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THE HYDRODYNAMICAL MODEL OF
WAVE MECHANICS*

THE MANY BODY PROBLEM
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The problem of how to extend the hydrodynamical model — described in previous
publications — to many body problems is discussed and it is shown that the difficolties which
arise in such an attempt are not of mathematical nature, but they reflect upon a physical
problem which in our opinion is unsolved so far. It is suggested that in the correct treatment
of a many body problem one should try to select between the possible wave functions such
functions which are very likely in a statistical sense. This proposed selection resembles the
selection of the very likely configurations in statistical mechanics. )

§ 1. We have shown in a number of publications [1—5] how the wave
equation describing a one-body problem can be transformed into a mathe-
matical equivalent form, so that in the new form the variables have a good
meaning in the classical sense.

It is generally believed to be impossible to carry out a similar transforma-
tion of the wave equation describing the motion of a system consisting of
several particles.

We analyse the latter problem and show that there are difficulties indeed
to express the many-body problem in terms of hydrodynamical variables, but
these difficulties are not of mathematical nature but are connected with a
physical problem which does not seem to be solved so far.

I

§ 2. The wave equation describing the motion of IV particles under the
influence of a potential V' can be written

N 72

2._.

p=1 m,

Viy + V| = iky, (1)

* This article is dedicated to the 60th birthday of my good friend, Academician
P. GoMBA4s, whom I sincerely wish many more years of undiminished activity. I always follow-
ed with great interest his work, in particular on the statistical methods of obtaining the sta-
tionary states of many body systems. Since many years I am wondering, whether a dynamical
version of this theory could be found? It may be that the ideas developed in this article have
some connection with the latter problem.
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36 L. JANOSSY

where
p =y,(1,1), T=10575 ...y 2)

and V/, is the nabla operator acting upon the components of r,.
V may be supposed to have the form

V()= ZV(TV) + S Vulr,—r,) (3)

yF#u

A type of equation which somewhat resembles to the hydrodynamical relations
can be obtained from (1) by writing

Y= Re'®, (4)

where R and S depend on r and also on the time ¢.
Making use of the relation (4) one finds

+ v2S). (5)

2 2
Ve ¥ — _XV_R__ — (grad, S)2 + 2 gradv R gradv S
L4 R R

Introducing (5) into (1) one finds separating real and imaginary parts

: 9
> div, o0, + ?il =0 (6)

with

o=R:  b,=-—"grad,§. (7)

v

v

(We use gothic v for the velocity distribution in 3V dimensions).
From the real part of (5) we find

V2 01/2

1
— grad, [2( i —{——2—mvb?]+V]=m“b“. (8)

§ 3. Equations (6), (7) and (8) give a set of differential equations which
can be solved for given initial conditions. These equations can be regarded as
“hydrodynamical equations in a 3IN-dimensional space”. Relations (5), (6)
and (7) do not seem, however, to have particular physical significance as they
express the motion of a physical system in a 3NN-dimensional configuration
space. Such a description reveals just as little the physical significance of the
process involved as the original wave equation.
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II

§ 4. We obtain sets of equations referring to three-dimensional distribu-
tions by forming suitable averages. We may introduce three-dimensional
densities by writing

0,(7) :f [l ) BT B, BT By (9)

(NTY)

In place of (9) we can also write shorter

o) = [od*®Dr, (10)
)

where the symbol on the right hand side of (10) is supposed to stand for the
right hand expression of (9).
Similarly we may introduce

o (r)v(r)= f . 'fgb(rl. Ty )AL dr,_dr, . dry . (1)
(N-1)

Or writing short
v,(r) = [ob, d*®Vr, (12)
®

§ 5. Integrating the continuity relation (6) into (IN—1) coordinate
vectors 7, » = 1,2, ...u—1,u -+ 1 ... N, ie. integrating over all coordinate
vectors with the exception of 7, we find that N—1 of the terms under the sum
vanish and we obtain

div(gyvu)_*__?ag:'_:o n= 1,2,...,N~ (13)

We see thus that the three-dimensional distributions g, (r) and v,(r) p =
=1,2,..., N represent flows each satisfying a continuity relation in three

dimensions.
111

§ 6. So as to show that the N flows so obtained have a good physical
significance, we note that we may introduce current and charge densities

i,=e,v,0/c, O, = €, 0, > y=1,2,...,N, (14)
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38 L. JANOSSY

where e, is the electric charge carried by the v-th particle. Forming retarded
potentials

a, =1 a0 JI[M] &r (15)

r—1|

in the usual way, we can suppose that the electromagnetic field of the system
can be derived from potentials

A=Z4,, ©=2I0,. (16)

Indeed the field obtained from A and @ as given by (15) and (16) is exactly
equal to the expectation values of the corresponding quantities obtained in
terms of the usual operator formalism.

§ 7. Similarly we can introduce quantities like momentum and angular
momentum writing

pV=J vil‘dar’ Mv=.'1(r><9" vv) dar’ (17)

and it can be verified easily that the system as a whole behaves as a system
with total momentum respectively angular momentum given by

p=2p,, M=2ZM,.

We see therefore that the behaviour of the IN particle system can be
characterized indeed with the help of the densities g,v, and p,. Taking the
spin of the particles into consideration we have to introduce further variables,
e.g. T, where T, = T,(r, t) are unit vectors characterizing the directions of
spins of the various particles.

§ 8. Multiplying both sides of (8) by o and integrating over N—1 coordi-
nate vectors 7', < r, we obtain three-dimensional equations of motions of the
form

0,0, =F, p=12,...,N, (18)
where .

F, = — grad [o(© + & + V)d"Dr,
()
#i2 VZ 91/2

; I o
ﬁ 2—v 91/2 0 ® = "2—% m, b? (19)

Iv

§ 9. The relations (18) and (19) have the form of three-dimensional equa-
tions of motions which describe the motion of N media simultaneously. How-
ever, there is an essential difference between the one-body problem with N = 1
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THE HYDRODYNAMICAL MODEL OF WAVE MECHANICS 39

and the more-body problems N >>1. Indeed, in the case IV = 1 the wave
function y can be unambiguously determined from the distributions » and p.
Therefore in the one-body problem the right hand expression (18) can be
expressed in terms of v and g and thus (18) together with the continuity relation
(13) gives a set of differential equations which for a given initial condition can
be integrated. Therefore if we describe a one-particle system by giving

o(r,0)=vO(r) and  o(r0)=¢®(r),

then we can determine the motion of the system unambiguously.

§10. In the case of several particles the position is different. Let us
consider N = 2.

Giving initial conditions
bv(rb LPY) 0) = DSO)(T’_, r2) Y= 19 2 } (20)

o1y, 75, 0) = 001y, 1)

We can determine the motion of the system in an unambiguous manner.
However, if we give only

(ORr) = § ovy(r, ¥, 0) P, 60() = [ olr, 7, 0) e
eOVP(r) = [ oby(r, 1, 0) &0, of(r) = [o(r, 7, 0)d° "'l |

then we cannot determine y(r;, ry, 0) from the initial condition; expressing

b, respectively g in terms of y = Re' making use of (8) we find that there exist

a very large number of functions y satisfying (21).

§ 11. In fact the densities p,v, and ,¥, can be taken as two three-dimen-
sional moments of a six-dimensional distribution. A number of three-dimen-
sional moments restrict a six-dimensional distribution only to a very slight
extent. Indeed, we may approximate y by a step function dividing each of
the coordinate axes into n sections and giving the average value of y in any
of the m = n®Y 3NN-dimensional cubes thus obtained. The number of condi-
tions which can be imposed by giving the three-dimensional moments corres-
ponding to the distribution (21) is

M=8Nn*<m.

If we were to give some more three-dimensional fields we could increase the
number of conditions but still we could not determine y from a number of
such moments.

v

§ 12. We note that the fact that ¢ depends on 31V space variables intro-
duces a large ambiguity concerning the variation of the three-dimensional
densities. Indeed, if we give not only v, and g, for t = 0 but also the time
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derivatives 2, then we still can construct a great manifold of y-functions which
reproduce this extended initial condition.

Differentiating the equations of motion (18) and (19) into the time, we can
eliminate with the help of the wave equations (1) the time derivatives of y
which appear in the right hand side of the differentiated expressions. We obtain
thus relations of the type

d'v,

“oar

= function of y and space derivatives integrated over the r,,v > pu.

(21a)

However, the left hand expressions depend for a fixed x4 on the coor-
dinate 7, only, while the right hand expression contains the y and its deriva-
tives suitably averaged over the variables r, ¢ r,. Therefore the right hand
expressions can be taken to be 3-dimensional moments of the 3N-dimensional
distribution p. One can therefore find an infinite number of distributions
p which satisfy the conditions (21a) at ¢t = 0 for arbitrarily given values
of the v, and their time derivatives.

The fact that we can impose arbitrary initial conditions for the v,’s and
their time derivatives means that we can prescribe the change of time of the
v,’s themselves. I.e. we can give v,(r, t) for an extended interval of time and find
a y-function which corresponds to a motion in which v,(r, t) takes up values in
this arbitrary prescribed manner.

The above result shows that something is missing in the theory. The
task of a theory is to determine the motion of a system from suitable initial
conditions. Here we meet a state of affairs such that we can prescribe arbitrarily
the motion of a system and the theory yields inner parameters, i.e. the wave
function v, which leads to the motion we prescribed.

The unsatisfactory feature of the theory for IV >> 1 could be avoided in a
formal way if we were to admit that the initial condition of a physical system
has to be given by a 3N-dimensional wave function or by 3N-dimensional
density distributions rather than by the averages referring to the three-
dimensional space.

§ 13. So as to see the physical contents of the difficulty more clearly
we give the following analogy: consider opaque bodies moving before a screen
and let us observe the two-dimensional shadows which the three-dimensional
bodies throw on the screen.

Studying the motion of the shadows we find that their motions cannot
be determined from initial conditions. Indeed, bodies of quite different shapes
may produce in one instant similar shaped shadows, but the shadows of the
differently shaped bodies will change in different manner according to the
shape of the moving three-dimensional body.
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§ 14. To return to our original problem we can take the densities g,(r)
and velocities v,(r) to represent a kind of three-dimensional projections of the
3N dimensional distributions g(tr) and b,(r). If the state of the system is in
fact determined by the 3/N-dimensional distribution, then the motion of the
“shadows” described by the three-dimensional distributions cannot be deter-
mined from their three-dimensional initial conditions. Indeed, considering
physical systems described by two wave functions y,(r, t) and y,(t, t) which
lead, say at t = 0, to the same three-dimensional distributions. The systems
starting from identical three-dimensional initial conditions will show entirely
different motions for ¢ > 0. .

§ 15. The initial conditions giving the three-dimensional distributions at
t = 0 do not determine the motion of a system if the equations of motions can
be expressed in the form of wave equation

Hy = ik, = (1, 1). 22)

The physical problem of describing the motion of atoms seems, however, to
require predictions of the motion of atoms described by three-dimensional
distributions as we show presently.

Indeed, if we observe atoms we can observe their electromagnetic fields,
i.e. we can observe electromagnetic fields emitted in form of radiation; we
can also observe electric- or magnetic dipole moments arising if the atoms are
polarized. We can further observe energy and momentum of atoms in particular
if they collide with a macroscopic body. We can observe angular momentum
and other similar parameters of an atom. All these quantities enumerated
above can be observed more or less directly and they can be expressed using
three-dimensional distributions only. Thus the features of an atom which are
observed in usual experiments seem to give information at most upon the
three-dimensional distributions.

§ 16. When we make the above statement we restrict ourselves to quan-
tities which can be measured indeed by real experiments. We disregard quan-
tities which are supposed to be “measurable” in terms of an abstract theory.
To illustrate our point of view let us consider a He-atom and the supposed
measurement of the positions of both of its electrons.

The wave function y(r,, r,, t) describing a two-body configuration is
supposed to give

P(ry,r,)d*r d*r, = |y|2d®r d°r,, (23)

which quantity is supposed to give the probability to find the first particles
of the system inside a volume element d°r,, the second inside d®r,. Taking the
gystem, say, to consist of the two electrons of a He-atom, (23) gives the pro-
bability density of finding the electrons very near to points r; and 7, inside
the atom.
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Considering real experimental conditions, we feel that it is impossible to
locate by real measurements the position of even one electron inside an atom
and it appears absolutely phantastic to try to make statistics of “where we
find the second electron once we have found the first electron inside an element
&r,”.

§ 17. The proposition that by a series of hypothetical measurement of
coordinates we can determine experimentally y(r;, 7,) seems to be absurd.
Nevertheless, the wave function y has a good physical significance. Any real
measurement will lead to the determiunation of moments

My = [ p*(1) My(x) p(r) d*N 1, (24)

where I (r) is a function of t or some operator acting on the wave function
y(r). However, determining moments of the type (24) we obtain only very
weak restrictions as to the distribution of y(r) in a 3N-dimensional space.

We may determine the field of an atom which determination amounts to
determining some moment M as function of the coordinate vector 7. In this
way we obtain relations which can be written symbolically

My(r) = [ p*(1) Diy(x) p(1) d*N 2 1. (25)

The relation (25) — if My(r) is obtained by measurement for all values of r —
gives merely a three-dimensional restriction upon y(r). As explained in. § 11
even a number of such restrictions are utterly insufficient for the determina-
tion of the distribution y(r) itself.

We see therefore that the empirical information we can obtain as to
physical state of an atom is restricted to three-dimensional moments of y and
therefore a useful theory must attempt to make conclusions about the motion
of atoms based on information consisting of such three-dimensional moments
only.

VI

§ 18. Logically there seem to be two possibilities to avoid the ambiguity
involved in the more-body problems. One might suppose that the wave
equation (22) gives only a necessary condition for the motion of y(r, t). One
might suppose that the full equations of motion have the form

Hy = ithyp, (a)
Ay =0, (%) } (26)

where the second condition is supposed to be an auxiliary condition compatible
with the wave equation. If the condition (26b) is a sufficiently strong con-
dition the solutions of (26a), (26b) reduce to a manifold of the order of that of
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three-dimensional distributions. If such a condition (26b) existed, then the
relations (10) and (12) together with (26b) would be sufficient to determine
(r) uniquely and thus hydrodynamical equations of motion could be obtained
in the case IV > 1 also.

§ 19. A condition of the form (26b) is obtained e.g. by requiring the wave
function to be antisymmetric in certain variables. Such a condition is com-
patible with (26a) but it gives a very weak restriction only on the wave func-
tion. The condition that the wave function should be antisymmetric does not
permit to reduce the manifold of solutions of (26a) sufficiently so as to make the
solutions to correspond to three-dimensional distributions.

The ground state of an atom is uniquely determined by a variational
condition. I.e. the ground state is described by the wave function for which

6 (p*HydNt =0, (27)

One might be tempted to think that the auxiliary condition could be taken to
be a variational condition of the type (27). The condition (26b) might require
to look for the minimum of the energy among those functions y which lead to
a given three-dimensional current charge distribution

v,(r) and g,(r). (28)

Thus one might try to postulate that a system which exhibits a (three-dimen-
sional) current charge distribution (28) is to be described by that wave function
y which leads in terms of (10), (11) to the distribution (28) and which possesses
the minimum energy which is compatible with the configuration (28).

§ 20. The solutions obeying (27) together with the condition (28) obey
certain differential equations which are somewhat similar to the time-inde-
pendent Schriodinger equation. However, one finds that inserting as initial
condition into (22) a wave function which possesses a relative minimom thus
described — one finds from (22) that in the course of time the function loses
the minimum property. Thus the conditions (27) and (28) are in general
incompatible with the wave equation (22).

§ 21. We think it likely that conditions of the form of (26b) do not exist
which are: 1) compatible with the wave equation (26) and 2) reduce the set of
solutions to a sufficient degree. Whether or not this supposition is correct
could be investigated in the following way.

We may suppose that the ground state of an atom — which is described
at, say, t = 0 by a wave function y,(r) — is a possible state. Let us consider
another state which at some fixed time ¢ = ¢; > 0 is described by an arbitrarily
given wave function p,(r).
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The question arises whether we can find some outside perturbations which
e.g. can be described by a potential

N
Vit,t)= S V(r.,1), (29)
y=1
such that in the interval ¢ = 0 to ¢t = ¢, the action of the potential makes the
wave function to transform from
Y=Y, to py=1,.

Suppose e.g. a wave equation of the form:

N

[S[nv M0 4 Wiy = i, (30)

y=11 m

v

where V represents the interaction between the NN particles. The question
arises whether we can find potentials V,(r,, t) such that starting from an initial
condition p = yp, the solution of (3) will be equal to p =y, at t = ¢,.

§ 22. The answer to the above question is not trivial for the following
reason. The change 6y of y in an infinitesimal interval dt can be written

6w:¢6t:—%H¢, (31)

we can choose the potentials 7, at a given time t arbitrarily. Nevertheless
because H contains the sum of potentials ¥, each depending on one variable
only, (31) cannot be satisfied for an arbitrarily given dy.

In a formal way we can suppose y and y + Oy to represent two points
in Hilbert space. We find that using potentials of the form (29) we can obtain
direct transitions from a point p of Hilbert space only to exceptional points in
its vicinity if we restrict ourselves to potentials of the form (29). Thus most of
the points in the vicinity of a point y are inaccessible by direct transition.

From this it does not follow that these points cannot be reached on a
round about way. In fact we think that most of the points of Hilbert space
can be reached from an initial point y, as the effect of a sufficiently well chosen
— rather complicated — perturbation of the form (29).

We hope to comeback to the mathematical discussionof this question in a
later paper.

§ 23. The second logical possibility is to suppose that there exist no strong
restrictions as to the y-functions which are accessible — but like in statistical
mechanics the states described by y have very different probabilities to become
realized. If there exist yp-functions which give very likely configurations and
others which give very unlikely ones, then we can postulate that a given
distribution (28) is represented in most cases by a ‘““very likely” y. Therefore
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the motion of the system will in most cases take place in a very good approxi-
mation, in a manner to be expected in terms of a “very likely” y-function.

The analogy of the concept and that of statistical mechanics is a very
deep one. Indeed, in statistical mechanics the motionof say a gas can be calcul-
ated exactly if the initial conditions are given, containing the coordinates
and velocities of all the IV atoms of the gas at t = 0.

From the mechanical equations of motion, the motion of the gas as a
whole can be determined. However, if we give only the macroscopic density
distribution and the distribution of velocity of flow, then these distributions
do not determine the initial conditions for the motion of the individual atoms.
Constructing sufficiently artificial initial conditions for the atoms, we come
to configurations which starting from a given macroscopic initia] condition
behave in a very abnormal manner. With sufficient skill we can find initial
conditions for the atoms which lead to an almost arbitrary prescribed macro-
scopic motion of the gas.

The equations of motion which give the correct macroscopic motions of a
gas are obtained if we choose among the possible microscopic configurations
the very likely ones. Deviations from the macroscopic equations of motions
arise because of fluctuations, i.e. because occasionally there occur distributions
which deviate from those which are the most likely ones.

§ 24. In the case of the y-function one imagines that “smoothed” functions
are more likely than those which show a great deal of irregular fluctuations.
It seems to be an unsolved problem which y’s are the very likely ones.

Although we can give no method of actually selecting the “very likely
y-functions” it seems plausible that these functions are somewhere near those
possessing minimum properties of the type deseribed in § 18. Indeed, if an
atomic system is in a state possessing a great deal of energy, then it is likely
to emit electromagnetic radiation and thus to reduce its energy. We expect
therefore a tendency of atoms to approach states with low energy.

§ 25. We close these qualitative considerations with another remark.
From the solutions of the wave equations valid for many-body systems we
find — in excellent agreement with observation — the spectra of many electron
systems, e.g. we find the spectrum of the He atom. A radiating He atom is a
moving system and therefore we are in fact in a position to determine correctly
the motion of the charge of the electrons inside a He atom.

It must be emphasized, however, that taking the superpositions of an
arbitrarily large number of stationary solutions of the wave equation — we
can find a combination which produces for a limited period an oscillation with
an arbitrarily given frequency » — this frequency need not be anywhere near
to the optical frequencies of the He atom.

That as the result of the beat of the natural frequencies of He we can
obtain a state in which an arbitrary frequency » arises, is analogous to the
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problem of the Fourier analysis. Using a large number of Fourier components
we can obtain (inside a limited interval) a harmonic function with an arbitrary
period v which may differ from the periods of the terms of the series.

The state in which a He atom oscillates for a time with an unusual fre-
quency v contains obviously components of rather higher energy — and after
a certain time the accidental phase relations between the natural frequencies
which produce the beat frequency » will disappear.

When we state that according to the theory a He atom generally emits
well-defined combination frequencies only, then we make already a strong
restriction on the wave functions p which we think likely to occur — we
suppose that in the observed states the wave function of the discrete states
are predominant.
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r'MAPOAUHAMUYECKAST MOJEJIb BOJIHOBOW MEXAHUKU

3AOAYA MHOTHX TEJI
J1. AHOILUH

Pesome

HuckytHpyercsi npobiema pacCIUMPeHHs] THAPOAHHAMHYECKOH MOJeJH—OnHCaHHOH B
npeabayIux pabotax — K 3agaue MHOTHX Tejl. IToKasblBaeTCs, U4TO MOSIBJIAKOIIHECS B NpH-
JOXKEHHH TPYAHOCTH HE MAaTeMaTHYECKOr0 XapaKTepa, OHH O0ToOpa)kalT (PH3HYECKYWw npob-
JIeMy, HE PEINEHHYIO M0 HalIeMy MHEHHIO [0 HACTOSILEro BpemeHH. OKasblBA€TCS1 BO3MOXKHBIM,
4TO B TOYHOM PEIUEHHH NPOOJIEMBI MHOTHX TE€J YAAeTCS BLIOMPATh M3 BO3MO)KHBIX BOJIHOBBIX
(yHKUMH Te, KOTOphe OYeHb MONOGHBI B CTATHCTHUECKOM cMbicie. Ilpeanosnaraemeiii orbop
HanoMHHaeT oT60p oYeHb MOAOGHBIX KOHGMIypaLuii B CTATHCTHUECKOH MEXAHHKE.
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