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After the definitions of density operators (§2), the concept of single particle states is
defined via the pure states of the first order reduced density operators (§3). Then the concepts
of the NSO's and NSG’s, as well as expansions in their terms are treated (§4). Furthermore,
KIANG’s variational approach is discussed and improved (§5). Finally, cluster expansions
of the N-particle density operators are obtained in terms of the first order reduced density
operators in various cases.

§ 1. Introduction

The independent particle model is the most familiar approximation for
treating many-particle systems. It was originally suggested by its validity for
perfect systems with completely separable Hamiltonian. However, for real
many-particle systems where owing to the interactions of the particles the
collective behaviour of the system is more dominant and characteristic it is
clear that the independent particle model loses its validity. Nevertheless it
can be accepted if the ““bare” particles and the concept of the ‘“bare particle
states’” are replaced by way of some kind of renormalization processes (such
as those of Hartree—Fock or Brueckner) by the so-called “dressed” particles
or “dressed particle states”. But, in these very familiar cases too, it is a priori
not quite evident that (a) individual or single particle states exist at all;
(b) how they are related to the classical concept of particles; and (c) in which
way the correlation problems of the particles have to be formulated.

Bearing in mind this antagonism between the fundamental ideas of the
collective and independent particle models, the remarkable successes of the
independent particle models mostly based on the methods of pseudo-potentials
— more recently summarized and improved by Professor GoMBAs in his
excellent monograph [1] — suggest once more a reinvestigation of its theoretical
background in terms of the new methods that have appeared recently in the
theory of many-body (fermion) systems.

The methods mentioned — notably, the methods of density operators
and cluster expansions including the most important information about the

* Dedicated to Prof. P. GoMBAs on his 60th birthday.
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collective behaviours of the systems — are, strictly speaking, not new at all,
but interest has again focused on them and they have helped in making
remarkable progress in this important field.

It can be hoped that they will be of help also in replacing the a posteriori
justification of the validity of the independent particle model by a direct one.
Thus the aim of the present series of papers is to simplify the conceptual
background of the problems investigated, to find a compromise in certain
hotly discussed questions and to obtain a clear insight into the ideas involved.
Improved mathematical tools are used which are related to simple and natural
physical concepts and some relationships are brought out which may be useful
in making further improvements.

In this first part after the definitions of the density operators and the
brief summary of their fundamental properties needed in the following argu-
mentation (§2), the concept of single particle states is defined via the pure
states of the first order reduced density operator (§3). Then, the concepts
of the natural spin orbitals and geminals, as well as expansions in their terms
are treated (§4), furthermore Kiang’s variational approach is discussed and
improved (§5). Finally, cluster expansions of the N-particle density operator
are obtained in terms of the first order reduced density operators in different

cases.

§ 2. The definitions of density operators and their most
fundamental properties

It seems that in looking for a consistent method of finding an approxi-
mation method in terms of particle states one has to use the method of density
operators, where in the case of Hamiltonians with two-body interactions the
expectation values of any important observable can be obtained in terms of the
so-called one and two particle reduced density operators alone.

The density or as it is sometimes also called: statistical operator and in a
certain representation mostly in co-ordinate representation the density matrix,
respectively, were introduced by von NEUMANN [2, 8] and by Dirac [4] to
describe statistical concepts in quantum physics. Their first version is more
common in the case of statistical mechanics, i.e., inthe case of many, practically
infinite degrees of freedom; the second version rather in quantum chemistry,
i.e., for atomic and molecular systems with limited degrees of freedom.

The theory of density operators and its applications has been investigated
in detail from very different aspects by several authors. The existence of general
references [5—8], and of more recent special investigations which have been
focused on the problems: (a) how far and under which condition the wave
function of the many particle systems can be replaced by the one and two
particle density matrices alone [9—12]; (b) what kind of collective problems
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of the system’s behaviour can be explained [13—19]; (¢) in what manner the
usual variational method could be reformulated in terms of density matrices
[20], etc., makes any extended discussion of the previous results unnecessary
and we recall only the salient facts partly in terms of new arguments.

Having in mind atomic and molecular systems with limited degrees of
freedom we start with DIRAC’s definition of the density operator. Since in this
case the number of electrons does not change during the discussion it may be
specified implicitly and for a system of N particles in a state with thenormalized
wave function ¥, the density matrix D of the system and the pth order reduced
density matrix D, — the so-called p-matrix —, respectively, may be regarded
as an integral operator with kernels:

D(xy,- .y xns 2150 AN) =P (%152 28) F* (21,51, ¥N) (2.1)
and
Dp(xl,...,xp; xi,,x;):
:depﬂ...de’I’(xl,...,xN) P* (2] s Xps Xpg1se -2 XN)s (2.2)

where each co-ordinate x; of the “‘configurational space” is a combination of
the space co-ordinates 7, and spin-coordinate s; of the particles considered. The
integration with respect to the Lebesgue—Stieltjes measure dxp;;...dxy
indicates an integration over the co-ordinates 7,14, ..., ¥y and a summation
over the dichotomic spin-variables s, 4, . . ., sy in the case of spin-half particles
(e.g., for systems of electrons).

Independently of any particular representation let us characterize a
definite state of the system by the normalized |¥') being an element of the
abstract Hilbert space &¥. This means that the state vector in coordinate
representation introduced above is an element

()50 2y) = {0 5y |PD (2.3)

of the Hilbert space F of the square integrable functions over the N-particle
configuration space {x, ..., xn}.

In a definite state — i.e., using von Neumann’s terms: in a pure state —
of the system considered, the density operator D is the projector of the corres-
ponding subspace ™ of the abstract Hilbert space ¥, i.e.,

D = [¥)¢¥| (2.4)
being an idempotent operator

D2—D, (2.5)
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and the expectation value of any dynamical quantity A can be obtained as
(A) =1 {AD}, (2.6)

where trM indicates the trace (i.e., the sum of the diagonal elements) of a
matrix M.
The most important properties of D can be summarized as follows:
(1) The condition that (A) has to be real for every Hermitian operator A,
requires D to be Hermitian too,

D =D+. (2.7)

(2) Keeping in mind that the unit operator 1 has the mean value 1,
requires

tr{D} = 1. (2.8)

(3) The condition that every operator with non-negative spectrum has
non-negative mean value, requires D to be positive definite, i.e., every diagonal
element (n|D|n) must be non-negative

{n|D|n)>0. (2.9)
(4) Owing to Equs. (2.8) and (2.9) it is easy to prove that
r{D*} <1, (2.10)

which limits the value of every single element of the density matrix. The
equality holds only for pure states.

§ 3. The definition of single particle states

In order to find a natural definition of single particle states of an N-particle
system we use the concept of pure states which are not only of importance in
density matrix theory, but also are adequate to the classical ideas in the
background of the independent particle model. We recall the argument which
CoLEMAN [11] used to prove that it is sufficient to deal with pure states to
solve the N-representability problem for a p-matrix.

The set of all N-particle density matrices {Dy} is identical with the set
&Py of positive Hermitian operators of unit trace on the Hilbert space of anti-
symmetric [N-particle functions. The set .Sy is convex and its extreme elements
are the pure states in the case of which DY is idempotent. The N-particle
state introduced above indicated by a single state vector |[¥') is, of course, a
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pure state and the corresponding N-particle density operator D is idempotent.
Therefore, D is an extreme element of the set @N = {Dy}.

For fermions, the set 57y consists of all positive Hermitian operators of
unit trace on the space of antisymmetric p-particle functions. Whereas, the
set of all Dy coincides with Sy, theset of {D,} is a proper subset of %7, which
we denote by 5%V, It consists of those positive operators of unit trace on the
Hilbert space of the antisymmetric p-particle functions which are p-matrices
derived from the N-particle pure state with the state vector |[¥). Of course,
(@;N) is a convex subset of .59,, too, and its extreme elements are the p-matrices
D{ being also idempotent and they indicate pure states, as well. In accordance
with Krein—Milman’s theorem which asserts that a compact convex set is
determined by its extreme elements, our p-matrix D, can be set up in terms
of the pure states p-matrices D$ in the form

D, =2 w!D{, (12 wh = 1) (3.1)
i
where wl-s are again the statistical weights of the pure states. This means
that the D, is,in general, no longer in a pure state, ||D,2,][ < ||Dp||, but is in a
mixed state being a superposition of pure states D/,

For if p = 1, D, means the one-particle reduced density operator which

is in a mixed state of the one-particle pure states

D, = 21Dy, (Z4; = 1). (3.2)

Bearing in mind that D, and consequently also DY - s corresponding to pure
states, are deduced from the N-particle density operator D, they include all
the information which follows from the collective behaviour of the system
considered. Equ. (3.2) is nothing else but the spectral resolution of the operator
D, and the operators D{ are the projectors of its eigenstates which are usually
denoted as the natural spin-orbitals, NSO’s [9].

The NSO’s as the eigenstates of the one-particle reduced density matrix
are connected, on the one hand, to a single particle degree of freedom of the
N-particle systems; on the other, they are uniquely determined by Krein—
Milman’s theorem. In fact, they can be interpreted as the single particle states
of the N-particle system looked for, including all information about the
collective behaviour of the real system needed.

§ 4. Natural expansions of the state vector

Suppose that we have an N-particle quantum system in a bound state
|#>, with norm unity. If the system is imagined to consist of two parts each
with p and N—pparticles, having respectively ¥ p and ¥ as their complete
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state vector spaces, then the original abstract Hilbert space can be formed as a
complete tensor product space, K =Hp® Hq. Le., if |PYeH p and |QDEH
are arbitrary unit vectors, and {|P;>} and {|Q;>} are complete orthonormal
bases in Jp and F, respectively, {|P;Q;>} is a complete orthonormal basis
of ¥ with ,P,Qj>E |P_,> IQ,> = IQJ>|P'>’ so that, €.g.,

¥ = ?C[Pﬁ Q;11P: Q) (c[P:;Q;]1 = <Q,; P; 7)), (4.1)

where it seems desirable to emphasize by the notation that the coefficients
¢[P;;Q,] are functionals of the state vectors |P;> and |Q;>, respectively.
Let us consider the mappings ¢ — F p and H'p — FHq, realized by

Q) = 2a[Q:; PPy, (4.2)

J
<Pj|yl> = Z b[Pj; Qi] 1Qi>,
with
afQ;; Pj] = (Q; lelp} s b[Pj; 0]= <Pj 0 ,![f> . (4.3)

It is easy to check the theorems:

Theorem 1. The coefficients a[Q;; P;] and b[P;; Q;] generating the mapp-
ings (4.2) X into F’p and H'p into FH g, respectively, are

(a) symmetrical anti-linear functionals of |Q;> and |P;):

a[Q:; Pj]=a[P;;Q:i];  b[P;3Q:]=b[Qi5 P, (4.4)
(b) they are equivalent and the relation
a[Q:; P;] = b[P;; O] (4.5)
remains valid for any linear combination of the vectors Q> and |P,>, e.g.,
afo [Q) + %, [Qo) 5 By [Pr) + Be[Pod] = b[By [P + B3[P 5 %1 Q1> + 2 [Qp)]-

Of course, the relations
2100 <0l =X, ]2 |Py(Pj=1, (4.6)

are the resolution of the unit operators in &’ ¢ and Z¥p, respectively.
Let us introduce the reduced operators

Dy 9 ; QP P10 = 7],2 |P;> AP (P (4.7)
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with
AP = 2 alQ:; P a*[0:5 Pyl 5 (4.8)
and
Do &t 2P Py = Q> AP Q] (4.9)
with

Af'xg) E;‘b[Pj;Qi] b‘[Pj;Qi'] = Za[Qi ;Pj] a'[Qi’; Pj]’ (4°10)

J

respectively, where the relations (4.2) and (4.5) were used. On the one hand,
owing to the Hermitian character of the matrices Aj-? and AE?)

AP* — AB and AQ* = AD, (4.11)

i.e., their diagonal elements are real. On the other hand owing to the fact that
the norm of the state vector [¥) is unity:

P = ; CPIQ QP> = ; la[Q;; P2 =1, (4.12)

both Hermitian operators Dp and Dg have unit traces:
tr{Dp} =1 and tr{Dg}=1. (4.13)

Theorem 2. There exist orthonormal basis systems, {lg>} in g and
{lp>} in F¥p, respectively, such that

algis p;l =ci 0y (4.14)
and the mappings (4.2) may be replaced by

(gl¥) = cilp> > (4.15)
with ¢; = (q; p/|¥) .
<Pi’llj> = Ci’9i> »

Indeed, for an arbitrary orthonormal basis system {|p;) }€¢5¥ , the state
vector [¥Y€¥ can be expanded in the form

) == 2 a[Pi;Qj]lPi Qj> = 2(2 a[Pi§Qj]|Qj>)'Pi> = % ¢ @i)lpi> .

ij i J

The vectors |§;) of the set {|§;>} are independent and they can be normalized
to unity, but they are not necessarily orthogonal. However, for an adequate
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{lpt)}ng p the set {|§;)} can be replaced by means of the Gram—Schmidt
procedure by an orthonormal one so that

¥ = ; ¢ |qi piy (4.16)

and, thus, the statement (4.14) is proved.

The vectors |¢;) are linear expressions of the vectors of theset {|§>},
but, owing to Theorem 1/b., if according to (4.14) a[g;; p,] is replaced by
cidi; then b[pj; qi] = cidij, too, for the given orthonormal basis {|p;)}€¥ p.
Indeed,

(pil¥> = 12' lgp<gl <pi|¥> = %‘ lg><pi| <q;|¥> =
= %‘ lg><pilpp ¢; = cila -

This means that there exist such orthonormal bases {|p;>} in & p and {|g;>}
in ¢ that the mappings (4.16) are fulfilled for i = 1,2, ... and, thus, the
proof of the theorem is completed.

The orthonormal set of vectors {|p;)}€5¢ pis the set of eigenstates of the
operator Dp i.e., the NSO’s in Fp

Dp|p;> = Alp> with 4, =|c]?. (4.17)
Then
Theorem 3. (Carlson and Keller) If the set of vectors {|p:>}€5¥ p are the
NSO’s of Hp, i.e., the eigenstates of the p-matrix Dp corresponding to the
eigenvalues A; = [¢;[* then in ¥ the eigenvalues of the g-matrix D, are also
4; and the corresponding eigenstates {|g;>} are the NSO’s in o#’,.
Indeed, by the definitions (4.7) and (4.9) and from Equs. (4.15)

Dy = ,; (PPl = ; P> & <pd» (4.18)

D, = .iz‘<pi!¥’><¥flpi> = ,-2 lap> 4 <qil» (4.19)

which are just the spectral resolutions of the operators Dy and D,, respectively,
with the elementary projectors |p,>{p;| and |g;>{g;|-
Theorem 4. There exists such a partially isometric operator Spq =

= >|piy<q:| of F that
i
and, from this point of view, Dp and D, are unitarily equivalent:

S;Q Dp SPQ = Dq. (4.20)
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This statement can be proved easily and it is' another formulation of
Carlson—Keller’s theorem mentioned previously by Kiane [20], although he
did not go into the precise details.

It is easy to see that the operator Dp in co-ordinate representation is
just the p-matrix D(x,, .. ., x5; 21, - . ., x5) defined by Equ. (2.2).

In order to simplify the writing let us introduce the notations x,=

= {xv R xp}’ X = {xp+1 'ERERX) xN}’ yl(xp’ xq) = <xq x,,]W), Pi (xp) = <xp|Pl>
and g; (xq) = (quq,> , then

Y (xpy %) = ; ¢; %, %,|Pi §:) = %‘ ¢; {xp| P> {xlg> = Z ¢ pi (%) g (x,) - (4.21)

As CoLEMAN [11] pointed out Carlson—Keller’s theorem was previously
discovered by Schmidt and formulated in the following way:

Theorem 5. (Schmidt) Given a square integrable function y(x,, x,)
suppose that for u <w, fi(xp) with 1 < i < u and g/(x)with 1 < j << v are

linearly independent square integrable functions, then the minimum

u
PR~ el
i=1

of
4= I Y/(xp’ xq) - iZinjfi (xp) &; (xq) iz’

where A;; are arbitrary complex numbers, is obtained if we put

A= ciaij’ jgu
v 0, j>u

and choose

fi (xp) = Pi (xp)’ 8i (xq) =gq; (xq) ’

where p;(x,) and ¢,(x,) indicate the first u NSO’s.
The proof of this important theorem can also be found, e.g., in COLEMAN’s
paper [11].

In other words, the best least-square approximation as a sum of uv
products of the form f(x)g,(%;) is c;p.(x5)q.(x,)-
i

So far the symmetry properties of y(xp, x;) have not been used. It is,
however, well-known and on the basis of its definition it can be easily checked
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that for bosons and fermions there is a unique p-matrix associated with a given
system. We shall investigate the fermion case below.

From (4.12) and Theorem 5 it follows that, except possibly on a set of
measure zero, in accordance with (4.21), setting p =1 and ¢= N—1,

we have
¥y, 20) = 2 e pfP () ¢V (x,) (4.22)
with
a0 () = [ dwy pfP (1) Py, x,) (4.23)
N Theorem 6. (Coleman) Agy function y(x,) £ 0 belonging to the zero space
HP of the operator D® on HY, ie., being orthogonal to all the’ —NSO’s,

is orthogonal to q,(N_l)(xq), too.
Indeed, by (4.22)

0= ‘; e NV (x5) y dx, 1* (x) p () = jdx1 2* (%) (g, 2y Xy -, 23) =
= j‘ dxl x‘ (xl) W(xzs X1, Xgge s xN) —_

= ;' ¢; piV (x,) ( dx; x* (%) ¢V (x,, Xgy- -+ ¥N)

for all ¢; and p{"(x,), therefore

§dxy 1% () N9 (31, 255, x8) = O, (4.24)
qu. e. d.
Corollary. Since Equ. (4.24) is valid for any fixed =x,...,xn,
q,-(N_l)(xz, X3, . - ., XN) can be expanded in terms ofpf-l)(xz), ie.,

¢ gV (x5, ., xy) = ]2 CijP?) (%) 9§N_2) (%g5- -5 2N) -

Therefore, by induction it can immediately be obtained that

Papomn) = S o PR )P (0) P (o), (4.25)

N

or in the language of the abstract Hilbert space formalism

¥ = [‘2’( Chhnie | PRI PSR- - P (4.26)

152 KN

In the factor-space ¥ " of the rth particle one has to define the one-
particle density operator in the form

D= 2 |pl) h, <Pl (4.27)
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with the NSO’s | pf{)) or in co-ordinate representation the first order reduced
density matrix

Dy (33 %) = [ dxyo..dm,_ydx, o g P (X s Ky ooy T3) TF (K1 oy &y s2)

1)

with its eigenfunctions pﬁ" (x-}. Owing to the unitary equivalence of the opera-

tors D and D® in respect of the partially isometric operator

Sy = ; ’PE”)> <P$s)|

i.e.,
S¢s DN S,y = DO,

one does not have to distinguish the eigenvalues of D for the different
r=12,..., V.

It is remarkable that the first-order eigenvalues are non-negative and
bounded above by 1/N, i.e.,

0 < Ak, < (4.28)

1
N
The proof is straightforward and can be found in [9] and in papers dealing
with the problem of the N-respresentability (e.g. [10,11]).

The set of the NSO’s {| pf{?>} is complete orthonormal set in ¥,
where #Jis the zero-space of the operator D defined on #". This means,
however, that if the state vector [¥’) considered is expanded in terms of the

N
NSO?’s, as in Equ. (4.26), only thesubspace ® {# "0 ¥’} of 5 is needed. As a
r=1

consequence, one has to take into account that, of course, for each state
vector |¥) of the system a special subspace of 5 is given. In fact, one has to
be careful if the usual perturbation problems of the system are investigated
in terms of the density operator technique.

A selection of IV indices kjk,...ky will in the following be called a
configuration and in order to simplify the writing it will be abbreviated by
K = {kik, . ..ky}. Similarly, the notation |px) = [pg)pf? . pﬁ?) will be
introduced for the product of the NSO’s. Finally, if the rth index is absent in
the configuration it will be denoted by

Krl={ky ko krss-- -k} [Pan) =P8 P20 PELY- - PV

and analogously Kfrs] = {k;...k k1 ... ks_1ksiy ... kn} etc. Using this
new notation (4.26) can be replaced by

Py = %_‘ ek |Px) - (4.29)
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The N-particle density operator is thus given by

D= 2 |Pm> emeX <pni- _ (4.30)
MN
Since, owing to the orthonormality of the [py)-s
<PMIPN> = aMN = 6m1n1 6mzn,‘ . ‘6rﬁyn1v ’ (4'31)

the square of D can easily be calculated:

D2=MN2 |Pa e el {PnlPr) cr ck {ps| = 2N8|pM> emlenf? c§ {ps| -

However, owing to the unit norm of |¥) it holds that

(T[W> = % <PM|07W CNIPN> = g !CNIZ =1 (4.32)
so, finally,
D? = % IPm) epcd{ps|=D (4.33)

is obtained as was expected. Similarly
r{D} = > {prlPm) em ek {pnlPr> = 2> lerf=1. (4.34)
RMN R

Furthermore, having its definition (4.7) in mind,

D" et yr, (D} = 2, PP\ Pt =

= > {pxtlPRPum) emmr1 €inid {PNIA P lPK[r]—Z PS> A, <P

MNK] ]
(4.35)
with
AR, = 1% Cm,K{r] CheK[r] = An,)fn, , (4.36)
where the abbreviation means ¢, x(r} = Ck. Ky oy Ky oe gy €EC However, the set
{|p">} is the set of the eigenvectors of D' . Therefore,
DO |pPy = 4 |p{> s
since
DO |py = ZIP(” A®. (pOIpy = 2‘/1%)” Py = |\
Myny
and
A= % AR <pP|ply = AP = % leixil? (4.37)
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and by (4.35) we have
A(,l,} = <P}')|D(')IP§!)> =4 <PY)‘P$")> = A 053 (4.38)
the important relation
2 €A ki = 8y 2 leixiAl (4.39)
K[r] KI[r]

is obtained.
We observed that, indeed,

(D0} = 34 = Nlegt=1, (4.40)
i K

but
tr{D2} = ¢r{ 21p$’>>1 PP 4 (PP = 2 B<1 (4.41)

as was expected. Namely, the one-particle state is a mixed one in the N-particle
pure state.

Finally, it seems to be worth-while to set up the structural properties of
the two-particle reduced density operator, the 2-operator. It is defined by

Drs) det Utrs {D} = 2 <P1<[rs]|PM> cpeN <PN’PK[rs]> =

MNK([rs]
= 2 |P(r (s)> Agzm,;nm, (r392 Pﬁt?l (4'42)
MM yliylly

with
(4.43)

Agzm:;nrn. = }g} CmymeK([rs] R K [rs] = Aﬁxzr)nt;m'm, .
rs

The eigenstates of the 2-operator are usually called natural spin-gemi-
nals (in the following NSG’s). Let them be denoted by |g'”> and the cor-
responding eigenvalues of D' by y,, then the spectral resolution of DV? is
given as

DV — 2 !gsrs)> Y, <g$fs){ . (4.44)

The NSG’s |g, rs)) are defined in the complete tensor-product space

{(FO X @ {HC 0 HE) and they canbe expanded in terms of the basis
{Ip"p?>} as follows

8 = Xy 1p B (4.45)

Acta Physica Academiae Scientiarum Hungaricae 27, 1969



124 J. I. HORVATH and I. K. GYEMANT
By the definitions (4.43) and (4.44), the relation

(pl pP| D 1 pD piey = ' pi pPIgt> v, (g9 pP piP) =

b d

= = 87 8ier = ARyr (4.46)
and, owing to Equs. (4.42) and (4.43),

¥, == (gIDEgly = 3 (U9 ply AR {pf plgy?> =
Kl ’

k'l

= k%' 8/”5 A%);k'l' 8k (4"4‘7)

may be obtained, by which the connections between the eigenvalues p, and
the eigenmatrix A,(fl);k;p are explicitly given.

§ 5. Remarks on Kiang’s variational approach

Let us consider again our system of equations (4.15) getting a special
mapping between ¥’ p and ¥,. It was proved in Theorem 2 that orthonormal
basissystems { |q,> }€# ¢ and {|p,) }€5¥ p exist which are solutions of Equs. (4.15).
Furthermore, it was shown by means of Carlson and Keller’s Theorem 3 that
they are exactly the corresponding eigenstates of D, and D), respectively.

Essentially, the same system of equations was obtained by Kiane [20]
in the form

{g¥) =cp>, 6.1)
(pl¥)> =<, -
baséd on the requirement that the functional
{gpl¥> (¥|pg> = [{qp/¥>} (5-2)

has to be stationary.

This stationary condition may be denoted as the “principle of maximum
overlap”. Apparently, Kianc did not observe that these principles are solely
a special case of Schmidt’s Theorem 5 for u = 1. Indeed, the condition
{gp|¥>? = maximum is equivalent to the condition ||¥ — ¢|pg)|* = minimum.

In order to determine the eigenstates of D, and D, based on this variational
principle KIANG assumed the existence of the solutions ¢;, |¢;> and |p;) for
i=1,2,... As a corollary of Theorem 2 the existence of such solutions is
proved, as mentioned above.
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In reverse: due to Theorems 2, 3 and 5 the solutions of Equs. (4.15) make
the functional (5.2) stationary.

Another point should be emphasized, too. K1aANG has not observed that
the solutions {|g,>}€5” o and {|p,>} € #°p are complete orthonormal basis
systems only in the subspaces ¥ © 92”(0) and Fp O HD, respectively. As
a matter of fact, just this is the reason whlle the variational approach and
the iteration method proposed by Ki1ang is only adequate to determine the
highest NSO’s in the case of a given |¥'). However, this resolution of the sys-
tem state vector in terms of the maximal NSO’ is a very interesting and
remarkable result obtained by Kianc.

In order to improve the above statements to a certain extent let us
consider again the expansion (4.29) of the state vector in terms of NSO’s:

¥y = %CK'PK> . (5.3)

In fact, in our case |¥) is antisymmetric. This means that c,is antisymmetric
in its indices K = (k,, ..., ky}. If one introduces the ordered configuration
% = {ky, ..., kn} with k; <k, <...<ky instead of K, Equ. (5.3) can be

written in the form [9]
¥ = 2'e. VN An [P PV » . (5.4)

where the operator Ay denotes the antisymmetrizer

AN——]\%— (— 17 69

with summation over all permutations of the particle indices bearing in mind
the convention that odd permutations have to be taken with negative and
even ones with positive sign. This means that Equ. (5.4) is the expansion of
{¥> in terms of the Slater determinants of the NSO’s, and

c.= <Py PRIANI NI . (5.6)

Primas [21] pointed out that, owing to the theorem of ScaMmiDT—GoLoMB [23],
if |¢4[* = maximum and the orbitals fulfil the relations

(P pEhpih. L pR ) =) NI ) (5.7)
then
&> = | NTAN|pD... piV> (5.8)
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is a uniquely determined optimal Slater-determinant, the so-called Brueckner
determinant. It will be proved in the next paragraph that the first highest
NSO’s fulfil condition (5.7), i.e., they are exactly the Brueckner orbitals.
§ 6. Cluster expansions of the density operator
Now, let us investigate the resolution of D in terms of the one-particle
density operators, essentially, using the method of the cluster expansion sug-

gested by Primas [21].

Consider the idempotent operator
I= 3 Pi=2|po<pl=SlpxXpl + 2 IP><prl=
KL KL K K#L
=2 Px+ S Pxrr =141, (6.1)
K KL

which is a unit super-operator® in respect to D. Indeed,

D} & S Pr1{D} = Zor (P D} Py =D, (6-2)
‘owing to the fact that
tr{lpL)<pxD} = = <PrlPad cmek {PnlPR> = cxel. (6.3)
If we introduce the notation

D= ‘,\; PalemPpml + |Pm) emef {pn| =Dy + Dy, (6.4)

M#N
it can be checked easily that
tr {Pkx D} =0 and tr{PyD,}=0. (Px=Pg) (6.5)

Since, by (6.2) for

D} = ; Pk {Ds} = ; tr{Px D} Py = g lexPPx = Dy (6.6)

* A super-operator is a function with the operator algebra of all operators as its domain

and range. Any one-electron super-operator can be represented by P {X}=tr {P*X} P for
all operators X where P is a certain Hermitian one-electron operator of the dynamical system
considered.
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and, also, the identity
Py =|px)<{px|= II [P (Pl = H [DO 4 (|pf> <pf] — D)) (6.7)

holds, the remarkable resolution of D4

Di=2 |°K|2[ I7°° + 3 (pk <o — Do) [ DO +

r=1 n=1 r#n

2 (12> <piD| — D) (IpE2y < pidf — D) JT DO 4.4 (6.8)
naém r#n,m
can be obtained. But owing to the definitions (4.29) and (4.42) and to Equ.
(4.40), we have the resolution of Dy as follows:

D, = JJ DO, +o 2 (Dgm — DWOD™) JT DO 4 ... (6.9)

r=1 2! n#m i#n,m

It is straightforward, even if it is to a certain extent tedious, to prove that
the super-operator ]‘:’K#L{Dnd} obtains the terms D{}”, etc. at the resolution
of D.

Owing to the Pauli principle the density operator has to be antisymmetric
in the sense:

D = Ay {D} = Ay DAy, (6.10)

where Ay is the antisymmetrizer in Equ. (5.5).
Thus, the resolution of D in terms of the one-particle density operators
can be obtained as follows

D — AN {H D" 4+ — 2‘ Cnm) H ) 11 + —_ 2 Crmb H DO ..
r=1 2! n#Em ren,m 3! ny m#l r#n,m,l
(6.11)
with the cluster operators

C(nm) def [y(nm) _ () Pom) | (6.12)

where, e.g., AZ{C('"”)} is related to the two-particle correlation operator of the
electrons, which will be discussed in the next part of this investigation.

We can get another useful way of expanding the density operator in
terms of one-particle density operators. Let us consider the first IV highest
eigenstates of the one- and two-particle density operators etc., and introduce

Acta Physica Academiae Sciensiarum Hungaricae 27, 1969



128 J. I. HORVATH and I. K. GYEMANT

the set of truncated operators

~ N ~ N
DO = 2; P> 4, <P, DU = X[ v, {g"]. (6.13)
H= y=1

Then, taking into account that the summation over the configuration K =
= {ky, ky, . . ., kn} is not truncated, we have, e.g.,

D, = 2|0K|2 II (DO 4 (1p> (p| — D)} =

r=1
= HD(') + 2 (DO — D) 77 DO + (6.14)
r#n
+ 1 3 D™ — po D™ — Do pem _ P Piemy. 17 DO+ ...
2! m#m r¥nm

If the notations

DM — P L v pam — Pom 4 y(m) (6.15)

are introduced, one obtains easily that

D= Ay 1]1)(0 +— > (€om 4 vemy Fr DO} (6.16)

2! n;ém r#n,m

where the cluster operators
Coomy — Pomy _ P Pm (6.17)

are related to the correlation electrons in the ground states corresponding to
the first highest NSO’s and v"*™ determines the correlations via excited states.

It is remarkable that the first order cluster operators corresponding to
the single particle excitations are absent in both cluster expansions (6.11)

and (6.16); i.e.
tr#, {Py, D} = LBy, (Py, = [P <PI). (6.18)

In this way the statment at the end of §5 that the NSO’s are just the
Brueckner orbitals is proved. This problem, as well as the problems connected
with the correlation between the electrons in terms of the cluster operators
will also be discussed in the next part of this investigation in more detail.
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Finally, let us still mention that if the higher order cluster terms €™,
C("mk), ... are absent, i.e., if the system of the IV electrons is a perfect one, the
well known result [9]:

D(x;5 x) ... D(x;; xp)
(.- 2y Dl xpyd = | (6.19)
D(xy; %)..-D(zn; xn)

and a similar expression in the case of the truncated first order reduced density
operators are obtained.
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DN
Lol o

O TEOPHHU OIIEPATOPOB ITJIOTHOCTH ®EPMHOHOB L.

OIPENETEHHE OOQHOYACTH IHbIX COCTOAHWUA U KMTACTEPHOE PA3/TIOKEHHE
O[IEPATOPOB IVIOTHOCTH

s1. 1. XOPBAT u H. K. AbEMAHT

Peswome

ITocne onpemeneHust oneparopos MIOTHOCTH (§ 2) BuipabarTniBaeTcst NMOHSATHE MPOCTHX
YACTHYHLIX COCTOSTHHH HAa OCHOBE YHCTHIX COCTOSIHHH NPHBEJEHHHIX OMEepaTopoB TNJIOTHOCTH
nepsoro nopsiaka (§ 3). Janee paccmarpusaercsi moHsaTHe NSO H NSG u pasno)keHust 10 HUM
(§ 4). ducKyTdpyeTcsi H PasBHBaeTCs AaJiblle BapHauHoHHOe npHOInKeHde Kuaura (5 §).
HaxoHey B pasiHYHLIX CJIyyasiX JAlOTCsl KJIACTEPHBLIE Pa3J/I0XKeHHs ONepaTopoB IIOTHOCTH
N-4acTdy M0 NpUBEACH HLIM 0llepaTopaM ILIOTHOCTH NIEpBOro MNOpsiaKa.
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