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According to the accepted theoretical explanation of HUND’s rule the electronic inter-
action energy is smallest in the ground state which is of the highest multiplicity. A breakdown
of the total energy into one- and two-electron contributions in the case of carbon atom based
on self-consistent field calculations and configuration interaction treatment shows that this
assumption is not valid. According to our results the main differences in the energies of different
terms arising from the same electronic configuration are due to differences in the one-electron
energies.

1. Introduction

The simplest treatment of atomic spectra is based on the assumption
that a single electronic configuration can be attributed to each atomic energy
level. The positions of the different terms arising from a given electronic confi-
guration, are determined theoretically by diagonalizing the matrices of electro-
static and spin-orbit interaction [1, 2, 3]. For light atoms the spin-orbit inter-
action is weak and can be treated as a perturbation, so that the different terms
can still be characterized by their LS values and parity.

According to Hunp’s empirical rule [4], of all terms arising from a cer-
tain electronic configuration, the term with highest multiplicity has the lowest
energy. This rule predicts correctly the ground state of most atoms, but it
usually does not hold for excited states.

The accepted theoretical explanation for this rule is based on the pheno-
menon of the “Fermi hole”. It is well known that antisymmetrization of the
wave funetion introduces strong correlation between electrons with parallel
spins. LowpIN [5] has shown that the diagonal element of the second order
density matrix, I'(x,x,|x,x,) is zero for x; = x,, at least up to the second order;
that is, the probability of finding two electrons with parallel spins at the same
point in space is zero, whereas the probability of finding two electrons with
antiparallel spins at the same point can be different from zero. This can be
viewed as if each electron is surrounded by a “hole” — the “Fermi hole” —
which cannot be penetrated by electrons with spins parallel to its own. In these

* Dedicated to Prof. P. GoMBAs on his 60th birthday. One of the authors (R. P.) would
like to express his gratitude for the stimulus and advice that he received at the beginning of his
research work from Professor P. GomBAs,

** Part of a thesis (A. L.) submitted to the Senate of the Israel Institute of Tec hnology
in partial fulfilment of the requirements for the M. Sc. degree.

Acta Physica Academiae Scientiar um Hungaricae 27, 1969



170 A. LEMBERGER and R. PAUNCZ

circumstances, it may be expected that the electron repulsion energy will be
lowest in the term with the highest multiplicity as the latter has the greatest
number of electrons with parallel spins.

If we now assume that the one-electron energy is equal, or only slightly
different, for the different terms arising from the same electronic configuration,
then the energy differences between terms are mainly due to differences in the
electron repulsion energy. As the latter is expected to be lowest in the term with
highest multiplicity, this term must have the lowest total energy.

When this explanation is examined more carefully, it is worthwhile to
pay attention to the following point: The existence of the Fermi hole is a direct
result of the antisymmetry of the wave function and does not depend on any
approximation method used to calculate the wave function. However the
assumption that the one electron energyis equal forthe different terms, arising
from the same electronic configuration, is based on the accepted approximation
method used in atomic spectroscopy, that is, the attribution of a single confi-
guration to each atomic energy level and the use of the same atomic orbitals
for the construction of the wave function of each term. (The way by which
the “best” orbitals are found is unimportant to this discussion). This method
of approximation has the advantages of being simpler than the usual HF meth-
od and it can easily be extended for the perturbation calculation of the magne-
tic interactions (LS-coupling). SINANOGLU [6] used this approximation as a
convenient starting point for his calculations of the correlation energy.

Nevertheless, we have no reason to assume a priori that a similar result
for the one-electron energy of the terms will be obtained when a more exact
calculation of the wave function is made, that is, when the variational calcu-
lation is performed separately for each term, within the framework of the
single configuration approximation, or when the more exact method of super-
position of configurations is used to calculate the wave function. Moreover, it
is known that a separate variational calculation for each term may give
appreciably different orbitals for different terms [7]. The influence of super-
position of configurations can have even more drastic effects on the energy
differences between terms [8], especially in the casevof Z-degeneracy.

The object of this study was to examine the various contributions to the
energy differences between terms, when a variational calculation is carried out
separately for each term, and thus to check the validity of the accepted expla-
nation for Hunp’s rule.

2. Breakdown of the energy for light atoms from SCF calculations

The first step in the investigation consisted in the calculation of the dif
ferent components of the energy (kinetic energy, nuclear attraction energy and
electron interaction energy) for the low lying terms of the atoms from the first
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Table I

Energy components for the three lowest terms of the carbon atowm as calculated from
CrLEMENTI’s! SCF-functions®

Term Kinetic Nuclear attraction ‘ Electronic repulsion Total
energy energy | energy energy
:p 37.689 —88.137 12.760 I —37.689
1D 37.632 —87.992 12.728 —37.631
18 37.550 —87.769 12.669 [ —37.550
!

* Energy values in this and the following tables are given in atomic units.

L See [9].

two rows of the periodic table. The calculations were based on self-consistent
wave functions obtained by CLEMENTI [9] using the RooTrAAN ~— SCF method
[10]. These functions were chosen for two reasons: 1. The variational calculation
was made separately for each term, thus omitting the usual simplification. 2.
The orbitals are of analytic form so they are easy to deal with and still are very
close to the Hartree—Fock functions.

The expressions for the energy as a linear combination of radial integrals
are tabulated for each term [11]. All the integrals can be calculated exactly
by analytic formulas.

Results for the different energy components exhibited the same beha-
viour in all cases. In the following tables we shall present data for the case of
carbon atom as an illustration of the general trend. Table I contains the differ-
ent components of the energy for the three lowest terms of carbon arising from
the electronic configuration 1s2s22p2

The energy sequence of terms is 3P < 1D < 1Sin accordance with expe-
riment and HunND’s rule, but the electron repulsion energy is greatest in the
3P term, in complete contradiction to the accepted explanation for this rule.
The factor which determines the energy-sequence of terms turns out to be the
different nuclear attraction energy and not the difference in electron repulsion
energy.

Closer examination of the results (Tables II, III) shows that the factor
responsible for this behaviour is a concentration of the electronic charge of
the 2p orbital, closer to the nucleus, in the term with highest multiplicity. This
causes an appreciable decrease in the nuclear attraction energy, as compared
with the other terms, and at the same time, an increase in the repulsion energy
of the charge in the 2p orbital with the charge in the closed shell, although to
a lesser degree. Comparison of the radial charge distribution in the 2p orbital
for the three terms (Fig. 1) verifies this finding.

The difference in the energies and charge distributions between the closed
shell orbitals, 1s, 2s, of the three terms are smaller and have smaller influence
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Table 1

Components of one-electron energy (kinetic energy and nuclear attraction energy) for the
three lowest terms of the carbon atom calculated from CLEMENTI’'s! SCF-functions

Kinetic energy -+ nuclear attraction energy

T
o (1s) ‘ (2s) (2p) Total
p { —35.869 ‘ —17.684 —6.895 —50.448
D © —35.870 t —17.704 —--6.786 —50.360
1S | —35.871 | —-7.732 —6.616 —50.219
| : - !
! See [9].
Table IIT

Components of electronic repulsion energy for the three lowest terms of the carbon atom
calculated from CreMENTI’s! SCF-functions

Closed-shell 1 Inter-shell Open shell Total
Term repulsion energy I repulsion energy repulsion energy repulsion energy
p 7.222 , 5.048 0.490 ! 12.760
'D 7.237 4.959 0.532 ‘ 12.728
1S 7.260 4822 ! 0.587 12.669
18ee [9]
1,57
3p
to
4
7 107 *
‘€
3
»n
-
o]
e
o
o]
057
0 1 ; 3
r (do)

Fig. 1. Mean charge distribution in the 2p-orbital for the three lowest terms of carbon atom
calculated from CremENTI’s SCF functions
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on the energy differences between the terms. This result could be expected
since the inner shell of the atom is known to be influenced only slightly by
changes in the outer shell.

Another interesting point which is observed in Table III is that the repul-
sion energy in the open shell only is in the order 3P < 1D < 1S. That is
although there are differences in the 2p orbitals of the three terms, it can still
be observed that antisymmetrization of the wave function introduces a measure
of correlation between electrons with parallel spins. However, this correlation
has a slight influence on the energy differences between terms and the main
factor is, as was mentioned above, the difference in nuclear attraction energy
of the 2p orbital.

Exactly analogous results were obtained for the other atoms examined —
N(48°% 2D°, 2P°), O(3P, 1D, 1S) and their counterparts in the second row of the
periodic table — Si, P, S.

3. Configuration interaction calculations

In order to ascertain whether the above results are not limited to the
single configuration approximation (it is well known that SCF-functions do not
yield a good description of two electron observables) the different components
of the total energy were calculated for the three lowest terms of carbon, using
CI functions.

These functions were calculated by us following a previous calculation
made by Boys [12]. The first step consisted in recalculating Boys’ results
and in the second — other configurations were added to the function in view
of improving the energy. Computer programs have been written for the calcul-
ation of matrix elements between the atomic configurations involved and for
the solution of the secular equation. For the latter we used the partitioning
technique of LOWDIN [13], which was found to be very convenient for such
calculations.

Results for the wave functions and energies are listed in Table IV.
Comparison of the energy values obtained in the different approximations
is given in Table V. The fourth column presents the best values known in
literature for the carbon atom, published recently by WEeIss [14]. Another
comparison to experiment is obtained by the interval-ratio :S—1D/!D —3P for
carbon (Table VI).

Superposition of configurations appreciably improves the quantitative
agreement of the interval-ratio with experiment, so that it can be expected
that these functions will give a better description of the energy-differences
between the various terms of the carbon atom. Results for the different com-
ponents of the energy as calculated from these functions are given in Table VII
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Table 1V

CI functions and energies for the three lowest terms of the carbon atom (present work)

— o
(sA%)(s B¥)pA> 1.0 1.0 1.0
(sAsC)(sBY)pA? 0.00931 0.00925 0.00967
(sC®)(sBY)p A2 —0.01511 —0.01510 —0.01505
(pC2)(sB?)pA* 0.01604 0.01604 0.01602
(sA42)pA® 0.12462 —0.12361 —0.24778
(sA%)(s BsC)p A* 0.00797 0.00905 0.01469
(sA%)(sBsD)p A* —0.07872 —0.08039 —0.09033
(sA4%)(sB)pApB 0.04275 0.07925 0.13294
(s A%} (sBd4)y D(p.42)p 0.09996 0.14982 —
(sA*)(sBdA)? D(pA*)'D 0.12085 — —
(sA%)(s BsC)pApB 0.03357 0.03387 0.03473
(sA®)(s BsD)pApB —0.05449 —0.05736 —0.06209
(s4*)(sBY)pB? —0.04089 —0.05698 —0.07736
(sA*)(s BY)d 42 0.03614 0.04780 0.09714
(sA*)sB)pApD’* 0.13952 0.17279 0.22358
(s:45%sB3)pApC 0.03912 0.04454 0.05233
(AN A pA? —0.03496 —0.03482 —0.00544
(s42)(pB)p A2 0.01861 0.01893 0.00278
(sAsB)(sC?)pA* —0.00542 —0.00543 —0.00549
(sB)(sCsD)p4? —0.00375 —0.00376 —0.00380
E(a.u.) —37.7600 —37.7030 —37.6416

* The orbital pD’ is not the one used by Boys — it is rather a linear combination of
Boys’ pD and pC, which is orthogonal to pC.

Table V

Comparison of energies for different calculations for ‘the carbon atom

SCF cI | cI a
Term (CLEMENYT) (Boys?) } (present work) (WE1ss?®) Exp.2
ip —37.689 —37.747 ( —37.760 —37.779 —37.841
D —37.631 —37.689 —37.703 —37.731 —37.795
18 —37.550 —37.633 —37.642 —37.679 —37.742
1 See [9].
2 See [12].
3 See [14].
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Table VI
Comparison of the interval ratio (!S—!D)/(!D—3P) for the different calculations
N SCF CI I CI
Stater (CLEMENTI?) (present work) ! (Werss?) Exp.¢
1.50 t 1.43 } 1.08 l 1.09 1.13
! See [2]
2 See [9]
¥ See [14]
* See [2]

Table VII

Energy components for the three lowest terms of the carbon atom, calculated from the CI
functions of Table IV

Kinetic Nuclear attraction | Electronic repulsion Total

Term energy energy energy energy

P 37.635 —817.958 12.563 —37.760
D 37.583 —817.821 12.535 —37.703
1S 37.553 —87.677 12.483 —37.642
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Fig. 2. Mean charge distribution in the L-shell for the three lowest terms of carbon atom as
calculated from the Cl functions given in Table IV

-
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These results indicate exactly the same behaviour as the one observed -
using SCF functions: The electron repulsion energy is highest in the term with
highest multiplicity and the factor responsible for the order 3P <7 1D < 1S is
the difference in nuclear attraction energy.

Comparison of the mean radial charge distribution of the three terms
indicates that the differences in the inner shell (K shell) are very small but there
are differences in the outer shell (L shell). The radial charge distribution in the
L shell of carbon for the three lowest terms is given in Fig. 2.

The charge in the 3P-term is concentrated closer to the nucleus than in
the other terms, and this seems to be the reason for the decrease in nuclear
attraction energy and for the increase in the electron repulsion energy.

4. Summary

Results of the calculations indicate that the accepted explanation for
Hun~Dp’s rule is based on an approximation and it does not remain valid if more
elaborate methods are used for the determination of the atomic wave function.
It seems that at least for the three lowest terms of the carbon atom the differ-
ences in term energies are due to changes in spatial charge distribution, so that
the main factor responsible for the order of energies is the difference in nuclear
attraction energy, not in the electron repulsion energy.

Although we cannot conclude that this result is characteristic of all
atoms (it is probably not the case with positive ions), the above results still
emphasize the fact that the differences in one-electron energy between various
terms are of the same order of magnitude as the differences in electron repulsion
energy and their neglection is, therefore, unjustified.
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TMPUMEUYAHHWS OTHOCHUTEJIBHO TEOPETHMUECKOI'O TOJIKOBAHMSA
IMTPABUJIA TYHOA

A. JIEMBEPTEP u P. ITAYHL

Pe3wme

CorJjlaCHO NMPHHSITOMY TEOPETHYECKOMY TOJIKOBAHHIO NMpaBHJia ['yHIa 3HEPTHS SNIEKTPOH-
HOT0 B3aUMoOeiicTBHA HanOosiee HH3KA B OCHOBHOM COCTOSIHHH, YTO 06YCJIOBJIHBAETCS BHICOKOH
MYJBTHNJIETHOCTbIO. Pacnajg mojiHOH 3HEPrHH B OHO- H ABYX3JIEKTPOHHLI BKNagw B Clyyae
aTroma yriepoja, onpejeseHHuH Ha 6a3e METONA CaMoCOrlacOBAaHHOTO MOAS H KOHGHIYpaLHOH-
HOr0 B3aHMOJCHCTBHA, TOBODHT 0 HeJCHCTBHTENBHOCTH JAHHOr0 mnpepnonoxkeHusi. Haum
pe3yJibTaThl NMOKa3bBAIOT, YTO [VIABHOE Pa3jiHuHe B AHEPrHSAX Pa3IHYHBIX TEPMOB, NMPOHCXOQs~

IUX OT OAHOH H TOH >KE 3/MeKTPOHHOH KOHQurypauuy, o6yCJI0BJIHBAETCS PAa3IHYHEM B OJHO~
3JIEKTPOHHHX 3HEpTHsIX.
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