to be orthogonal to all occupied 
Har t ree - -Fock  orbitals and to all "exci ted" natural orbitals of the same geminal 
but  not to the "excited" natural orbitals of the other geminals. In the case of 
Be and LiH the correction owing to the nonorthogonality of the "exci ted"  
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natural orbitals was found to be small as the "excited" natural orbitals of dif- 
fer› geminals ate localized in different spatial regions. Nevertheless this 
method of approximation does not belong rigorously to the separated pair 
theory but  is closely related to the independent pair model of SIr~ANO�91 
[21, 22] and of NESBET [23]. 

Similar simplified equations were applied for determining the natural 
orbitals of geminals by EDmSTON and KRAUSS [24]. 

D) The method of "optimized valence configurations" is also a special 
case of the separated pair approximation [25]. Only the bonding pair was cor- 
related but all the one-electron functions were optimized. The Equs. (9) 
were solved by expanding the ~vi<~ in terms of a fixed set and the off-diagonal 
Lagrangian multipliers were absorbed in the operators F~. 

Method B) was applied to LiH [18] and to beryllium-like systems [26]. 
In the latter case 15 different Slater orbitals were used as basis functions 
and the exponents ~ were also varied. In the case of the Be atom 89.8% of the 
total correlation energy was recovered. Similar results were obtained for other 
systems. 

Method C) was applied to Be, LiH [20] and to Bett2, BHa, CH~ [26]. 
For Be and LiH the results are similar to those obtained by method B). The 
correlation energy per equivalent geminal corresponding to the bond X - - H  
was found to decrease continuously from LiH to CH 4. A comparison with the 
empirical correlation energies indicated tha t  the sum of the intrageminal 
correlation energies comprises a continuously decreasing fraction of the total 
correlation energy. This means tha t  the intergeminal correlation energies 
should also be taken into aceount and tha t  the correlation energy of the X - - H  
bonds is not transferable. 

We can easily recognize the shortcomings of the conventional separated 
pair theory by comparing it with other theories of the correlation energy. 

The most developed methods ate the "many-electron theory"  of SzNA- 
~O�91 [21, 22] and the " theory ofn- th  order Bethe--Goldstone equations" of 
NESBET [23]. They are closely related but the latter is more convenient for 
comparison because it applies one-electron function expansions. The exact 
wave function of a 2N-electron systemis determined bythe  successive variation- 
al solution of effective SchrSdinger equations for clusters of one, two, three 
etc., electrons. Slater determinants q~k of 2N-th order are used as basis func- 
tions, which ate constructed out of a set of orthogonal one-electron functions 
{r 

Ck = [(2N)I] -12 det ]~~t r162 

The set {r is divided into two sets ~b~, ~ = 1, 2 , . . .  2N, and q~0, e = 2N ~- 1, 
2N + 2 , . . . ,  the first of whichis usually identifiedwith the occupied Hartree-- 
Fock spin-orbitals. The Slater determinant containing only the functions of the 
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first set is denoted by r  and Slater determinants in which the occupied r 
~a,~bs, etc., ate replaced by  CQ,r are denoted by ~,Ÿ . . . .  The first 
order corrections e~ to the  Har t ree- -Fock  energy EnF are calculated by  mini- 
mizing separately the expressions 

e , =  <L tH[L> EHp (10) 
<LIL> 

with respeet to the coefficients of trial functions 

f~ = r + ~ b~ q~~. (11) 
# 

The second order corrections e~ ate ealculated by minimizing separately 
the expressions 

<f~ [HIf~> E n p  - -  e ,  e x (12) e u x  - -  - -  _ _  

with respect to the coefficients of trial functions 

Q o ~,O 

(13) 

The proeedure can be continued by ealculating higher order corrections. 
The total correlation energy up to second order equals 

2 N  2 N  

E c = 2 ~ e , +  2 ~ e~x. 
x ~ l  x > ~ = l  

As the first sum in closed shell systems (Be, Ne) was found to be zero, the 
total correlation energy in this approximation consista of the sum of the inde- 
pendent pair correlation energies e~~. Calculations carried out on simpler sys- 
tetas indicated that  in this approximation 97--98% of the total correlation 
energy could be recovered using a fairly large basis. 

The lowering of the energy is brought about by  terms 

dl  d2 rs (1 -- Pu) r (1') r (2') Ce (1) r (14) 

in the expression (12) of e~ where they are multiplied by appropriate coeffi- 
cients b~a. As the matrix elements (14) represent exehange-like interaetions 
their value is significant onlywhen ~b~ and r are localized in the same regŸ 
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ons ofspace where the corresponding r and ~b~ are appreciably different 
from zero [28]. The electrons in ~b~ and ~b~ can be excited to any ~b~ and ~b~. 

The correlation energy obtained by the separated pair theory can be 
written approximately in the following form [19, 20] 

K 

where eK denotes that  part  of the correlation energy which comes from the 
geminal VK" 

This means that  the separated pair theory has two main defieieneies: 
a) I t  takes into aceount only N pair eorrelations (the so called intrage- 

minal correlations)instead of 122] . ' ~ ' "  

b) Even the pair correlations included ate restricted to some extent 
because theelectrons in ~b x and ~b~ cannotbe excitedto any ~b~and ~b, but  only 
to a subgroup of them as a consequence of the SC's. 

These defects ate not serious if the system consists of N completely iso- 
lated pairs because then 

~VK(1,2)~L(1,2')=0, if K==/=L, 

automatically. This case is, however, an exceptional one. For strongly localized 
systems as e.g. for the Be atom, the error in the correlation energy caused by 
deficiency b) is not significant (2~) .  For weakly localized systems even this 
error may be more serious [29]. The neglect of intergeminal correlations (defi- 
ciency a)) is inadmissible, even for strongly localized systems. The importance 
of the interpair correlation energy was stressed by McKoY and SINANO�91 
[30]. I f  accurate results are needed the conventional separated pair theory 
should be corrected. 

Extension of the separated pair theory 

Part  of the intergeminal correlation energy within the framework of 
the separated pair theory can be taken into account as follows [7, 9, 31]. 

Each set of the equations (8)with fixed HK has [n2K/linearly independent 

solutions ~Vgk one of which, ~K1, is identical with the best possible geminal; 
the others represent "exci ted" geminals. (ng is the number of one-electron 
functions qf<~ in the subspace K.) They obey the following orthogonality rela- 
tions 

S~?<k (1, 2) ~Kl (1,2) dl  d2 = �91 

.[ ~VT<k (1, 2) ~Ll (1, 2') dl  ----- 0, ir K==/=L. 
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The  most  general 2N-elec t ron  funct ion of the  separa ted  pair  t h eo ry  can 
be wr i t t en  in the forro 

~ S P  "-- . ~  A iJ" ' l~J iJ" ' l ,  (15) 
i,j,...l 

where the  an t i symmetr ized  products  

~_/iL..l=[ 2 N 11/2 
[ (2�9 j ~ ( -  1)PP~5~(l '2)v '2J(3'4)  "~VNI(2N ---1,2N) (16) 

conta in  one geminal of each of the N subspaces. (The funct ion i = j . . . . .  
= l = 1 corresponds to ~0") 

Ins tead  of solving the secular equat ion corresponding to (15) i t  is more  
pract ical  to use the Rayleigh - Schr0dinger per tuxba t ion  theo ry  based on par t i -  
t ioning techniques [7, 31, 32]. We have for the  correct ion to the separa ted  pair  
ground s ta te  energy (5) up to  th i rd  order  

where 

Hor Hrs Hso IH~ + ~ , (17) 
"~" E o Hrr (E o H~~)(E o -- Hss ) r > 0  - -  r > 0  - -  

s > 0  

The m a t r i x  e lement  Hor is different  f rom zero only  when the conf igura t ion 
~ r  contains two " e x c i t e d "  gemina l s .  

I t  can easily be shown t h a t  the  first  sum of (16) includes the in tergeminal  
correlat ions consistent  with the  SC's. I f  the H a r t r e e - F o c k  approx imat io  n is 
a fair ly good one the na tu ra l  orbitals in the lcading t e rm of the best  possible 
geminals are near ly  ident ical  with some u n i t a ry  t ransforms of the doubly  
occupied H a r t r e e - F o c k  orbitals.  In  this case we f ind among the " e x c i t e d "  
geminals those the leading t e rm of whieh is ncar ly  identical  with one of the 
possible singly-excited configurat ions within the  corresponding subspace.  
These " s ing ly -exc i t ed"  geminals in the f irs t  sum of (1~) aecount  for all double  
exci ta t ions which conform to the  SC's. Three-  and four-part ie le  exci ta t ions ate 
also included.  

I t  can be shown tha t  configurat ions (16) above do not  exhaus t  all the  2N- 
electron states which can be cons t ruc ted  out  of the  known one-electron func- 
tions ~K~. A s a  eonsequence of the SC's the n u m b er  of electrons N K in each of 
the subspaces ate conserved and equal to 2 [31]. To get all l inearly independen t  

,j ..l 2N-elec t ron  functions kan, &..N~v which can be der ived f rom the ~n~'S we have  
to cons t ruc t  also the funct ions corresponding to all possible par t i t ions  of the  
set N1, N 2 . . . .  NN, ZNK = 2N, exeept  for those where N 1 = N 2 . . . . .  
= N n =  2. 
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~ij...t The funetions N~N,...NIr are expressed as antisymmetrized produets con- 
taining one group funetion ~N,k of eaeh of the N subspaees [31]: 

where 

~Jij...l [ Nll N2!" "NN!  ] tI2 
NxN,...N,, = (2N)! "~'~p ( -- 1)p P~N,i ~PN~./''' ~N~I, 

a n d f o r  NK > 2  

~NKk ~ 1, if N K = 0,  

~)NKIr ~~- q)Kx, if NK = 1, 

VNN~~~~0K~, if N t < = 2 ,  

7pN~, ~ ~ (NK!) -112 det ]~I<~ (1) ~0Kx (2).. "~Kv (NK)I �9 

tr#]...t Every ~N,N,..N~ can be derived by "excit ing" electrons out of the ~P0 by 
elementary excitations of two kinds 

--simple excitation: replaces one group function by another belonging to 
the same subspace and occupation number 

--eleetron transfer exeitation: transfer one eleetron from one subspaee to 
another, altering two group funetions simultaneously 

-~Nlrk ~Nzl  "-~ ~NK--ti ~NI,+Ij" 

The mŸ number of simple excitations necessary to transfer a given state 
into another is always unique. This means that  all states having nonzero 
matrix element with ~u 0 can be derived from Y0 by two elementary exeitations. 
I t  is exactly these states which should be taken into account in calculating the 

t / / @ . . l  eorreetion up to third order (17). The eorresponding funetions ~N,N,..Ns 
ean be grouped aeeording to the minimum number of neeessary elementary 
exeitations to eonneet them with Y0: 

I) two simple exeitations. The eorresponding eonfigurations describe 
the eorrelations eonforming to the SC's. 

II) one eleetron transfer exeitations. 
III)  one simple exei ta t ion-Ÿ electron transfer exeitation, 
IV) two electron transfer excitations. 

I t  can be shown tha t  they inelude all possible two-eleetron exeitations and in 
addition some of the many-eleetron exeitations. 

This proeedure was applied to the Jr-eleetrons of trans-butadiene in the 
GOEPPERT--MAYER--SKLAI~ approximation [33, 34]. The separated pair ground 
state was calculated using equivalent orbitals constructed from the SCF orbi- 
tals of PARR and MULLIKEN [35], and all second order corrections were evaluat- 
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ed. I t  was found that  the intrageminal correlation energy accounted for is 93~/o 
of the standard value which was identified with tha t  obtained by the "ful l"  
CI. About 75% of the intergeminal eorrelation energy carne from one electron 
transfer eonfigurations of type II) and III) .  The contribution from configura- 
tions of type I) whieh conform to the SC's was less, 25~o , and praetically the 
whole carne from configurations containing two "singly-excited" geminals. 
The contribution from two eleetron transfer configurations was found to be 
negligible. The result was superior to those obtained by other variants of the 
Rayleigh--Schr6dinger perturbation theory. 

The above procedure is convenient especially when perturbation theory 
is used. 

MILLER and RUEDENBERG worked out a different method to obtain all 
2N-e]ectron functions which can be eonstrueted from the ~vK.'s [26]. Using 28 
configurations about 94~o of the empirical correlation energy was recovered 
for beryllium-like systems. The natural orbitals obtained from the separated 
pair wave funetions were very similar to those caleulated from the 28 eonfigu- 
ration wave funetion. 

Conclusions 

The eonventional separated pair theory has not eompletely fulfilled all 
earlier expectations. The single antisymmetrized product of strongly orthogo- 
nal geminals accounts for only a fraction of the total  correlation energy. Even 
for strongly localized systems (Be, CH4) this fraetion is about 90- -50~ .  The 
transferability of the geminals seems to depend strongly on the environment of 
the corresponding pairs. 

To aehieve "chemieal aceuracy" it is necessary to go beyond the conven- 
tional separated pair theory. The extensions up to the present have nsed the 
one-electron functions optimized in the conventional theory and for small 
strongly localized systems have given promising results. The applicability 
depends mainly on the convergence of the expansion used in the extensions. 
I f  the natural  orbitals of the separated pair wave fu~lction ate very close to 
the natural  orbitals of the exact wave function then the tate of eonvergence 
is nearly optimal and the second and third order eorrection of perturbation 
theory may be suffieient. The evaluation of the higher order corrections seems 
to be very elumsy. The practicability of the theory can be decided only when 
the results of further numerical calculations on various systems is available. 
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PA3BHTH~ B PA3~EJIEHHOITI FIAPHOITI TEOPHH 

a. KArlYM 

Pe31oMe 

B nocJ~e~HHe ro~~ CTa/I0 B03M0~HbIM 0npeJIeJIHTb CTp0r0 0pT0r0Ha~bH~e reMHHaJ~L�91 
B$I~! HeKOT0pbix Man~x CHCTeM H HCcJIejIOBflTb 3~X~eKTHBHOCTb KOHBeHUHOHaJIbH0~t pa3~e~eH- 
HO~ rlapH0~ Te0pHH. PC3yJIbTaTM cpaBHHBalOTC~I C IIOJIyqeHHtdMH IIyTeM IIpHMeHeHH~I ~pyFHX 
MHOF03YleKTpOHHMX TeOpH~. O£ BHHMaHHe Ha HCT0qHHKH FYlaBHblX HeJ~OCTaTKOB. 
PaccMaTpH~aeTcg ~a~bHe~tmee pacmHpeHne pa3~enenHo¡ napno~ TeopnH, npnMeHs~)tuefi 
OnTHMH3HpOBaHHb[e Op‰ B0$IHOBOH (I)yHK~HH np0CTO aHTI4CHMMeTpH3Hp0BaHH0r0 FeMH- 
HaJIbHOFO IIpOH3Be~eHH~I. 
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