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After the definitions of density operators (w the concept of single particle states is 
defined via the pure states of the first order reduced density operators (w Then the concepts 
of the NSO's and NSG's, as well as expansions in their terms ate treated (w Furthermore, 
KIANO'S variational approach is discussed and improved (w Finally, cluster expansions 
of the N-particle density operators ate obtained in terms of the first order reduced density 
operators in various tases. 

w 1 .  I n t r o d u e t i o n  

The independen t  part icle model  is the  most  famil iar  approx imat ion  for 
t rea t ing  many-par t i c l e  systems.  I t  was originally suggested b y  its va l id i ty  for 
perfeet  systems with comple te ly  separable  Hamil tonian .  However ,  for  real 
many-par t ie le  systems where owing to the interact ions  of the particles the 
collective behav iour  of  the sys tem is more dominant  and character is t ic  ir is 
clear t h a t  the  independen t  part icle model  loses its val idi ty .  Nevertheless it  
can be accepted ir the  " b a r e "  part icles and the  concept  of  the "ba re  par t ic le  
s t a t e s"  are replaced by  way of some kind of  renormal iza t ion  processes (sueh 
as those of  H a r t r e e - - F o c k  or Brueckner)  b y  the  so-called "d re s sed"  part icles 
of "dressed  par t ic le  s ta tes" .  But ,  in these v e ry  familiar  cases too, ir is a priori  
not  quite  ev ident  t ha t  (a) individual  of single part icle  s tates  exist  a t  all; 
(b) how they  are re la ted  to the classical concept  of particles;  and (e) in whieh 
way  the correla t ion problems of the part icles have  to be formula ted .  

Bearing in mind this antagonism be tween the fundamen ta l  ideas of  the  
eollective and independen t  part icle  models,  the  remarkable  suceesses of  the 
independent  par t ic le  models mos t ly  based on the methods  of  pseudo-potent ia ls  
- -  more recen t ly  summarized  and improved  b y  Professor  GOMB�93 in his 
excellent monograph  [1] - -  suggest once more a re invest igat ion of  its theoret ieal  
background in te rms of the new methods  t h a t  have appeared  reeent ly  in the 
theory  of m a n y - b o d y  (fermion) systems.  

The methods  ment ioned  - -  no tab ly ,  the methods  of dens i ty  operators  
and eluster expansions ineluding the most  impor t an t  in format ion  about  the  

* Dedicated to ProL P. GOMBŸ S on his 60th birthday. 
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collective behaviours of the systems - -  are, strictly speaking, not new at all, 
but  iuterest has again focused on them and they have helped in making 
remarkable progress in this important field. 

I t  can be hoped tha t  they will be of help also in replacing the a posteriori 
justification of the validity of the independent particle model by a direct one. 
Thus the aim of the present series of papers is to simplify the conceptual 
background of the problems investigated, to find a compromise in certain 
hotly discussed questions and to obtain a clear insight into the ideas involved. 
Improved mathematical tools are used which are related to simple and natural 
physical coneepts and some relationships are brought out which may be useful 
in making further improvements. 

In this first part after the definitions of the density operators and the 
brief summary of their fundamental  properties needed in the following argu- 
mentation (w the concept of single particle states is defined via the pure 
states of the first order reduced density operator (w Then, the concepts 
of the natural spin orbitals and geminals, as well as expansions in their terms 
are treated (w furthermore KIA~G's variational approach is discussed and 
improved (w Finally, cluster expansions of the N-particle density operator 
are obtained in terms of the first order reduced density operators in different 
cases, 

w 2. The definitions of density operators and their most 
fundamental properties 

I t  seems that  in looking for a consistent method of finding an approxi- 
mation method in terms of particle states one has to use the method of density 
operators, where in the case of tIamiltonians with two-body interactions the 
expectation values of any important observable can be obtained in terms of the 
so-called one and two particle reduced density operators alone. 

The density oras  ir is sometimes also called: statistical operator and in a 
certain representation mostly in co-ordinate representation the density matrix, 
respectively, were introduced by vo~ NEV~ANN [2, 8] and by DIRAC [4] to 
describe statistical concepts in quantum physics. Their first versiou is more 
common in the case of statistical mechanics, i.e., inthe case of many, practically 
infinite degrees of freedom; the second version rather in quantum chemistry, 
i.e., for atomic and molecular systems with limited degrees of freedom. 

The theory of density operators and its applications has been investigated 
in detail from very different aspects by several authors. The existence of general 
references [5--8], and of more recent special investigations whieh have been 
focused on the problems: (a) how far and under which condition the wave 
function of the many particle systems can be replaced by the one and two 
particle density matrices alone [9--12]; (b) what kind of collective problems 
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of the system's  behaviour  can be explained [13--19]; (c) in wha t  manner  the 
usual var ia t ional  method  could be reformulated in terms of densi ty  matriees 
[20], etc., makes any  extended discussion of the previous results unneeessary 
and we recall only  the  salient facts pa r t ly  in terms of new arguments .  

Having in mind atomic and molecular systems with  l imited degrees of 
freedom we s ta r t  wi th  DIRXC'S definit ion of the densi ty  operator.  Since in this 
case the number  of electrons does not  change during the discussion it m a y  be 
specified implici t ly and for a system of N partieles in a s ta te  with thenormal ized  
wave function T ,  the densi ty mat r ix  D of the system and the p t h  order redueed 
densi ty mat r ix  Dp - -  the so-called p -ma t r ix  - - ,  respectively, m a y  be regarded 
as an integral  operator  with kernels: 

D ( x t , . . . ,  xN ; x Ÿ  x'N) =-- T ( x l , .  �9 XN) ~ *  (XŸ �9 XŸ (2.1) 

and 

D ,  (~1,. -., xp; ~Ÿ ~~) = 

! 
= y d X p + l . . ,  d x  N ~ T i ( x u  ) ~y_/st ( x Ÿ  , x N )  , ( 2 . 2 )  

where each eo-ordinate xi of the "conf igurat ional  space" is a combinat ion of 
the space co-ordin ates ?z and spin-coordinate si of the particles considered. The 
in tegrat ion with respect to the Lebesgue--St iel t jes  measure d x p + l . . ,  dxN 
indicates an in tegra t ion  over the  co-ordinates ?p+l, - - . ,  ?N a n d a  summat ion  
over the dichotomie spin-variables sp+l, �9 �9  SN in the case of spin-half  particles 
(e.g., for systems of eleetrons). 

Independen t ly  of any  par t icular  representat ion let us characterize a 
definite s ta te  of the system by  the  normalized ]~> being an element of the 
abstract  Hilbert  space ~ .  This means t h a t  the s ta te  rec to r  in eoordinate 
representat ion int roduced above is an element 

~ ( x , , . . . ,  xN) = <xN, . . . ,  xll~U> (2.3) 

of the Hilbert  space ~ of the square integrable functions over the  N-particle 
configuration space {x i . . . .  , xN}.  

In  a definite s tate  - -  i.e., using von Neumann 's  terms:  in a pure s ta te  - -  
of the system considere(l, the densi ty  operator  D is the projector of the corres- 
ponding subspace r of the abstract  Hilbert  space ~ ,  i.e., 

being an idempoten t  operator 

D -= ] ~ > ( ~ l  (2.4) 

D2 = D, (2.5) 
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and the expectation value of any dynamieal quant i ty  A can be obtained as 

<A> = tr {AD),  (2.6) 

where  trM indicates the trace (i.e., the sum of the diagonal elements) of a 
matrix M. 

The most important properties of D can be summarized as foHows: 
(1) The condition that  <A> has to be real for every Hermitian operator A, 

requires D to be Hermitian too, 

D = D +. (2.7) 

(2) Keeping in mind that  the unit operator 1 has the mean value 1, 
requires 

tr{D} = 1. (2.8) 

(3) The condition that  every operator with non-negative spectrum has 
non-negative mean value, requires D to be positive definite, i.e., every diagonal 
element <nrD[n> must be non-negative 

<n I D In> ~ 0.  (2.9) 

(4) Owing to Equs. (2.8) and (2.9) it is easy to prove that  

tr {D 2} ~ 1, (2.10) 

which limits the value of every single element of the density matrix. The 
equality holds only for pure states. 

w 3. The definition of single particle states 

In order to f inda  natural definition of sŸ partielq states oran N-particle 
system we use the concept of pure states whŸ are not only of importance in 
density matrix theory, but  also are adequate to the classical ideas in the 
background of the independent particle model. We recall the argument which 
COLEMAN [11] used to prove that  it is sufficient to deal with pure states to 
solve the N-representability problem f o r a  p-matrix.  

The set of all N-particle density matrices {DN} is identical with the set 
~ N  of positive Hermitian operators of unit trace on the Hilbert space of anti- 
symmetric N-partiele functions. The set ~qJN is convex and its extreme elements 
are the pure states in the case of which D~ is idempotent.  The N-particle 
state introduced above indicated by  a single state rec tor  [~> is, of course, a 
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pure state and the corresponding N-particle density operator D is idempotent. 
Therefore, D is an extreme element of the set ~ N  = {DN}. 

For fermions, the set ~ N  consists of all positive Hermitian operators of 
unit trace on the space of antisymmetric p-particle functions. Whercas, the 
set of all D N coincides with ~N ,  the set of {Dp} is a proper subset O f ~ p  which 
we denote by  ~~N). I t  eonsists of those positive operators of unit trace on the 
Hilbert  space of the antisymmetric p-particle functions which ate p-matrices 
derived from the N-partiele pure state with the state vector I~>. Of course, 
�91 is a eonvex subset of ~ p ,  too, and its extreme elements are the p-matrices 
D~ ) being also idempotcnt  and they indicate pure states, as well. In accordance 
with Krein--Milman's theorcm which asserts that  a compact convex set is 
determined by  its extreme elements, our p-matrix Dp can be set up in terms 
of the pure states p-matrices D~ ) in the forro 

Dp =~~.'~ wP D ( i ) t  i P '  ( / ~  W~-~-1) (3.1) 

where w~-s ate again the statistical weights of the pure states. This means 
that  the Dp is, ingeneral,  no longer i n a p u r e  state, [[D~][ ~ []Dp[I, bu t  is in a 
mixed state being a superposition of pure statcs D~~ ). 

For ir p -~ 1, D 1 means the one-particle reduced density operator which 
is in a mixed state of the one-particle pure states 

DI = ~ Xt D~ 0, (~~i = 1). (3.2) 
i 

Bearing in mind that  D 1 and consequently also DŸ ') - s corresponding to puro 
states, ate deduced from the N-particle density operator D, they include all 
the information which follows from the collective behaviour of the system 
considered. Equ. (3.2) is nothing else but  the spectral resolution of the operator 
D 1 and the operators I)~;) ate the projectors of its eigenstates which ate usually 
denoted as the natural spin-orbitals, NSO's [9]. 

The NSO's as the eigenstates of the one-particle reduced density matrix 
are connected, on the one hand, to a single particle degree of freedom of the 
N-particle systems; on the other, they ate uniquely determincd b y  Krein--  
Milman's theorem. In fact, they can be interpreted as the singlc particle states 
of the N-particle system looked for, including all information about the 
collective behaviour of the real system needed. 

w 4. Natural expansions of the state veetor 

Suppose that  we have an N-partic]e quantum system in a bound state 
i~>, with norm unity. I f  the system is imagined to consist of two parts each 
wi thp  and N--ppar t ic les ,  having respectively d~fp and~fQ as their complete 
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s t a t e  r ec to r  spaces, then  the original abs t rac t  Hi lber t  space can be formed a s a  
complete  tensor p roduc t  space, ~Tr237 | oT( O. I.e., if [P>6~9Ÿ and ]Q>6~fQ 
ate a rb i t ra ry  unir vectors ,  and {lP/>} and {[Qj>} are complete  or thonormal  
bases  in ~T/'p and ~T('Q, respect ively,  { [P~Qj> } is a complete  or thonormal  basis 
of  ~T~ with [PiQj>=- [Pj>[Q~> = [Qj> q so tha t ,  e.g., 

[k~> : 2c[P,; Qj] [PiQj> (c[Pi; Qj] = (QjPi [~>), 
q 

(4.1) 

where it sectas desirable to emphasize b y  the nota t ion  tha t  the coeffieients 
c[PaQy] ate functionals of  the  s ta te  vectors  [Pi> and [Qj>, respeet ively.  

Let  us eonsider the  mappings ~Ÿ --* ~T('p and ~Ÿ --* JŸ realized b y  

Of course, the  relations 

/-- IQi> <Qi[ ~ IQ, ~.~ [pj><Pj[ ___ I ,  (4.6) 
i 1 

are the  resolution of the  uni t  operators in ~~'Q and o~Ct'p, respect ively.  
Let  us in t roduce the  reduced operators  

Dp=de' 2,  <Q,I~> <~IQ,> = ~IPj> A~? <P/ 
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(4.7) 

<Q;[~> = ~ , ' a [Q i ;  Pj]IPj>, j (4.2) 

<pjlk% = ~ b[Pj; Qfi ]Q,>, 
with 

a[Qi; Pj] = <Qi PjIW> , b[Pj; Qi] = <Pi Qi 1~/*> �9 (4.3) 

I t  is easy to check the theorems:  
Theorem 1. The eoefficients a[Q/; Pi] and b[Pt; Qj] generat ing the mapp-  

ings (4.2) ~Ÿ into ~Ÿ and ~Ÿ into oTr respeet ively,  ate 
(a) symmetr ica l  anti-l inear functionals of [Qt> and IPj>: 

a[Qi ; Pj] = a[Pj; Qi] ; b[Pj; qi] = b[Qi ; P i ] ,  (4.4) 

(b) they  ate equivalent  and the relat ion 

a[Qt ; Pi] = b[Pj ; Qt] (4.5) 

remains valid for any linear combinat ion of the  vectors  IQt> and ]Pj>, e.g., 

a[~~ lE> + cr ]Q2> ; fil lP1> -~- f12 [P2>] --- b[fll [PI> -~ f12 [Pz> ; cr IQI> -~- ~2 ]Q2>]. 
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with 

.4}Ÿ ~ ~ a[Qi ; Pj] a*[Qi ; P/.] ; (4.8) 
i 

and 

D det ~ '  <pj]~J><~[j[pj> = . ~  }Qi> A~~) <Qcl (4.9) 
J ii" 

with 

A~~)~~-~. b[Py;Qi]b*[Pj;Qi'] = . .~a[Q, ;P j la*[Qc;P j ] ,  (4.10) 
J / 

respeetively, where the  relations (4.2) and (4.5) were used. On the one hand,  
owing to the Hermit ian  eharacter  of the matr iees ,,jj,~(P) and ,,,,AC0) 

A~2"=A~,~~ ana A~~~'=A~~~, (4.11) 

i.e., their  diagonal elements are real. On the  other  hand owing to the  fact  t ha t  
the norm of the s ta te  r ec to r  i~> is uni ty :  

(~IW> = ~," (~lQi> <q;Iw> -- ~ [a[Qe; p/][z = 1,  (4.12) 
i q 

both  Hermit ian  operators Dp and DQ have unir  traces: 

t r { D p } = l  and t r { D 0 } = i .  (4.13) 

Theorem 2. There  exist or thonormal  basis systems, {[q~>} in ~ Q  and 
{ lpb } in ~~'p, respectively,  such tha t  

a[qi ;p/]  = ct £ (4.14) 

and the mappings (4.2) m a y  be replaced by  

<q~[W> = c~[p~>, (4.15) 
with ci = (qipi[~>. 

~pi[U> = ci]qi> , 

Indeed,  for an a rb i t ra ry  or thonormal  basis system { lp/> }~gŸ the  s tate  
veetor  I~>E~~(" can be expanded in the form 

IW> --= 2 atp, ; Q/]lpe Q/> = ~ (~j a[p, ; Q/] Oj>) p,> ~ 2~, tq ;> lp ,>  �9 
q " i 

The veetors I~,> of the  set { 1~i> } are independent ana t hey  can be normalized 
to unity,  but  t h e y  ate not  necessarily orthogonal.  However,  for ah adeqnate  
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{Ip,>}Ea~p the set {]~,>} can be replaeed by means of the Gram--Sehmidt  
proeedure by an orthonormal one so that  

1~> = 2 "  e, [q,p,> (4.16) 
i 

and, thus, the statement (4.14) is proved. 
The veetors ]q,> ate linear expressions of the veetors of these t  {1~/>}, 

but, owing to Theorem 1/b., if aecording to (4.14) a[qt;pj] is replaeed by 
ei~ly then b[pj; qi] = c i t~ i j ,  too, for the given orthonormal basis {lp,>}E~~~'e. 
Indeed, 

<P;I~> = ~ [qj><qjl <p,]W> = ~ ,  lqy><P,I <q/[~> = J 

= ~ Iqj><p,lpj> cj = c,[q,>. 
J 

This means that  there exist suela orthonormal bases {lP'>} in jŸ and {Iq/>} 
in ~~'Q that  the mappings (4.16) are fulfilled for i = 1, 2 . . . .  and, thus, the 
proof of the theorem is eompleted. 

The orthonormal set of veetors { Ipi>}E~~~f~v is the set of eigenstates of the 
operator Dp i.e., the NSO's in ~7~'p 

Dp IP,> = 2/IPi> with 2 i = Ic,I ~, (4.17) 
Then 

Theorem 3. (Carlson and Keller) I f  the set of veetors { Ipi>}E~'v are the 
NSO's of ~Ÿ i.e., the eigenstates of the p-matr ix Dp eorresponding to the 
eigenvalues ~t ~-- I~il 2 then in d~f~'O the eigenvalues of the q-matrix Dq ate also 
h i and the eorresponding eigenstates {/q~>} are the NSO's in d~Ÿ o. 

Inaeea, by the definitions (4.7) and (4.9) and from Equs. (4.15) 

Dp = ~Y <q,l~><~lq,> = ~ Ip,> x, <p,I, 
i 

(4.18) 

i i 
(4.19) 

which are just the speetral resolutions of  the operators Dp and Dq, respectively, 
with the elementary pr0jectors lPz><Pil and Iq3<q~I. 

Theorem 4. There exists such a partially isometric operator SpQ 
--= ~lpi><qil of ~Ÿ that  

i 

SboSvq=Iv and SvoSbo=I0 

and, from this point of view, Dp and Dq are unitarily equivalent: 

S~Q Dv SvQ = Dq. 
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This s ta tement  can be proved easily and it i s  another formulation of 
Carlson--Keller's theorem mentioned previously by  KIANG [20], although he 
did not go into the precise details. 

I t  is easy to see that  the operator Dp in co-ordinate representation is 
just  the p-matrix D(x 1 . . . .  , Xp; xŸ . . . ,  x~) defined by  Equ. (2.2). 

In order to simplify the writing let us introduce the notations Xp ~~- 
=-- {x i , . . . ,  xp}, Xq ~ {xp+l " ' "  xN}, ~(xp,  %) = <%xp]W>, Pi (Xp) = <xplpl > 
and qi(xq) = <xq[ql> , then 

~ ( x  v, xq) = ~~ ci <xq x.lpi qi> = ~" c~ <x.lpi> <xqlqt> = ~~  c~pt (x.) qi (xq) . (4.21) 
l l t 

As COLEMAN [11] pointed out Carlson--Keller's theorem was previously 
discovered by  Schmidt and formulated in the following way: 

Theorem 5. (Schmidt) Given a square integrable function ~v(xp, xq) 
suppose that  for u < v, f (xp)  with 1 ~ i ~ u and gj(xq)with 1 ~ j  ~ v ate 
linearly independent square integrable functions, then the minimum 

ti 

i1~112 - ~ [c~l ~ 
i = 1  

of 

=-I ~(x,, Xa) - ~ Aijfi (x,)gj (xq)~2, 
IJ 

where Aij are arbi t rary complex numbers, is obtained ir  we put  

and choose 

A~/= { Cio~i/', Jj > u ~ u 

fi (xp) = Pi (xp), g; (%) = qi (xq), 

where p~(xp) and q,(xq) indicate the first u NSO's. 
The proof of this important theorem can also be found, e.g., in COLEMAN'S 

paper [11]. 
In other words, the best least-square approximation as a sum of uv 

products of the forra f,(xp)g,(xq) is ~cip,(xp)q,(xq). 
i 

So far the symmetry  properties of ~(Xp, xq) have not been used. I t  is, 
however, well-known and on the basis of its definition ir can be easily checked 
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t ha t  for bosons and fermions there is a unique p -ma t r ix  associated with a given 
system.  We shall invest igate  the  fermion case below. 

F rom (4.12) and Theorem 5 it follows tha t ,  except  possibly on a set  of 
measure  zero, in aceordance with (4.21), set t ing p ~-~ 1 and q---~ N - - l ,  
we have  

~-/(*1, Xq) -7-- ~ ci p~ 1) (Xl) q~.N-l)(Xq) (4.22) 
i 

with 

ct q~N-*) (xq) : .[ dXlp~ 1) (xi) ~ ( x , ,  xq) . (4.23) 

Theorem 6. (Coleman) An y  funct ion Z(xl) ~ 0 belonging to the zero space 

~ o  1) of the  operator  D (1) o u 2 ~  (1), i.e., being or thogonal  to all t h e W - - N S O ' s ,  
n(N--1)l~. is or thogonal  to ~, ~~q/, too. 

Indeed,  b y  (4.22) 

o = . 2  ~ c, qiN-1)(x~) S dxl z* (x,)pil) (xi) = S dXl z*  (,1) ~(x , ,  x~, ~~,..., xN) = 
i 

= -  .f d , ,  z* (x,) ~(x~, ,1, ~~,. . .. xN) = -  

= - . Z  c~pT)(~~) y aXlZ* (x,) q~~~)(xi, x~ , . ,  ~~) 
i 

for all ci and p~l)(Xz) , therefore 

.[ axl z* (x,) q~.N-1) (xi, X3,. . ." XN) = O, (4.24) 
qu. e. d. 

Corollary. Siuce Equ.  (4.24) is valid for any  f ixed x 3 , . , . ,  XN, 
q!/~-i)(x 2, x 3 . . . .  , XN) can be expanded  in terms ofp~l)(x2), i.e., 

Ciq~N-1)(X2, . . . ,XN ) = ~. cij p~I) (x2) q~N-2) (X3,. . . ,  XN).  
1 

Therefore,  by  induction it can immedia te ly  be obta ined tha t  

~ / ( X l , . . . ,  XN ) ~ Ck,k:...k,yp~l) 1 * " --(1) --(1) 
k~k,...k.v 

(4.25) 

or in the language of the  abs t rac t  Hi lber t  space formalista 

I~~/�88 = ~ Ck~kz...k~v jp~l) p~Ÿ " .p(kNM) > �9 
kxk,...k~ 

(4.26) 

In  the  factor-spacecTf '(r) of  the rth particle one has to define the one- 
particle dens i ty  operator  in the  forro 

D(r) ~ -~~~ [P~)> 2k, <p~)] (4.27) 
k, 
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with the NSO's Ip~)> or in co-ordinate representation the first order reduced 
density matrix 

Di (xA x~) = ~ d x l . . . d x , _ l  dx ,+ l . . ,  dx~  ~ ( x i , . . . ,  x , , . . . ,  xN) ~ *  (xi,. �9 x~,... ,xN) 

with its eigenfunctions (1) Pk, (Xr). Owing to the unitary equivalence of the opera- 
tots D (r) and D (s) in respect of the partially isometric operator 

i.e., 

S(rs ) ~ ~.~ Ip~r)> <P!~)I 
l 

S(+rs) D (r) S(rs) = D(S), 

one does not have to distinguish the eigenvalues of D (r) for the different 
r = l ,  2 , . . . , N .  

It  is remarkable that  the first-order eigenvalues ate non-negative aud 
bounded above by  1/N,  i.e., 

1 
0 < Ak, __< - - .  (4.28) 

N 

The proof is straightforward and can be found in [9] and in papers dealing 
with the problem of the N-respresentability (e.g. [10,11]). 

The set of the NSO's { Ip~)> } is complete orthonormal set in ~(')OOŸ 
where c~�91 the zero-space of the operator D (r) defined on ~g,(r). This means, 
however, that  if the state rector  I~> considered is expanded in terms of the 

N 
NSO's, as in Equ. (4.26), only thesubspace | { Jf*'(r)o ~Ÿ } o f ~  is needed. As a 

r=l  
consequence, one has to take into aceount that,  of course, for each state 
vector I~> of the system a special subspace of~~'is  given. In fact, one has to 
be careful if the usual perturbation problems of the system are investigated 
in tcrms of the density operator technique. 

A selection of N iudices k i k 2 . . ,  kN will in the following be called a 
configuration and in order to simplify the writing it will be abbreviated by 
K ~ ~ - { k x k  2 kN}. Similarly, the notation [PK> ~-~ _(1)_(2) _(N)\ will be �9 �9 �9 Fk~Pk~ �9 �9 " F k ~ /  

introdueed for the product of the NSO's. Finally, if the rth index is absent in 
the configuration it will be denoted by  

K [ r ]  ~ {k  1. k r_ i  k r + l . . . k N }  , [Pk[r]> ~ IP~) ' "  _ ( r -1 )~( r+ l )  .p~Nv) > 
�9 " " ~ " k r - - ;  ~ k r + ;  " " 

and analogously K[rs]  ~ {k  I . . .  k r - l k r + l  �9  �9 k s - l k s+l  �9 �9 �9 kN} etc. Using this 
new notation (4.26) can be replaced by  

iko> = . ~ ' c  K IPK>- (4.29) 
K 
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The N-particle density operator is thus given by 

D = .~' [PM> cm c~ <PN[- 
M N  

Since, owing to the or thonormali ty  of the [pM>-s 

(4.30) 

(PM[PN> = ~MN ~ ~ml,, ‰ " "~msn ,v  , (4.31) 

the square of D can easily be calculated: 

D 2 = . ~  IPM> cM c~ (PN[Pa> Ca C~ (Psi = ~ IP~> ~MI~~I ~ q <psi. 
MN R,S M N S  

However, owing to the uni t  norm of I~> it holds tha t  

(~ [~>  = ~ (PMIC~ cN]pN> = ~ ,  lCN[ 2 : 1 
MN N 

so, finally, 
D2 = ~ [pM> ~~ ~~ <Psf = D 

MS 

is obtained as was expected. Similarly 

(4.32) 

(4.33) 

tr{D} -~ ~~ <PR[PM> CM c~ <PN[PR> ---- . ~  [ca[ 2 ---- 1. (4.34) 
a M N  R 

Furthermore,  having its definition (4.7) in mind, 

D(r) £ tr#r {D} ~ .~'  <p~Hl~><~[pK~,]> = 
Ktr] 

= . ~  <pK[.][p(~~pM[,]> Cm,M[,] C*n,N[r] (ptr = .,~ [pg!> A(Om,;n,. \yn,./n(t) 
MNK[ ] mm,. 

(4.35) 
with 

= A '1)* (4.36) A(~~;n, ~ . ~  Cm,K[r] C*n,K[r] n,;m,, 
K[r] �9 

where the abbreviation mean~ Cm,K[rl ~ Clg...kr_farkr+,...kzV, etc. However, the set 
{ lp~r)> } is the set of the eigenvectors of D (r). Therefore, 

since 

and 

D(r )  Ip~.r)> = ~i  [p~r)> ; 

D(r) lP/r)> ---- ~ lp(nŸ A(lm~;n, <P~),IP~[)> = ~ ~  A(1)m~;tlt'm,/']'~(r)\ = ~ti[p~r)> 
mrnr mr 

2i -- . ~  A~;i <P~')[P(g!> ---- A'l)i;i -~ K~[r] [CiK[r][ 9" , 
me 

(4.37) 

Acta Phydea Acad~miae ~ientiarum Hungaricas 27, 1969 



THEORY OF FERMION DENSITY OPERATORS 123 

and by (4.35) we have 

A(~} = < ptr)lD(r)]p~O> = ,t, <ptr)lpl.r)> --  ;~, &q ; (4.38) 

the important relation 

c,,<~,.1 'r = ~,j ~ lc,,d' 
K[r] K[r] 

is obtained. 
We observed that,  indeed, 

(4.39) 

but 

tr{ D(r)} ~ Xi ~--- ~" = __ [cKI2 = 1, (4.40) 
K 

tr{D (r)2} --  ir{ ~. p~r)> Ai <P~r)IP~O> )'j <P~0I} = ~-~' A~< 1 (4.41) 
tj i 

as was expected. Namely, the one-particle state is a mixed one in the N-particle 
pure state. 

Finally, ir seems to be worth-while to set up the structural properties of 
the two-particle reduced density operator, the 2-operator. I t  is defined by 

D(rs) del tr~r,s {D} = ~ <PK[r~IIPM> cM c~ <PNIPK[~~]> = 
MNK[rs] 

with 

= , ~  n(r)n(s)% A(2) /,,(s),~(r)t (4.42) I ~ m r r m ,  i m,mo;nm, \ ~ n t r n ,  I 
mrmstlrrls 

A(m2!ms;nrns ~ , ~  Cmrm,K[rs] C*n,,n,K[rs] = A(n2)~;m,ms . 
K[rs] 

(4.43) 

The eigenstates of the 2-operator are usually called natural spin-gemi- 
nals (in the following NSG's). Let them be denoted by ]g~rS)> and the cor- 
responding eigenvalues of D (rs) by 7- then the spectral resolution of D {rs) is 
given as 

D(rs) = ~ lg(rS)> 7~ <g!rs)j" (4.44) 

The NSG's ig~rS)> are defined in the complete tensor-product space 
{jŸ o ~ £  | {~Ÿ162 ;O ~~~,£ and they can be expanded in terms of the basis 
{]p]r)p]S)> } as follows 

ig(:s)> = -," , - -  s u  Jp~r)p~s)> �9 ( 4 . 4 5 )  
tJ 
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By the definitions (4.43) and (4.44), the relation 

= ~J'kl;k'l" (4.46) 

and, owing to Equs. (4.42) and (4.43), 

9.',, \ v  f l Jk  1"1 /'==&=K't" 
klk ' l"  

~," . , ,  4(2) (4.47) 
: ~ ~ k l  ""k t ; k ' t  gk'I" 

klk ' l"  

may  be obtained,  by  which the connections between the eigenvalues 7, and 
(2) the eigenmatr ix  Ak,t;~,t, are explicitly given. 

w 5. Remarks on Kiang's  variational approach 

Let  us consider again our system of equations (4.15) gett ing a special 
mapping between ~Ÿ and ~Tr I t  was proved in Theotem 2 t ha t  or thonormal  
basis systems {Iqi> } E~g'Q and {lP,> } C'-JŸ exist which ate solutions of Equs. (4.15). 
Fur thermore ,  it  was shown by  means of Carlson and Keller 's Theorem 3 t h a t  
they  ate exact ly  the corresponding eigenstates of Dr and Dv, respectively. 

Essential ly,  the same sy~tem of equations was obtained by KIANG [20] 
in the form 

<ql~,> = c]p>, 
<pI~>  = c[q>, (5.1) 

based on the requirement tha t  the functional 

<qpi~> <~Ulpq> = j<qpp~>j2 (5.2) 
has to be s ta t ionary .  

This s t a t ionary  condition m a y  be denoted as the "principle of ma x i mu m 
overlap".  Apparent ly ,  KIXNG did not  observe t h a t  these principles are solcly 
a special case of Schmidt 's  Theorem 5 for u = 1. Indeed,  the condit ion 
<qp]Ÿ [2 = max imum is equivalent  to thc condition I I~P - -  elpq>[I 2 = minimum.  

In  order to determine the eigenstates of Dq and Dp based on this variat ional  
principle KIANG assumcd the existence of the solutions ci, Iqi> and ]Pi> for 
i = 1, 2 . . . .  As a corollary of Theorem 2 the existence of such solutions is 
proved, as ment ioned above. 
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In reverse: due to T h e o r e m s 2 ,  3 and 5 the solutions of Equs. (4.15) make 
the funct ional  (5.2) s ta t ionary.  

Another  point  should be emphasized, too. KIA~G has not  observed tha t  
the solutions {Jq~>}6~~('Q and {Ipt>}6~Ÿ are complete or thonormal  basis 
systems only in the subspaces ~~fQ O oW'~ ) and ~Tf'p @ ~Ÿ respectively. As 
a ma t t e r  of fact,  jus t  this is the reason while the var iat ional  approach and 
the i terat ion t ,  e thod proposed by  KIA~G is only adequate  to determine the 
highest NSO's in the case of a given ]lP>. However, this resolution of the sys- 
tem state  vector  in terms of the maximal  NSO's is a very  interesting and 
remarkable resuh  obtained by  KIA~G. 

In order to improve the above s ta tements  to a certain extent  let us 
consider again the expansion (4.29) of the state vector in terms of NSO's: 

r~v> = ~ ,  cKIpK> " (5.3) 
K 

In fact,  in our case [kv> is ant isymmetr ic .  This means t ha t  chis ant isymmetr ie  
in its indices K = (kl, . . . ,  kN}. I f  one introduces the ordered configuration 

= {kx . . . .  ,kN} with k ~ < k  2 < . . .  < k N i n s t e a d  of K,  Equ.  (5.3) can be 
wri t ten  in the form [9] 

IkV> _- ~, '  c~ ~r~~ AN lp(li). .. ~-~"!N)\/, (5.4) 
x 

where the operator  AN denotes the ant isymmetr izer  

1 
A N -  ~-' (--1)': '  (5"5) 

N! -b- 

with summat ion  over all permutat ions  of the particle Ÿ bearing in mind 
the convention t h a t  odd permutat ions  have to be t aken  with negative and 
even ones with positive sign. This means tha t  Equ. (5.4) is the expansion of 
tkY> in terms of the Slater determinants  of the NSO's, and 

(5.6) 

PRIMAS [21] pointed out  tha t ,  owing to the theorem of SCHMIDT--GoLOMB [23], 
ir IC~] 2 = m a x i m u m  and the orbitals fulfil the relations 

then 

+~<~) ..<,-+l>.,r-~) . "Pi? T~> = c~ i N !  i#,,r/> \#'k2~ " " " #'kr+* l~'kr-t " 

l o >  = l, N !  AN[#~I�91 �9 �9 �9 r~~'!N)\ 

(5.7) 

(5.8) 
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is a uniquely determined optimal Slater-determinant, the so-called Brueckner 
determinant. I t  wilI be proved in the next paragraph that  the first highest 
NSO's fulfil condition (5.7), i.e., they are exactly the Brueckner orbitals. 

w 6. Eluster expansions of the density operator 

Now, let us investigate the resolution of D in terms of the one-particle 
density operators, essentially, using the method of the cluster expansion sug- 
gested by Pmr~As [21]. 

Consider the idempotent operator 

I =-- 2 PKL =~ 2 IPK><PLI = ~ ]PK><PLI + 2 IPK><PLI 
KL KL K K~:L 

~ PK + ~ ,  PK#L = Ia + I~a, (6.1) 
K KL 

whieh is a unit  super-operator* in respect to D. Indeed, 

i{D} del 2 PKL{ D} ~ 2 tr {P~L D} PKL = D,  
KL 

owing to the faet that  

t r {{pD<p~[D}  = 

KL 

2 
RMN 

(6.2) 

<PRIPM> CM CD <PN[PR> = eK CZ. (6.3) 

If we introduce the notation 

D = .~  [p~>[cM[2<p~] + . ~  ]PM> cM c~ <PN] ~ Da + Dn• (6.4) 
M M # N  

it can be cheeked easily that  

t r { P ~ # / . D } = O  a n d  | r { P K D n d } = O .  ( P K = P K )  (6.5)  

Sinee, by (6.2) for 

I{Da} ----- ~ P~ {D• = .~" tr{PK D} PK = ~ leKI z PK : D,~ (6.6) 
K K K 

* A super-operator is a function with the operator algebra of al1 operators as its domain 
and range. Any one-electron super-operator can be represented by P {X} = tr {P+X) P for 
a]1 operators X where P i s  a certain Hermit ian one-electron operator of the dynamical system 
eonsidered. 
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and, also, the identi ty 

N N 
PK ~ ]PK><PKI ~ i ~  IP(kr),> <P~,?I ~ / ' 1  [ D(r) -4- (Ip~r)> (p~r)l -- D(r))] (6.7) 

r = l  r--1 

holds, the remarkable resolution of Da 

I N N Da : . ~  IcK] 2 I I  D (r) + . ~  (Ip(k'~)> (p(k~)l -- D (n)) H D(r) -{- 
K / r = l  n-1  r # n  

1 o, I + ~. ,~m(Ip~,.> <p(k:)l -- D('))(Ip~~)> <p(k~)l -- D(m) ) 1 ~  D ( r ) + . . .  (6.8) 
�9 r#n~m 

can be obtained. But owing to the definitions (4.29) and (4.42) and to Equ. 
(4.40), we have the resolution of Dd as follows: 

N 1 
Da = H D(r) i-~ ~ .~" (D(dnm) -- D(n) D(m)) " H  D(r) -~- . . . .  

r--1 n ~ m  ~~:n,m 

(6.9) 

I t  is straightforward, even if it is to a certain extent tedious, to prove tha t  
r t (nm) the super-operator PK#L{Dn• obtains the terms ~'n• , etc. at the resolution 

of D. 
Owing to the Pauli principle the density operator has to be antisymmetric 

in the sense: 

D ---- AN {D} ---: A~ DA N , (6.10) 

where Aro is the antisymmetrizer in Equ. (5.5). 
Thus, the resolution of D in terms of the one-partŸ density operators 

can be obtained as follows 

{/Ÿ 1 D = AN D (r) [+ ~ ~ C (~m) . ~  D (r),+ 1 
r = l  T,~m r~n,m 

with the cluster operators 

, ~  C (r'ml) H D (r) -~-...} 
n~- n,~ l r~n,m, l  

(6.11) 

C (nm)--Ddef (nm) ~ D(n) D ( m ) ,  (6.12) 

where, e.g.,/ke{C (nm)} is re |ated to the two-particle correlation operator of the 
electrons, whieh will be discussed in the next part  of this investigation. 

We can get another useful way of expanding the density operator in 
terms of one-partiele density operators. Let us consider the first ]V highest 
eigenstates of the one- and two-particle density operators etc., and introduce 
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the  set of  t runea ted  operators  

N N 
g(r) _~_ 2 lp(r)> Ÿ <p(r) l  ' t ( r s )  __ ~ ~ [g(rS)> 7v <g(:s)l . ( 6 . 1 3 )  

q v= l  

Then,  taking into account  t h a t  the summat ion  over  the eonf igura t ion K----- 

= { k l ,  k 2 , . . . ,  kN}  is  not  t runea ted ,  we have ,  e.g., 

N 
Da : 2 Ic~[~ H (D( r )  -Jf- ( ] P ~ ) >  <p(krr)l - -  t i ( r ) )}  : 

K r = l  

N N 
= H Li(r) + 2 (D(n) --  •n)) H ~(r) _~ 

r = l  n= l  rr 
(6.14) 

+ 1---- ~ D(nm) --  D(n) D(m) --  D(n) D(m) --  D(n) D(m))" / 1  D(r) + . . . .  
2l ~ m  r#n,m 

I f  the  notat ions 

D(") = t (n) + v (n) , D (nm) ~--- t (nm) + v (nm) (6.15) 

are in t rodueed,  one obtains easily t ha t  

D = ANA LH= D(r) + 1-~--~'~(C~(nm)+v(nm)}]-[D(r)+'"}2! n~'ffm r#n,m (6.16) 

where the  cluster operators  

"~(nm) ~ t (nm)  __ t ( n )  t ( m )  (6.17) 

are re la ted  to the eorre la t ion eleetrons in the  ground states eorresponding to 
the  f irs t  highest  NSO's and v (nm) determines the  corr~lations via exei ted states.  

I r  is remarkable  t h a t  the  first  order  eluster  operators  eorresponding to 
the  single part icle exci ta t ions  ate absent  in b o th  cluster  expansions (6.11) 

and (6.16); i.e. 

tr~r {Pk, D} = 2k~Pk, (Pk, =: ]p~r)> (p~)[). (6.18) 

In  this way  the s t a t m e n t  a t  the  end of  w t h a t  the  NSO's are jus t  the 
Brueckner  orbitals is proved .  This problem,  as wel i  as the problems connec ted  
wi th  the  correlat ion be tween  the eleetrons in te rms of the cluster  operators  
will also be discussed in the  nex t  pa r t  of this invest igat ion in more detail. 
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F i n a l l y ,  l c t  us s t i l l  m e n t i o n  t h a t  i f  t h e  h i g h e r  o r d e r  c l u s t e r  t e r m s  C (nm), 
C (nm~), . . . a ro  a b s e n t ,  i .e. ,  i r  t h e  s y s t c m  of  t h e  N e ]ec t rons  is a p e r f e c t  one,  t h e  

wel l  k n o w n  r e s u l t  [9]:  

(XN. .Xt[ DIx Ÿ . xN> D(x~; xŸ  D(x~; X'N) 
�9 . .  " = �9 ( 6 . 1 9 )  

�9 t 

ID(~N ; x~) D(~N ; ~'N) 

a n d a  s i m i l a r  e x p r e s s i o n  in  t h e  case  o f  t h e  t r u n c a t e d  f i r s t  o r d e r  r e d u c e d  d e n s i t y  

o p e r a t o r s  a r e  o b t a i n e d .  
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O TEOPHH OI-IEPATOPOB HYIOTHOCTH OEPMHOHOB I. 

O,"IPE]~EflEHFIE O./~HO~[ACTPI 4HbI'< C3ZI'O~HPI~ H [-(TI~,CTEPHOE PA3YlO)KEHFIE 
OflEPArOPOB l ir io I'HOCTH 

~I. H. XOPBAT H H. I~. ~bEMAHT 

P e 3 } o M e  

Floe:m onpe~eneHH~ onepaTopoa II2IOTHOCTH (w 2) n~paSaThmaeTc~ nO~~THe npoc'r~x 
qaC'rHqH~• COCT0aH~fi Ha OCHOae q~CTUX COCT0aaa~ npHne~eHHuX onepaTop0a n~0THOCTH 
nepaoro nopa~Ka (w 3). ,~aJ]ee paccMaTpH~aeTca nOHaTae NSO H NSG ti paano>KeaHa no }IHM 
(w 4)  ~[aCKyT~pyeTca H pa3mlaaerc~ ~aabLUe Bapaat~HOH~oe npaS~aar KHaHra (5 w 
HaKo~eu B paanaqa~tx cJ]y4anx ~a~TCR K~acTepHue pa3~oa<e~iHR onepaTopoa n~orHoeTn 
N-qaCTHL[ llO [IpHae~eHHhlM oneparopaM n:mrHocrH nepaoro nopanKa. 
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