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The kinetic curve of the B, — B, phase transformation observed during uniform heat-
ing may be divided into three different stages. In the first stage disk-like nuclei are formed
which grow rapidly along the B, phase boundaries. In the second stage no nuclei are formed
and the growth takes place normal to the original grain boundaries. Finally, the decrease of
the transformation rate in stage III may probably be associated with the Clausius-Clapeyron
type decrease of the driving force. In the framework of this visualization of the kinetic curve
some previous results are also interpretable.

1. Introduction

The (CsCl type lattice) = (INaCl type lattice) phase transformation in
CsCl is connected with a pronounced change in the electrical conductivity
[1, 2, 3, 4, 5] which gives a good opportunity to investigate the kinetics of this
transformation [5, 6]. The conductivity of various sintered Johnson—Matthey
specpure CsCl samples was found to be a well-defined function! of time when
heating the samples at a constant rate above the equilibrium temperature of
transformation (T, = 726 °K) (Fig. 1 [6]). The aim of this paper is to present
the experimental data in terms of the formal theory of phase transformation.

It will be assumed that the B, = B, transformation is of the nucleation
and thermally activated growth type, i.e. the volume fraction of the stable
phase (%) is given by the equation

£(t) = 1 — exp [ J: ’ Ij tV (T() dv) I(T(x), ) dr] , (1)

* Dedicated to Prof. P. GoMBAs on his 60th birthday. »
1 It should be noted that the data were corrected for various experimental errors.
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where 7'(t) is the temperature programme of heating, I(T(¢)f) is the temperature
and time-dependent rate of nucleation and V,, V,, V;, denote the growth
velocities in three mutually perpendicular directions. The growth velocity is
determined by the phase houndary mobility, B,and the driving force, 4G : V =
= BAG. The mobility depends on the temperature, concentration of dissolved
impurities and the relative orientation of the adjacent phases. The tempera-
ture dependence of the mobility is characterized by an energy of activation
denoted by Ej. The driving force is given by the free energy difference between
the adjacent phases along the phase boundary and by the curvature and free
energy of the migrating boundary (see e.g. {7]).

2. Relation between conductivity and the transformed volume

Debye—Scherrer patterns obtained by electron diffraction prove that
the B, and B, phases form a two-phase aggregate in the course of the B,=—= B,
transformation [8]. There are many formulae to determine the effective electri-
cal onductivity of two-phase aggregates [9]; we :used theformulaof ODALEV-
skI [10] and LANDAUER [11]

[Gl_aeff)x1+(Oz—aeff)xz___o’ 2)
0y + 20,4 | 0, + 20,4
where o,, g, are the B, and B, phase conductivities, respectively, x,, x, are
the volume fractions of the component phases. This equation is valid for ran-
dom geometry, since it was derived from the assumption that the mean
electric and current field in the constituent 1 (or2) might be determined by
considering a sphere 1 (or 2) embedded in an infinite conducting medium.?

LANDAUER [11] has shown that Equ.(2) accounts quite fairly for the
observed conductivities in equiaxial two-phase matrices even when o, and o,
differ by a factor of 10. However, it should be emphasized that this statement
is limited to random geometry. Model experiments show that for disk-like
second phases perpendicular to the mean direction of the current the experi-
mental results may deviate from the values calculated with Equ. (2) by a factor
of 30 if o,/0,>1 [12].

When applying Equ.(2) to evaluate x, one has totake into account that
o, and o, are inherently temperature-dependent. The actual conductivities
might be determined by extrapolating from the B, and B, data using the
relations

0,(T) = ay(Ty) exp [— T —H l (3a)
o,(T) = 0y(Ty) exp [_ % '—%— — %) } (3b)

2 Jt is worth noting that the derivation of Eq. (2) makes use of the Maxwell equations
and Ohm’s law only and so it applies eq ally to metals, semiconductors and insulators.
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In Equ. (3) T)and T, are temperatures at which CsCl exists in the B, and B,
phase, respectively; E, and E, are activation energies of the conductivities in
the respective phases.

At the evaluation of the conductivity values from the measured data
corrections must be made to account for the volume change of the samples
due to the transformation. Since the elastic moduli of B, and B, at the tem-
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. Fig. 1. The decrease of the effective conductivity in the B, — B, transition. (The measurements
were carried out on 8 different samples)

perature of transformation are not known equal elastic moduli were assumed
for both phases. According to this assumption [16]
v(xl) — ”(xz”*’“ 1) — I/1 — V; <, (4)
v(x, = 1) V.

where v denotes the volume of the sample and V the mole volume of the phase
(Vi—V,/V, = 0.12 [13]). Knowing the dimensions of the sample before the
phase transformation (I, q,), the effective conductivity is given by the relation
o L 1AL T L 1 V=V | 5)

V 1+44lg Vg 3 N
ARENDS and N1jBoER [2] have found that Eg, and Epg, are 1.35 eV and

1.65¢V, respectively.op, (744.5) andop, (729) amount to 0.16 - 10~50hm ~em !
and 40 - 1075 Ohm~lem~?! (Fig. 1). With these data x, was calculated from
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Fig. 2. Effective conductivity as a function of ab, or xb; (Curve 1 visualizes the conductivity

by linear interpolation. Curve 2 was calculated from (2), (3) and (5) with temperature correc-
tions, Curve 3 was calculated without any temperature correction

Equ. (2), (3) and (5) (Fig. 2). Since there is some disagreement in the literature
about the activation energy values E, and E, those x, values are also given
in Fig. 2 which were calculated without any temperature correction.

3. The interpretation of the Linetical curve

In Fig. 3 log 1/1—=x, is plotted against T—T. = @ - t. The curve has
three quite well separated stages. The first is parabolic, the second linear,
and the third begins with a significant decrease of log 1/1—x, with time (or
with T—T. = a - 1).

Let us first consider the second stage. It is clear that I(T(t), t) > 0, and
if it is assumed that the growth velocity is not a decreasing function of T—-T, =
=a - t % the linearity of the kinetical curve leads to the conclusions that in
this stage: i) the growth of the equilibrium phase grains is restricted to one
special direction only, their growth in the other two directions being vanishingly
small; ii) no new nuclei are formed; iii) the driving force is constant. This
means that:

t
log _r constant U M, e~EuXT dt) . (6)
1 - xl 0
In good approximation

1 1 1 at
—— = 1— 7
T _e) L - @

T,

3 The mobility of the grain boundaries is an increasing function of the temperature,
and so the quasi-constant velocity of the phase boundary migration needed to explain the
linearity of stage I would mean a compensation of the E»s determined increase of the mobility
by the Clausius-Clapeyron type decrease (see later) of the driving force. At present, we do
not think there is any support for such kind of assumption.
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Fig. 3. The kinetic curve (the maximum possible error in log 1/1 — x, and
AT is marked by + 1)

because in the investigated temperature interval

T =7

T. ¢

AT _ 8t 015,

Putting (1) into (6) and assuming that

Ey AT
. <1
W, T, S
the expansion into power series yields
1 = const AT |1 En AT .
kT, k

-l—xl

(8)
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This equation accounts for the observed linearity if

_E_M __Al < 1.

M, T,

The observed deviation from exact linearity gives an upper limit 0.6 eV for
the activation energy of the phase boundary mobility. By supposing the two
conductivity values to be slightly more accurate than was actually found in
the experiments one obtains the value 0.2 eV for Ey. These values (0.6—0.2 eV)
are quite reasonable, since the activation energy of the grain houndary migra-
tion was found to be equal or lower than that of vacancy migration in the
cases investigated {14].

At first sight it appears that, in spite of our suggestion, the driving force
of the phase boundary migration ought to be an increasing function of T—T, =
= @ - t, since the free energy difference between the stable and unstable phase
increases with increasing T—T.. One has, however, to keep in mind that the
phase transformation connected with a volume change gives rise to accommo-
dation stresses. This stress field cannot be fully relaxed by plastic deformation,
since the flow stress has a finite value and only the shear components of the
stress tensor can initiate the flow. According to the Clausius-Clapeyron equation
the stress field is connected with a change in the equilibrium transition tem-
perature in the following way [15]

Tc . Tc — uik(Bl) uik(Bz) . (9)
° T, A4H

In the formula, T, and T, are the equilibrium transition temperatures in the
stress-free state and in the elastically distorted state, respectively. u; denotes
the stress tensor at the phase boundary and u;(B,) and uy(B,) are the compo-
nents of the distortion tensor at the B, and the B, side of the phase boundary.
(The stress tensor and the displacement vector are measured with respect to
the single phase matrices in the stress-free state.) /AH amounts to
7.5 K/mole [17].

The order of magnitude of the Clausius-Clapeyron effect can be estimated
with the help of the following model. Let a spherical B, phase be surrounded
concentrically by a spherical B, phase, and let the boundary between them
be an incoherent one. Assuming that no plastic flow takes place, and using
the well-known stress field values [15, 16] one gets 100 °K for T—T.. When
plastic deformation relaxes the stress field to the value of the flow stress
(~1 hg - mm~2 [18]) the change in the transformation temperature is 5 °K.
According to these considerations a constant driving force results owing to an
interplay between the Clausius-Clapeyron type change in the equilibrium
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transformation temperature and the restricted plastic deformation of the
matrix. The one-dimensional growth may be explained in the following way:
in the first stage disk-like nuclei are formed in the grain boundaries of the
polycrystalline B, phase; these nuclei grow rapidly along the B, phase grain
boundaries; during this growth the thickness of the B, phase grains remains
as small as that of the nuclei. At the end of the first stage the area of the
original B, grain boundaries is covered with B; phase grains, whose slow growth
normal to the surface of the original B, phase is considered to account for
the one dimensional growth characteristic of the second stage.

If the nucleation rate were constant during stage I, log 1/1—x, would be a
third order parabola. If the nucleation rate were a rapidly decreasing function
of time, owing to the decrease of the grain houndary area of the B, phase,
log 1/1—=x, would be a second order parabola. A numerical test has shown
that the experimental curve has an intermediate position between these two
extreme possibilities.

It should be noted that the formation of disk-like nuclei in the original
grain boundaries is favoured by two effects: i) disk-like nuclei indicate the
smallest possible accommodation energy in the two phase aggregate, as was
shown by NABARRO [19]; ii) the rapid growth along the grain boundaries might
be associated with the Clausius-Clapeyron type change in the equilibrium
transition temperature. (The plastic relaxation is certainly favoured by the
plastic shear of the grain boundaries. This gives rise to a rather easy stress
relaxation which in consequence makes the Clausius-Clapeyron type decrease
of the driving force less effective in the direction parallel to the grain boundaries
than in the direction normal to it.)

The decrease of the transformation rate in stage III may probably also
be associated with the Clausius-Clapeyron type decrease of the driving force.
To show this, let us assume that the plastic flow resulting from the accommoda-
tion stress has exhausted the lower yield point region of the matrix, and now
work hardening becomes a dominant factor. When the rate of recovery does
not compensate the hardening in exactly the same rate as the phase transforma-
tion goes on, a decrease or an increase might both be observable. This depends
only on the relative rate of these two reactions.

4. Discussion

Let us now discuss some other experimental results supporting the model
suggested.

One of us described some isothermic conductivity measurements carried
out slightly above T, [6]. The change of the conductivity was not a monotonic
fanction of time; an increasing transformation rate was followed by a consider-
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able slowing down after which the transformation rate increased again. This
process which was repeated several times seems to be very similar to the “fine
structure” of phase transformation observed by AReNDS [20]. These effects
may he associated with the Clausius-Clapeyron type changes in the driving
force (see stage 1II). The internal stress field which played an important role
in the suggested model appears directly in the anomalous change of the lattice
parameter of the phase during phase transformation observed in [8]. From the
amount of the anomalous change in the lattice parameter a value of several
degrees arises for T—T,,.

In another set of experiments, published earlier, it was shown that the
transformation process is extremely structure-sensitive which means that the
transformation kinetics depends strongly on the defect state of the lattice [5].
The experimental facts can easily be explained with our suggested model by
considering three effects of a heat treatment slightly above T.: i) some B,
grains are formed; ii) the grain size of the B, grains decreases as a result of
the driving force brought about from the decrease of the total grain boundary
area; iii) the overall dislocation density decreases by annihilation, and the
density of movable dislocation decreases by impurity reactions. If, after the
heat treatment at the equilibrium temperature of transformation, the sample
is quenched and then warmed up again (as they actually were in the experi-
ments described in [5]), the nucleation and two dimensional growth along the
grain boundaries will cover a smaller total grain boundary area than before
the heat treatment. Consequently, the rate of transformation decreases.
A second effect in the same line arises from the fact that plastic deformation
becomes more difficult after heat treatment. This should be expected because
an increase of the yield stress makes the Clausius-Clapeyron type decrease of
the driving force more effective. When the increase in yield stress is extremely
large the rate of transformation may hecome vanishingly small before obtaining
a single phase matrix.

Finally, it should be mentioned that the simplest direct test of the
suggested model should be given by the micrographic investigation of the phase
transformation. We hope to present some results in ¢his line in due time.

The authors are much indebted to Dr. J. ARENDS for letting them know his results about
the “fine structure” of transformation before publication. Tt is a pleasure to thank Prof.
Dr. S.LENGYEL for his helpful interest.
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0 KMHEMATHKE ®A30BOI'O0 NNEPEXOOA KPUCTAJIJIOB
CsCl 11

H. TAJ1, 3. MOPJIMH n H. TAPbSAH

Peswme

KuHerHyeckast kpuBasi gasoporo nepexona B, = B,, Ha6monaeMoro NMpH paBHOMEPHOM
Harpese, MO)xeT ObITh pasziesnieHa Ha TpH pasHble (asul. B mepsoil dase GopMHpPYIOTCS HHCKO-
obpasHuie sAfpa, KOTOpHE GLICTPO pacTyT B HanpaB/IeHHs (a30BbIX IPAaHHYHBIX JIHHHI B,.
Bo Bropoii ¢ase simpa He 06pasyroTCst H POCT MPOTEKAET B HANpPABJEHHS, NEPNEHIHKYIAPHBIE
K KOHTYpaM NEPBOHAYaJbHLIX 3epeH. HaxoHell, yMeHbLICHHE CKOPOCTH [lepexofia B TpeTheid
(ase BEPOATHO MOXKHO CBSI3aTh ¢ yMEHbLIEHHEM Bo30y kaawoweil cuibl THoa Kiaysuyca— Haa-
neiipoHa. B pamMkax AaHHOTO NPEACTaBJIEHHSI KHHETHYECKOH KPHBOI HMEETCS BO3MOXKHOCTB
AJsi O0BSICHEHHS HEKOTOPHIX PaHHHX pe3YyJbTaToB.
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