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This paper studies the correction to the Thomas—Fermi potential arising from the exi-
change inhomogeneity and correlation effects. Using the BARAFF equation and the approxi-
mate solution of the Thomas—Fermi equation for free neutral atoms, given by one of the authors
there has been considered the low and high density approximation. It is found that the main
contribution to the solution of the BARAFF equation arises from the inhomogeneity, screening
and exchange terms.

Lastly the study of correlation effects in many-body systems has attract-
ed the attention of a number of scientific workers [1]. This paper studies the
correction of the Thomas —Fermi potential for free neutral atoms from the ex-
change, inhomogeneity and correlation effects by using the differential equa-
tion of BARAFF and a simple analytic expression of the Thomas —Fermi poten-
tial with a correct asymptotic behaviour for large distances.

It has been shown by BARAFF [2] that the first nonzero correction @, to
the Thomas —Fermi potential [3] D is given by the solution of the differential
equation
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where pp denotes the Thomas—Fermi momentum, Eex = —e’pg/nh and

Ecorr denote the exchange and correlation energies of the system, respectively.
The first term on the right-hand side of Equ. (1) represents the contribution
arising from exchange and correlation effects and the second term gives the
inhomogeneity correction. The second term on the left-hand side introduces
the screening effect, which is one of the important consequences of the long-
range Coulomb interaction of electrons. The right-hand side of Equ. (1) depends
on @,, the Thomas—Fermi potential, and in solving the differential Equ. (1)
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we shall use the simple analytic solution of the Thomas— Fermi equation given
by one of the authors [4]

Ze
r(1 + Ax)*(1 + Bx)

By (r) = — (2)

where x=r/p and 4=0.88534a,/Z'/%. Z is the atomic number and a, is the first
radius of the hydrogen atom.The numerical values of the constants 4, B appear-
ing in Equ. (2) aregivenby: 4 = 0.05367 Z¥3, C = 0.035ZV3. In the following
we use atomic units and so put e = i = m = a, = 1. The correlation energy
of an electron gas has been investigated by several authors and it depends on
the density of the system.

Let r; denote the mean spacing between two electrons measured in units
of Bohr radii in the system. We then say that the system has high or low den-
sity according to rs S 1orr;> 1. According to GELLMAN and BRUECKNER
[5] the correlation energy of a high density gas is given by

E.n=G—Elnp,, where G= — 0.05546 and E = 0.0622.  (3)

For an electron gas for low density the correlation energy in atomic units is
given by the WicNER [6] formula

( 1/3
Eeor = — (0.89&% — 1) PF | Twhere &= (_4_
(4
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First we shall solve the BARAFF equation for @, given by Equ. (2) in the case of
high density; this means we use E. given by Equ. (3). Then we solve the
BARAFF equation for @, in the case of low density when E, is given by the
last formula.

Solution of Baraff equation for high density

In the high density limit the BARAFF equation according to Equ. (3) in
atomic units is

VO, — (—;f—] = 20,8, = [—‘”f—“z—"i +4-B an?szo}+
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QUANTUM AND CORRELATION CORRECTIONS 163

where @ is given in atomic units by Equ. (2). The generalsolution of @, given
by the last differential equation is the sum of the solution of the homogeneous
equation and the particular integral. Denoting the solution of the homogeneous
equation by @ and putting a series of the form

1
D = Yo, **S, where =l (6)
r k=1

!

for ® we obtain after respecting the initial equation s = 0, when «, = 0 and
ay = oty = 0 for the expansion coefficient o the following recurrence formula:
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The number I takes the following values: I=n—1/2 for even n and l=n — 3/2
for odd n, where n = 3,4, 5, . .. Setting®, = @ + y, where p is the particular
solution of Equ. (5) we see that the particular solution y after some simplifica-
tion satisfies the following differential equation
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and f(r) can be expanded in ascending powers of r, and one has

f= 3 Bur (11)

n=-—4
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where the expansion coefficients §,, are given by the following recurrence

relations
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andn=20,1,2,3,....

Equa. (9) cannot be satisfied by a power series alone, and a complete solu-
tion of it should also contain a term involving Int. Therefore in order to solve
Equ. (9) we put y in the form

Y= 2.0‘ a;t*4- s‘bst’-lm,

k=~4 §=0

where t = rY2, Substituting this in Equ. (9) and comparmg different powers of
t* and £'Int on both sides of the differential equation we obtain for the expan-
sion coefficients a; and bs the following recurrence formulae

= 16122
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=2, b=b=b=0, (12)
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n—4 for even n, l:l;—z;for odd n, and n=3,4,5, ...

where | =
also

2 ! .
n(n+2)a,+2(n+1)b, — _13%_7_ j=2; (— 1Y Djan_g 5j=4B,—y, (13)

for odd n,

nt+1
2

where l:—’—zl—for even n, I =
Boni1=0and n=1,2,3,....

The symbols D; appearing in formulae (12) and (13) are given by Equ. (8).
The solution of Equ. (9)still contains one arbitrary constant «, This can be
-#q
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Fig. 1. Graph of — @, against r for Z = 28. the rerults of P. VENKATARANGAN;
~--- the results of the authors

evaluated from the boundary condition at the origin. For any neutral atom the
potential near the origin is dominated by the nuclear attraction and this is
equal to —Ze?/r. Since the Thomas—Fermi potential @, also tends to —Ze?/r
as r—0, it is clear that the correlation to the Thomas— Fermi potential contains
any 1/i%, so that ay—=24-4-C/48. When «,=24-1 C/48 is substituted in Equ. (8)
we get the correction @, to the Thomas— Fermi potential.

We have studied the nature of variation of @, with r for the atems silicon
and nickel which have atomic numbers Z = 14 and Z = 28, respectively. Figs.
1 and 2 give the graphs of @, as a function of r. Our results have been compared
with those of VENKATARANGAN [7], which are based on another approximate
solution of the Thomas—Fermi potential given by the author [8].

From the graphs it follows that @, starts from infinity for very small
values of r, decreases to a minimum value and again increases.
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Fig. 2. Graph of — @, against r for Z = 14. — - the results of P, VENKATARANGAN:
--—- the results of the authors

Solution of the Baraff equation for low density

For an electron gas of low density the correlation energy is given by the
WicNER formula,i.e. by Equ.(4). The only difference in the differential equation
(1) now arises from the term (E; — p%/2m) which in this case is equal to —0.89
an(e*pp/nh).

After some calculation it can be shown that in this case the correction
@, to the Thomas —Fermi potential can be written as
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where the expansion coefficients d,, are given by
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for even n, and zero for odd n, where I=n/2 for even n, and I=n—1/2 for cd¢

n,and n = 2, 3, 4, . . ., the expansion coefficient y; satisfies the following for-
mulae:
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The symbols D} and 6, appearing in the last formula are:
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for n=5,6,7, ...

From Equ. (18) it follows that D, asymptotically tends to zero as r—2.
This is an unsatisfactory feature of the BARAFF equation since one would ex-
pect the correction to converge more rapidly than the Thomas— Fermi potential
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KBAHTOBBIE M KOPPEJIALIMOHHBIE TNOIMTPABKH K TNMOTEHLIUAJTY
TOMACA—®EPMHU

T. TUTU u C. KPBEMHHCKHA

Peswme

B nauHo# pa6ore MsyuyaeTcsi Koppensuus K noteHuuany Tomaca—epmu, oGyc/oB-
JICHHAs1 HEOJHOPOAHOCTHIO 00MEHA M KOPPENALMOHHbIMH 3(deKTaMH. IpuMenss ypaBHeHHe
Bapaipa u npubamxeHnoe pewenue ypasHenust Tomaca—®epMH UTsi CBOGONHBLIX HEHTpaJib-
HBIX aTOMOB, NaHHOE€ OJHHM H3 aBTOPOB, PacCMATPHUBAeTCsl MPHOJMKEHHEe Manolf H BHICOKOH
njorHocTH. HakizeHo, 4To OCHOBHOH BKJIaj B pellleHHe ypaBHeHHsi Bapagda BHocAT HeoaHO-
KpaTHble, SKPAHHDYIOHE H OOMEHHBIE UJICHHI,
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