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The problem of how to extend the hydrodynamical  model - -  described in prcvious 
publications - -  to many  body problcms is discussed and it is shown tha t  the difficulties which 
arise in such an a t t empt  are not of mathemat ical  nature,  but  they reflect upon a physical 
problem which in our opinion is unsolved so lar. Ir  is suggestcd tha t  in the correct t r ea tment  
of a many body problem one should t ry  to select bctween the possible wave functions such 
functions which ate very likely in a statistical sensc. This proposed selection resembles the 
selection of the very likely configurations in statistical mechanics. 

w 1. We have  shown in a number  of publications [ 1 - - 5 ]  how the wave  
equation describing a one-body problem can be transformed into  a mathe-  
matical equivalent  forro, so that  in the  new forro the  variables have  a good 
meaning in the classical sense. 

It  is generally believed to be impossible to carry out  a similar transforma- 
tion of the wave  equat ion describing the motion of a system eonsist ing of  
several particles. 

We analyse the latter problem and show that  there ate difficulties indeed 
to express the m a n y - b o d y  problem in terms of hydrodynamical  variables, but  
these difficulties ate not  of mathematical  nature but  ate eonneeted with a 
physical  problem which does not  seem to be solved so far. 

I 

w 2. The wave  equat ion describing the  mot ion of  N partieles under the  
influence of a potent ia l  V can be written 

"~,=1 --  2m-----~ V2~p -f- V~p = i]~~, (1) 

* This article is dedicated to the 60th bir thday of my good friend, Academician 
P. GoMns whom I sincerely wish many more years of undiminished activity. I always follow- 
ed with great interest  his work, in particular on the statistical methods of obtaining the sta- 
tionary states of many body systems. Since many  years I ana wondering, whether  a dynamical 
version of this theory could be found? I t  may be tha t  the ideas developed in this article havc 
some connection with the lat ter  problem. 
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36 L. S~OSSY 

where 

= ~~(~, t ) ,  r = rl ,  r 2 . . . . .  rN (2) 

and ~7, is the  nabla  operator  acting upon the components  of r, .  
V may  be supposed to have the forro 

VQ:) -~ ~ V~(r~) + ~ V~~(r~--r~). (3) 

A type  of equat ion which somewhat  resembles to the  hydrodynamica l  relations 
can be obtained from (1) b y  writing 

= R e  f s ,  (4) 

where R and S depend on r and also on the t ime t. 
Making use of the  relation (4) one finds 

V ~ ~ _  v~R ( g r a d v S ) 2 + i (  2 g r a d ~ R g r a d ~ S  + v z S }  " (5) 
R R 

Int roducing (5) into (1) one finds separat ing real and imaginary parts  

with 

~ ,  div~ eDv + ~p = 0 (6) 

Q = R 2 13v - -  - -  gradv S.  (7) 
my 

(We use gothic 13 for the  veloci ty  distr ibution in 3 N  dimensions). 
F rom the real pa r t  of (5) we find 

I~l ~~ ~~0~'~ 1 ) ]  - -  grad~ 2m~ ~xl~ + - -2  m~ ~,~ q- V = m s 13~. (8) 

w 3. Equat ions  (6), (7) and (8) gire a set of differential equat ions which 
can be  solved for given initial conditions. These equations can be regarded as 
"hydrodynamica l  equat ions in a 3N-dimensional  space".  Relat ions (5), (6) 
and (7) do not  seem, however ,  to have part icular  physical  significance as they  
express the motion of a physical  sys tem i n  a 3N-dimensional  configuration 
spaee. Such a description reveals jus t  as little the  physical  significante of the 
proeess involved as the  original wave equation.  
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THE HYDRODYNAMICAL MODEL OF WAVE MECHANICS 37 

I I  

w 4. We obtain sets of equations referring to three-dimensional  distribu- 
tions by forming suitable averages. We m a y  introduce three-dimensional  
densities by  writ ing 

~)v('r) ----- f ' ' "  f ~ ( ~ ' l " "  " rv - - l '  ' / '~"rv+l"" ""rN)d3"T1 - .  . d 3 r ~ - l d 3 r ~ + l  . .  . d a r N  �9 (9) 
(N-a) 

In  place of (9) we can also write shorter  

p,(r) = f Qd 3(N-1) r ,  (10) 
(,) 

where the symbol  on the right hand  side of (10) is supposed to s tand  for the 
right hand  expression of (9). 

Similarly we m a y  introduce 

~ ~ ( r ) v ~ ( r ) =  f . . . f @ ( r ~ .  . . r , _ ~ , r , r , + ~ .  . . r N )  d r , .  . . d r , _ ~  dr , ,+ , .  . . d r N .  
(N--l) 

(11) 

Or writing short  

v~(r)  ---- .I Ot~~ d 3(N-1) r . (12) 
(0 

w 5. In tegra t ing  the cont inui ty  relation (6) into ( N - - l )  coordinate 
vectors r~ v = 1, 2 , . . .  # - -1 ,  # + 1 . . .  N, i.e. integrat ing over all coordinate 
vectors with the exception of r ,  we f ind t h a t  N- -1  of the terms under  the sum 
vanish and we obtain 

8e~ 
div (e~vu) q- --  0 q  1,2, . . . , N .  (13) 

0t 

Wc sce thus  t h a t  the threc-dimensional distributions 0~(r) and vu(r  ) # = 
= 1, 2, . . . ,  N rcpresent flows each sat isfying a cont inui ty  relat ion in three 
dimensions. 

I I I  

w 6. So as to show tha t  the N flows so obtained have a good physical 
signifieanee, we note t h a t  we m a y  introduce current  and eharge dcnsities 

i~ = e~ v~ Odc ,  ~el~ = e,, ~ , , ,  r = 1 ,  2 ,  . . . ,  _ N ,  (14) 
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where e, is the electric charge carried by the r-th particle. Forming retarded 
potentials 

f [i~] d3r ", q~~=f [~eb] d3r" (15) 
Av = Ir - -r ' l  I r - - r ' l  

in the usual way, we can suppose that  the electromagnetic field of the system 
can be derived from potentials 

A : I A v ,  q~ : X~~. (16) 

Indeed the field obtained from A and �9 as given by (15) and (16) is exactly 
equal to the expectation values of the corresponding quantities obtained in 
temas of the usual operator formalista. 

w 7. Similarly we can introduce quantities like momentum and angular 
momentum writing 

pv:Je~v , .d3r ,  M~=.[(r• (17) 

and it can be verified easily that  the system a s a  whoIe behaves as a system 
with total  momentum respectively angular momentum given by 

p = Ip~, M = I51~. 

where 

We see therefore tha t  the behaviour of the N partiele system can be 
eharacterized indeed with the help of the densities p~v~ and O~" Taking the 
spin of the particles into consideration we have to introduce further variables, 
e.g. T,  where T, = T~(r, t) are unit vectors characterizing the directions of 
spins of the various particles. 

w 8. Muhiplying both sides of (8) by ~ and integrating over N--1 coordi- 
nate veetors r ,  :~ r ,  we obtain three-dimensiona! equations of motions of the 
f o r r o  

~~ 6s : F~, # = 1, 2 . . . .  , N ,  (18) 

F~ = -- grad f e ( ~  + ~ + V)d(~-l)r, 
(,) 

~�91 V2 ~1[2 ~ __ i 

a = "~,, m v o ~/2. ' 2 27,, m,, 1~2. (19) 

IV 

w 9. The relations (18) and (19) have the form of three-dimensional equa- 
tions of motions which describe the motion of N media simuhaneously. How- 
ever, there is an essential difference between the one-body problem with N = 1 
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THE HYDRODYNAMICAL MODEL OF WAVE MECHANICS 3~  

and the  more - body  problems N > 1. Indeed,  in the  case N : 1 the wave 
funct ion ~ can be unambiguous ly  de te rmined  f rom the  dis tr ibut ions v and  2" 
Therefore  in the  one-body problem the  r ight  hand  expression (18) can be 
expressed in te rms o f v  and ~ and thus  (18) toge tber  with the  con t inu i ty  re la t ion 
(13) gives a set of  differential  equat ions which for a given initial condi t ion can 
be in tegrated.  Therefore  if  we describe a one-part icle sys tem b y  giving 

v(r ,  0) = v(~ and Q(r, 0) ---- ~(~ 

then  we can de te rmine  the mot ion  of the  sys tem unambiguous ly .  
w 10. In  the  case of several  particles the posi t ion is different.  Le t  us 

consider N---- 2. 
Giving ini t ial  condit ions 

~~(rl, r~, o) = ~~0)(r~, r~) ~ = 1, 21  (20) 
~(r~, r2, 0) = ~~~ r2) ! 

We can de te rmine  the  mot ion  of  the  sys tem in an unambiguous  manner .  
However ,  i f  we give only 

o~~176 -~ S ~~l (r ' r"  O)d3r' ~176 = S ~ ( r ' r "  O)d3r '}  (21) 

~~~~~176 , = y ~~~(r', r ,  0) d3 r' ,  @~(r) = y ~(r',  r ,  0) d3 r'  ' 

t hen  we cannot  de termine  ~v(rx, r2, 0) f rom the  initial condi t ion;  expressing 
t~, respect ive ly  0 in te rms o f ~  = Re ~s making  use of (8) we f ind t h a t  there  exist  
a ve ry  large n u m b e r  of  functions ~v sat isfying (21). 

w 11. In  fac t  the  densities ~lv~ and ~2V2  c a n  be t ak en  as two three-dimen-  
sional moments  of  a six-dimensional  dis tr ibut ion.  A n u m b er  of  three-dimen-  
sional moment s  res t r ic t  a s ix-dimensional  dis t r ibut ion only  to  a v e ry  slight 
ex ten t .  Indeed,  we m a y  approx imate  ~v b y  a step funet ion  dividing each of 
the  coordinate  axes into n sections and giving the  average value  of ~ in any  
of  the m = n 3N 3N-dimensional  cubes thus obtained.  The n u m b e r  of condi- 
t ions which can be imposed by  giving the three-dimensional  moments  corres- 
ponding to the  dis t r ibut ion (21) is 

M = 8 N n  3 ~ m .  

I f  we were to  give some more three-dimensional  fields we could increase the  
num be r  of condit ions bu t  still we could not  de termine  ~v f rom a n u m b er  of 
sueh moments .  

V 

w 12. We no te  t h a t  the fact  t h a t  ~ depends on 3 N  space variables intro-  
duces a large ambigu i ty  concerning the  var ia t ion  of the  three-dimensional  
densities. Indeed ,  if  we give not  only  v ,  and ~, for t = 0 b u t  also the t ime 
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derivat ives  t ' . ,  t hen  we still can construct  a great  manifold of~v-functions which 
reproduce  this ex tended  initial  condition. 

Different ia t ing the  equat ions of mot ion  (18) and (19) into the t ime,  we can 
el iminate  with the help of  the  wave equat ions (1) the t ime der ivat ives  of  v 2 
which appear  in the r ight  hand  side of the d i f ferent ia ted  expressions. We obta in  
thus  relations of the type  

dlv~ -- funct ion of ~v and space der ivat ives  in tegra ted  over  the  r .  v =z~ #. m~ 
�9 d t  t 

(2la)  

However ,  the left  hand  expressions depend for a f ixed  # on the  coor- 
d inate  r .  only, while the  r ight  hand  expression contains the ~v and its deriva- 
t i res  sui tably  averaged over  the variables r~ ~ r . .  Therefore  the r ight  hand  
expressions can be t aken  to be 3-dimensional  moments  of  the  3N-dimensional  
d is t r ibut ion ~. One can therefore  f i n d a n  infini te  n u m b e r  of dis t r ibut ions  
~v which sat isfy the  condit ions (2la) at  t = 0 for  arb i t rar i ly  given values 
of  the  v~ and their  t ime derivatives.  

The  fact  t ha t  we can impose a rb i t r a ry  initia] conditions for the  vl,'s and  
the i r  t ime derivat ives means t ha t  we can prescribe the change of t ime of the  
v~'s themselves.  I.e. we can gire v~(r, t ) for  an extended interval of  time and f i nd  
a ~-function which corresponds to a motion in which v#(r, t) takes up values in 
this arbitrary prescribed manner. 

The above result  shows t ha t  something is missing in the theory .  The  
task  of  a theory  is to de te rmine  the mot ion  of a sys tem from suitable initial 
condit ions.  Here  we meet  a s ta te  of affairs such t h a t  we can prescribe a rb i t ra r i ly  
the  mot ion  of a sys tem and the  theory  yields inner  parameters ,  i.e. the  wave 
func t ion  ~, which leads to  the  mot ion  we prescribed.  

The  unsa t i s fac tory  fea ture  of the t heo ry  for N > 1 could be avoided in a 
formal  way  if we were to admi t  t ha t  the initial  condit ion of a physical  sys tcm 
has to be given b y  a 3N-dimensional  wave funct ion  or b y  3N-dimensional  
dens i ty  distr ibutions r a the r  t han  by  the  averages refcrr ing to the  three-  
dimensŸ space. 

w 13. So as to see the  physical  eontents  of the  dis more clearly 
we g i re  the  following analogy:  consider opaque bodies moving before a sereen 
and let  us observe the two-dimensional  shadows which the three-dimensional  
bodies th row on the screen. 

S tudying  the mot ion  of  the shadows we f ind t h a t  their  motions cannot  
be de termined  from initial  conditions. Indeed,  bodies of quite different  shapes 
m a y  produce  in one ins tan t  similar shaped shadows, b u t  the shadows of the  
di f ferent ly  shaped bodies will change in different  manner  according to the  
shape of  the moving three-dimensional  body.  
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T H E  HYDRODYNAMICAL MODEL OF WAVE MECHANICS 41 

w 14. To r e tu rn  to  our original problem we can take  the densities ~~,(r) 
and velocities v,(r) to r e p r e s e n t a  k ind of three-dimensional  projections of  the 
3N dimensional  distr ibutions Q(r) and ~~(r). I f  the  s ta te  of the  system is in 
fact  de te rmined  b y  the  3N-dimensional  dis tr ibut ion,  t hen  the mot ion  of  the 
"'shadows" described by  the three-dimensional  distr ibutions cannot  be deter-  
mined f rom thei r  three-dimensional  initial  conditions.  Indeed ,  considering 
physical  systems described by  two wave functions ~l(r,  t) and ~v2(~, t) which 
lead, say  at  t = 0, to the  same three-dimensional  distr ibutions.  The systems 
s tar t ing  f rom ident ical  three-dimensional  initial conditions will show ent i re ly  
different  motions for t > 0. 

w 15. The initial  conditions giving the three-dimensional  dis tr ibut ions at 
t = 0 do not  de te rmine  the mot ion  of a sys tem if the equat ions of  motions can 
be expressed in the  form of wave equa t ion  

H~ = i~~, ~ = ~(~, t). (22) 

The physical  problem of describing the  mot ion  of a toms seems, however,  to 
require predict ions of  the mot ion  of a toms described b y  three-dimensional  
distr ibutions as we show present ly .  

Indeed,  if we observe atoms we can observe thei r  e lectromagnet ic  fields, 
i.e. we can observe e lectromagnet ic  fields emi t ted  in forro of  radia t ion;  we 
can also observe electric- of magnet ic  dipole moments  arising if  the  atoms ate 
polarized. We can fu r the r  observe energy  and m o m e n t u m  of atoms in par t icu lar  
if they  collide with a macroscopic body .  We can observe angular  m o m e n t u m  
and o ther  similar parameters  of  an atom. All these quant i t ies  enumera ted  
above can be observed more or less d i rec t ly  and t h ey  can be expressed using 
three-dimensional  distr ibutions only. Thus the  features  of  ah a tom which are 
observed in usual  exper iments  seem to give informat ion at  Inost upon the 
three-dimensional  distr ibutions.  

w 16. When  we make  the above s t a t em en t  we res t r ic t  ourselves to quan-  
tities which can be measured  indeed b y  real exper iments .  We disregard quan-  
tities which ate  supposed to be " m e a s u r a b l e "  in terms of ah abs t rac t  theory .  
To i l lustrate  our  point  of view let us c o n s i d e r a  H e -a to m  and the  supposed 
measurement  of the  positions of bo th  of  its electrons. 

The wave funct ion  ~(r l ,  r2, t) describing a two-body  conf igurat ion is 
supposed to give 

P(r~, r2) d3rl d31*2 = [v212 d3rl d3r2, (23) 

which q u a n t i t y  is supposed to  give the  probabi l i ty  to  f ind the  first  particles 
of  the sys tem inside a volume element  d3rl, the  second inside dSr2. Taking the 
system, say, to consist of the two electrons of  a He-a tom,  (23) gives the pro- 
babi l i ty  dens i ty  of  f inding the  electrons ve ry  near  to points r 1 and r 2 inside 
the  atom. 
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Considering real exper imenta l  conditions,  we feel t ha t  i t i s  impossible to  
locate b y  real measurements  the  posit ion of even one eleetron inside ah a tom 
and ir appears absolute ly  phan tas t i c  to t r y  to  make  statisties of "where  we 
f ind the  second electron once we have  found the  f irs t  electron inside ah e lement  
d3rl ' ' .  

w 17. The proposi t ion t ha t  by  a series of hypo the t i ca l  measuremen t  of 
coordinates  we can de te rmine  exper imenta l ly  F(r l ,  r2) seems to be absurd.  
Nevertheless,  the wave funct ion  ~o has a good physical  signifieance. A n y  real 
measuremen t  will lead to the  de te rmina t ion  of moments  

(24) 

where ~rJ�91 is a funct ion of  r of some opera tor  act ing on the  wave funct ion  
~v(~). However ,  de termining moments  of the  type  (24) we obta in  only  v e ry  
weak restr ict ions as to  the  dis t r ibut ion of ~v(r) in a 3N-dimensional  spaee. 

We m a y  determine  the  field of an a tom which de te rmina t ion  amounts  to  
de te rmining  some momen t  Mk as funet ion of the  coordinate  vee to r  r .  In  this 
way  we obtain relat ions whieh can be wr i t t en  symbol ical ly  

Mk(r) ---- ~ ~0*(r) ~~Y~k(~) v2(t) d 3N-31:. (25) 

The  re la t ion (25) - -  if  Mk(r) is obta ined by  measuremen t  for  all values of r - -  
gives mere ly  a three-dimensional  restr ic t ion upon  ~v(r). As explained in J w 11 
even a number  of such restr ict ions ate u t t e r l y  insufficient  for  the de termina-  
t ion of the  dis t r ibut ion ~(~) itself. 

We see therefore  t h a t  the  empirical  in format ion  we can obta in  as to  
physieal  s ta te  of  ah a tom is res t r ic ted to three-dimensional  moments  of ~v and 
therefore  a useful t heo ry  mus t  a t t e m p t  to make  conelusions about  the  mot ion  
of a toms based on in format ion  consisting of  such three-dimensional  moments  
only.  

VI 

w 18. Logically there  seem to be two possibilities to avoid the  ambigui ty  
involved  in the more -body  problems. 0 h e  might  suppose t h a t  the  wave  
equa t ion  (22) gives only  a necessary condition for  the  mot ion  of ~v(r, t). One 
might  suppose t ha t  the full equat ions of mot ion  have  the form 

Hv 2 = ih~£ (a) / (26) 
A ~ =  0, (b) ! 

where  the  seeond eondi t ion is supposed to be an auxi l iary  eondit ion compat ible  
with the  wave equat ion.  I f  the  condition (26b) is a suff icient ly s t rong con- 
di t ion the  solutions of (26a), (26b) reduce to  a manifold of the  order  of t h a t  of  
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three-dimensional  distr ibutions.  I f  such a condit ion (26b) existed,  then  the 
relations (10) and (12) together  with (26b) would be sufficient to  determine 
~v(t) uniquely  and thus hyd rodynamica l  equat ions of mot ion  could be obta ined 
in the case N > 1 also. 

w 19. A condi t ion of the form (26b) is obta ined e.g. b y  requir ing the wave 
funct ion to  be an t i symmet r ic  in cer ta in  variables.  Such a condit ion is com- 
patible with (26a) bu t  it gives a ve ry  weak restr ict ion only  on the  wave func- 
tion. The  condi t ion t h a t  the  wave fune t ion  should be an t i symmet r ic  does not  
permi t  to reduce the  manifold of solutions of (26a) suff icient ly so as to make  the 
solutions to correspond to three-dimensional  distr ibutions.  

The ground s ta te  of ah a tom is un ique ly  de te rmined  b y  a var ia t ional  
condition.  I.e. the  ground s ta te  is described b y  the wave funct ion for which 

6 ~ v2*Hv2d3Nr = O. (27) 

One might  be t e m p t e d  to th ink  t ha t  the auxi l iary condi t ion eould be t ak en  to 
be a var ia t iona l  condi t ion of  the  t y p e  (27). The condit ion (26b) might  require  
to look for the  min imum of the  energy  among those funet ions ~ which lead to 
a given three-dimensional  current  charge dis tr ibut ion 

v , ( r )  and ~og(r). (28) 

Thus one might  t r y  to  postula te  t h a t  a sys tem which exhibits  a ( three-dimen- 
sional) cur ren t  charge dis t r ibut ion (28) is to be described b y  t h a t  wave funct ion 
~v which leads in te rms of  (10), (11) to  the  d i s t ¡  (28) and  which possesses 
the min imum energy  which is compat ible  with the conf igura t ion (28). 

w 20. The solutions obeying (27) toge ther  with the condi t ion (28) obey 
certain differential  equat ions which are somewhat  similar to the  t ime-inde- 
pendent  Schr6dinger  equat ion.  However ,  one finds t h a t  inser t ing as initial 
condit ion into (22) a wave funct ion which possesses a re la t ive  min imum thus 
described - -  one finds from (22) t h a t  in the course of  t ime the  funet ion loses 
the  min imum proper ty .  Thus the conditions (27) and (28) are in general 
incompatible with the  wave equa t ion  (22). 

w 21. We th ink  i t  l ikely t h a t  condit ions of  the  forro of  (26b) do no t  exist  
which are: 1) compat ib le  with the wave equat ion  (26) and 2) reduce the set of 
solutions to a suff icient  degree. Whe the r  of not  this supposi t ion is eorrect  
eould be inves t iga ted  in the following way.  

We m a y  suppose tha t  the  ground s ta te  of  an a tom - -  which is described 
at, say, t = 0 by  a wave funct ion ~v0(r ) - -  is a possible s tate .  Le t  us consider 
another  s ta te  which at  some f ixed t ime t = t I > 0 is described b y  ah arbi t rar i ly  
given wave funct ion  ~vl(r ). 
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The  question arises whe the r  we can f ind some outs ide pe r tu rba t i ons  which 
e.g. can be described b y  a po ten t ia l  

N 

V(r, t) = ~ "  ~ ( r~ ,  t ) ,  (29) 
v = l  

such t h a t  in the  in te rva l  t = 0 to t = t 1 the  ac t ion  of the  po ten t ia l  makes  the  
wave  funct ion  to t r ans fo rm f rom 

W=~v0 to ~o=~v 1. 

Suppose  e.g. a wave  equa t ion  of the form:  

2m~ V2 �91 ~(r~, t) q- IZo ~v = ih~b, (30) 

where V 0 represents  the  in te rae t ion  be tween  the  _N part ieles.  The  question 
arises whe the r  we can f ind poten t ia l s  V,,(r,, t) such t h a t  s t a r t ing  f rom an init ial  

eondi t ion ~~ = ~v 0 the  solut ion of (3) will be equal  to ~v = ~1 a t  t = t 1. 
w 22. The answer  to the  above  quest ion is no t  t r iv ia l  for the  following 

reason.  The  change 5~v of  W in ah inf ini tes imal  in t e rva l  �91 can be wr i t t en  

i 
@ = ~b~ t -  - -  H ~ ,  (31) 

we can  choose the  po ten t ia l s  V~ at  a g iven t ime  t a rb i t rar i ly .  Never the less  
because  H contains the  sum of potent ia ls  11,. each depending on one var iab le  
only,  (31) cannot  be sat isf ied for an a rb i t r a r i ly  g iven �91 

I n  a fo rmal  w a y  we can suppose  ~ and  ~ ~- �91 to represen t  two points  
in H i lbe r t  space. We f ind t h a t  using potent ia ls  of  the  fo rm (29) we can ob ta in  
direct transitions f rom a po in t  ~o of Hi lbe r t  space only  to  except ional  points  in 
its v ic in i ty  ir we res t r ic t  ourselves to poten t ia l s  of  the  forro (29). Thus  mos t  of 
the  points  in the v ic in i ty  of  a poin t  ~v are inaccessible b y  direct transition. 

F r o m  this i t  does no t  follow t h a t  these  points  cannot  be  reached  on a 
round  a b o u t  way.  I n  fac t  we th ink  t h a t  m o s t  of  the  points  of  H i lbe r t  space 
can  be reached  f rom ah init ial  po in t  ~v 0 as the  effect  of  a suff icient ly well chosen 

- -  r a t h e r  compl ica ted  - -  p e r t u r b a t i o n  of the  forro (29). 
We hope to c o m e b a e k  to  the  m a t h e m a t i c a l  d iscuss ionof  this quest ion in a 

la te r  p a p e l  
w 23. The second logical poss ibi l i ty  is to suppose  t h a t  there  exist  no s t rong  

res t r ic t ions  as to the  ~v-functions which ate accessible - -  bu t  like in s ta t i s t ica l  
meehanics  the  s ta tes  descr ibed b y  W ha,ce v e r y  di f ferent  probabi l i t ies  to  become  
realized. I f  there  exis t  ~v-functions which give v e r y  l ikely conf igurat ions  and  
others  which give v e r y  unl ike ly  ones, t hen  we can pos tu la te  t h a t  a given 
d is t r ibut ion  (28) is r ep resen ted  in mos t  cases b y  a " v e r y  l ike ly"  ~. Therefore  
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the mot ion  of  the  s y s t em  will in m o s t  cases t ake  place in a v e r y  good approx i -  
mat ion ,  in a m a n n e r  to be expec ted  in t e rms  of a " v e r y  l ike ly"  ~v-function. 

The  ana logy  of the  concept  and  t h a t  of  s ta t i s t ica l  meehanics  is a ve ry  
deep one. Indeed ,  in s t a t i s t i ca lmechan ics  the  m o t i o n o f  s a y a  gas can be calcul-  
a ted exac t ly  ir  the  initial  condit ions are given, conta ining the  eoordinates  
and velocities of  all the  N a toms  of the  gas a t  t = 0. 

F r o m  the mechanica l  equat ions  of  mot ion,  the  mot ion  of  the  gas a s a  
whole can be de te rmined .  However ,  i f  we give only the  macroscopic  dens i ty  
d is t r ibut ion and  the  d is t r ibut ion  of ve loc i ty  of flow, then  these  dis t r ibut ions 
do not  de te rmine  the  initial condit ions for the  mot ion  of the  indiv idual  a toms.  
Const ruc t ing  suff ic ient ly  artificial  initial  conditions for the  a toms ,  we come 
to conf igurat ions  which s t a r t ing  f rom a given macroscopic  ini t ial  condi t ion 
behave  in a v e r y  abno rm a l  manner .  Wi th  suffieient skill we can find initial  
conditions for the  a toms  which lead to an a lmost  a r b i t r a r y  prescr ibed macro-  
scopic mot ion  of the  gas. 

The  equat ions  of  mot ion  which give the  correct  macroscopic  mot ions  of  a 
gas ate  ob ta ined  ir we choose among  the  possible microscopic  conf igurat ions  
the  v e r y  l ikely ones. Devia t ions  f rom the macroscopic  equat ions  of  mot ions  
arise because  of f luc tua t ions ,  i.e. because  occasionally there  occur  dis t r ibut ions 
which devia te  f rom those which a te  the  mos t  l ikely ones. 

w 24. In  the  case of  the  ~v-function one imagines t h a t  " s m o o t h e d "  funct ions  
are more  l ikely t h a n  those which show a grea t  deal of  i r regular  f luc tua t ions .  
I t  seems to be an unsolved p rob lem which ~ 's  are the  v e r y  l ikely ones. 

Al though we can gire  no m e t h o d  of ac tua l ly  selecting the  " v e r y  l ikely 
~v-functions" ir seems plausible t h a t  these funct ions ate  somewhere  near  those 
possessing m i n i m u m  proper t ies  of  the  t ype  described in w 18. Indeed ,  i f  ah 
a tomic  sys t em is in a s t a te  possessing a grea t  deal of  energy,  t hen  ir is l ikely 
to emi t  e lec t romagnet ic  rad ia t ion  and  thus  to reduce its energy.  We expec t  
therefore  a t e n d e n c y  of a toms to app roach  s ta tes  wi th  low energy.  

w 25. We close these qua l i t a t ive  considerat ions wi th  ano the r  r emark .  
F r o m  the solut ions of  the  wave  equat ions  val id  for m a n y - b o d y  sys tems  we 
find - -  in excel lent  ag reement  wi th  obse rva t ion  - -  the  spec t ra  of  m a n y  electron 
sys tems,  e.g. we f ind the  spec t rum of the  He  a tom.  A rad ia t ing  He  a t o m  is a 
moving  sy s t em and therefore  we ate in fac t  in a posi t ion to de te rmine  cor rec t ly  
the  mot ion  of the  charge of the  electrons inside a He  a tom.  

I t  m u s t  be emphasized ,  however ,  t h a t  t ak ing  the  superposi t ions  of  an 
a rb i t ra r i ly  large n u m b e r  of  s t a t i o n a r y  solutions of the  wave  equa t ion  - -  we 
can f ind a combina t ion  which produces  for a l imi ted per iod an oscillation with  
ah a rb i t ra r i ly  given f requency  v - -  this  f requency  need not  be  anywhere  nea r  
to the  opt ical  frequencies of the  He  a tom.  

T h a t  as the  resul t  of  the  bea t  of  the  na tu ra l  frequencies of  He  we can 
obta in  a s t a te  in which ah a r b i t r a r y  f requency  v arises, is analogous to the  
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problem of the Fourier analysis.  Using a large number of Fourier components  
we can obtain (inside a l imited interval) a harmonic function with an arbitrary 
period v which m a y  differ from the periods of  the terms of  the series. 

The state in which a He atom oscillates for a t ime with an unusual  fre- 
quency  v contains obvious ly  components  o f  rather higher energy - -  and after 
a certain t ime the accidental phase relations between the natural frequencies 
which produce the beat  frequency v will disappear. 

When we state that  according to the theory  a He atom generally emits 
well-defined combinat ion frequencies only,  then we make already a strong 
restriction on the wave  functions ~ which we think l ikely to occur - -  we 
suppose that  in the observed states the wave  function of  the discrete states 
ate predominant .  
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FH,LIPO,L](HHAMHqECKAYt MO,/~E.FIb BOJ'IHOBO171 MEXAHHKH 

3A,HAqA MHOFHX TE.TI 

II...q HOIIIH 

P e 3 m M e  

,]~HCKyTHpyeTca npo6:~eMa pacmHpeHH~ FH~p0~HHaMHqeCK0fi Mo,~e.nH--OnHCaHHOfi B 
Hpe~~ymHx pa60Tax - -  K 3a}laqe MHOFHX Te~. FIoKa3bIBaeTC~, qTO IIO~B~~IIOIIIHec~I B IIpH- 
JI0~,<eHHH Tpy~H0CTH He MaTeMaTHqeCKOF0 xapaKTepa, OHH OT06pa>Ka~OT r Hp06- 
.qeMy, He pemeHHyio ~0 HameMy MHeHHIO ~0 HaCT0~meI'0 BpeMeHH. OKa3bIBaeTc~ B03M0>I<HblM~ 
qTO B TOqHOM pemeHHH np06:IeMb~ MHOFHX Te J1 y~aeTc~ BbI6HpaTb H3 B03M0>KHbIX BOJIHOBb[X 
~yHKI~H~ Te, KOT0p~e 0qeHb nO~O6HbI B CTaTHCTHqeCKOM CMblC.qe. l-lpe,~no~aFaeMbi~ 0T~Op 
HaIIOMHHaeT 0T‰ 0qeHb II0~06HblX K01t~HrypalIH~ B CTflTHCTHqeCKOH MexaHnKe. 
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