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T h e  k ine t i e  c u r v e  of  t he  B 2 ___x B t  p h a s e  t r a n s f o r m a t i o n  o b s e r v e d  d u r i n g  u n i f o r m  hea t -  
ing  m a y  be  d iv ided  in to  th ree  d i f f e ren t  s t ages .  In  t h e  f i r s t  s t age  disk- l ike  nuc le i  are  f o r m e d  
wh ich  g row r a p i d l y  a ]ong t h e  B~ p h a s e  b o u n d a r i e s .  I n  t he  second  s t age  no nuc le i  are  f o r m e d  
a n d  t h e  g r o w t h  t a k e s  p lace  n o r m a l  to t h e  or ig inal  g ra in  b o u n d a r i e s .  F ina l ]y ,  t h e  decrease  of  
the t r a n s f o r m a t i o n  r a t e  in s t age  I I I  m a y  p r o b a b l y  be  a s soc ia t ed  w i t h  t h e  C laus iu s -C lapey ron  
t y p e  decrease  of  t h e  d r i v i n g  force.  I n  t h e  f r a m e w o r k  of  th i s  v i sua l i z a t i on  of  t h e  k ine t ic  cu rve  
s o m e  p r ev ious  r e s u l t s  a re  also i n t e r p r e t a b l e .  

1. Introduetion 

The (CsC1 type l a t t i e e ) ~  (NaC1 type lattiee) phase transformation in 
CsCI is conneeted with a pronounced change in the electrieal eonduetivity 
[1, 2, 3, 4, 5] whieh gives a good opportunity to investigate the kineties of this 
transformation [5, 6]. The conduetivity of various sintered Johnson--Mat they  
specpure CsC1 samples was found to be a well-defined function t of time wtLen 
heating the samples at a constant rate above the equilibrium temperature of 
transformation (T c  = 726 ~ (Fig. 1 [6]). The airo of this paper is to present 
the experimental data in terms of the formal theory of phase transformation. 

I t  will be assumed that  the B 1 ~ B 2 transformation is of the nucleation 
and thermally activated growth type,  i.e. the volume fraetion of the stable 
phase (r is given by  the equation 

,t 3 t ] 
�91 1--exp[| Is ~.(T(t')dt')I(T(t),t)d,,j (1) 

l J o  ~i=1 J t 

* D e d i c a t e d  to  Prof .  P .  GOMB�93 on  h is  6 0 t h  b i r t h d a y .  
I t  s h o u l d  be  n o t e d  t h a t  t he  d a t a  were  cor rec ted  for v a r i o u s  e x p e r i m e n t a l  errors .  
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where T(t) is the temperature programme ofheating, I(T(t)t) is the temperature 
and time-dependent tate of nucleation and V 1, V 2, V a, denote the growth 
velocities in three mutually perpendicular directions. The growth velocity is 
determined by  the phase boundary mobility, B, and the driving force, AG : V = 
= BAG. The mobility depends on the temperature,  eoncentration of dissolved 
impurities and the relative orientation of the adjacent phases. The tempera- 
ture dependence of the mobility is characterized by  ah energy of activation 
denoted by  EM. The driving force is given by the free energy difference between 
the adjacent phases along the phase boundary and by  the curvature and free 
energy of th› migrating boundary (see e.g. [7]). 

2. Relation between conductivity and the transformed volume 

Debye--Scherrer  patterns obtained by  electron diffraction prove that  
the B 1 and B 2 phases forro a two-phase aggregate in the course of the B1,---~'B2 
transformation [8]. There are many formulae to determine the effective electri- 
cal onductivity of two-phase aggregates [9]; we :used the formula of ODALEV- 
SKI [10] and LANDAUER [11] 

( a : - - a ~ " . ) x 1 + [ . a ~ - - a e L ' ) x , z = O  , (2) 
f i l  -~- 2freŸ . ~72 -~ 2freŸ 

where al, a2 are the B 1 and B 2 phase eonductivities, respectively, x 1, x~ ate 
the volume fractions of the eomponent phases. This equation is valid for ran- 
doro geometry, sinee it was derived from the assumption that  the mean 
electrie and eurrent field in the eonstituent 1 (or2) might be determined by 
considering a sphere 1 (or 2) embedded in ah infinite eonducting medium. ~ 

LA•DAUEn [11] has shown that  Equ.(2) accounts quite fairly for the 
observed conductivities in equiaxial two-phase matriees even when a 1 and a2 
differ by  a factor of 10. However,  ir should be emphasized that  this s tatement  
is limited to random geometry. Model experiments show that  for disk-like 
second phases perpendicular to the mean direction of the current the experi- 
mental results may deviate from the values calculated with Equ. (2) by  a factor 
of 30 ff a l ] a2 �87  [12]. 

When apply… Equ. (2)to evaluate x x one has to t ake  into account that  
a~ a n d a  1 are inherently temperature-dependent.  The actual conductivities 
might be determined by  cxtrapolating from the B 2 and B 1 data using the 
relations 

{ E2 , 

~~(T) = ~~(T~) exp [-- E~ yl 

1 11' T T2 .) (3a) 

1 1Jl <3~, T T~ 
2 I t  is worth noting tha t  the derivation of Eq. (2) makes use of the Maxwell equa tions 

and Ohm's  law only and so it applies eq- ally to metals, semiconduetors and insulators. 
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In Equ. (3) Txand T 2 are temperatures at which CsC1 exists in the B 2 and B 1 
phase, respectively; E 1 and E 2 ate activation energies of the conductivities in 
the respective phases. 

At the evaluation of the conductivity values from the measured data 
corrections must be made to account for the volume change of the samples 
due to the transformation. Since the elastic moduli of B~ and B 2 a t  the teta- 
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Fig. 1. The decrease of  the  effective conduc t iv i ty  in the  B z -~ B 1 t rans i t ion .  (The m e a s u r e m e n t s  
were carried ou t  on  8 different  samples)  

perature of transformation are not known equal elastic moduli were assumed 
for both phases. According to this assumption [16] 

v ( x l )  - v ( x ~  ~ 1)  _ ~ - ~ ~1 ,  ( 4 )  

v(x 2 = 1) V~ 

where v denotes the volume of the sample and V the mole volume of the phase 
(VI--Vz/V z =- 0.12 [13]). Knowing the dimensions of the sample before the 
phase transformation (10, q0), the effective conductivity is given by the relation 

T l + d l / I  T lo ( 1 1 Vi--V2 ) 
= ~ x~ . ( 5 )  

V l+Aq/q V qo 3 

AR~.NDS and NIJBOER [2] have found that  EB, and EB1 are 1.35 eV and 
1.65 eV, respectively, aBt (744.5) and~B, (729) amount to 0.16 �9 10-5 Ohm -1cm-1 
and 40 �9 10 - 5 0 h m - l c m  -1 (Fig. 1). With these data x 1 was calculated from 
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Fig. 2. Effective condnctivity aB a fnnction of xb= or xb 1 (Curve 1 visualizes the conductivity 
by linear interpolation. Curve 2 was calculated from (2), (3) and (5) ~ith temperature correc- 

tions, Curve 3 was calculated without any temperature correction 

Equ. (2), (3) and (5) (Fig. 2). Sinee there is some disagreement in the literature 
about the aetivation energy values E 2 and E 1 those xi values are also given 
in Fig. 2 whieh were calculated without any temperature correction. 

3 .  The  in terpre ta t ion  o f  t he  -kinetical curve  

I n  Fig.  3 log 1 / 1 - - x  I i s  p l o t t e d  aga ins t  T - - T e  : a .  t. T h e  c u r v e  has  
t h r ee  qu i t e  well s e p a r a t e d  s tages .  T he  f i rs t  is pa rabo] ic ,  t he  seeond  l inear ,  

and  t h e  t h i r d  begins wi th  a s ign i f i can t  decrease  o f  log ] / l - - x  1 wi th  t i m e  (of 

w i th  T----Te = a �9 t).  

L e t  us f i rs t  cons ider  t he  second  s tage.  I t  is c lear  t h a t  I ( T ( t ) ,  t) ~ O, and  
if  i t  is a s s u m e d  t h a t  the  g r o w t h  v e l o c i t y  is n o t a  dec reas ing  f u n c t i o n  o f  T - - T c  = 

= a  �9 t a t h e  l inea r i ty  o f  t h e  k ine t ica l  cu rve  leads  t o  t he  conclus ions  t h a t  in 
this  s t a g e :  i) t he  g r o w t h  of  t he  equ i l ib r ium p h a s e  grains is r e s t r i e t ed  t o  one 

special  d i rec t ion  only ,  the i r  g r o w t h  in the  o the r  two  di ree t ions  be ing  v a n i s h i n g ] y  

smal l ;  ii) no  new nuc]ei  are  f o r m e d ;  iii) t h e  d r iv ing  foree is c o n s t a n t .  This  
m e a n s  t h a t :  

1 
log 

1 - - x  1 

In  good  a p p r o x i m a t i o n  

1 

T 

=coostaot (ji~0 e ~~'7 ~, ) ~6~ 

/1-~/ 
a t  (7) 

3 The mobility of the grain boundaries is an increasing function of the temperature, 
and so the quasi-eonstant veloeity of the phase boundary migration needed to explain the 
linearity of stage II  would mean a eompensation of the E M determined increase of the mobility 
by the Clausius-Clapeyron type decrease (see later) of the driving force. At present, we do 
not think there is any support for such kind of assumption. 
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Fig. 3. T h e  kinetie eurve ( t h e  m a x i m u m  possible error i n  l o g  1 / l  - x 1 and 
AT is marked b y  + 1) 

because in the investigated temperature interval 

A T  a t  
- -  ~ 0,15. 

T. Te 

Putting (1) into (6) and assuming that 

EM AT 
kT~ T. 

the expansion into power series yields 

{ ~" 7) 1 - - c o n s t A T  1-4- k T  c 
1 - -  x t  

(8) 
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This equation accounts for the observed linearity ir 

E~ AT 
.~1.  

kT~ T~ 

The observed deviation from exact linearity gives an upper limit 0.6 eV for 
the activation energy of the phase boundary mobility. By supposing the two 
conductivity values to be slightly more accurate than was actually found in 
the experiments one obtains the value 0.2 eV for EM. These values (0.6--0.2 eV) 
ate quite reasonable, since the activation energy of the grain boundary migra- 
tion was found to be equal of lower than tha t  of vacancy migration in the 
cases investigated [14]. 

At first sight it appears that ,  in spite of our suggestion, the driving force 
of the phase boundary migration ought to be ah increasing function of T--Tc 

a �9 t, since the free energy difference between the stable and unstable phase 
increases with increasing T--Tc. One has, however, to keep in mind tha t  the 
phase transformation connected with a volume change gives rise to accommo- 
dation stresses. This stress field cannot be fully relaxed by plastic deformation, 
since the flow stress has a finite value and only the shear components of the 
stress tensor can initiate the flow. According to the Clausius-Clapeyron equation 
the stress field is connected with a chang e in the equilibrium transition tem- 
perature in the following way [15] 

T~ - -  7'~o ~- u ,~(B, )  uik(B2) (9) 
T~o AH 

In the formula, Te0 and Tc are the equilibrium transition temperatures in the 
stress-free state and in the elastically distorted state, respectively, uik denotes 
the stress tensor at the phase boundary and uik(B1) and uik(B2) are the compo- 
nents of the distortion tensor at the B 1 and the B 2 side of the phase boundary. 
(The stress tensor and the displacement rector ate measured with respect to 
the single phase matrices in the stress-free state.) AH amounts to 
7.5 K/mole [17]. 

The order of magnitude of the Clausius-Clapeyron effect can be estimated 
with the help of the following model. Let a spherical B z phase be surrounded 
concentrically by a spherical B 1 phase, and let the boundary between them 
be ah incoherent one. Assuming tha t  no plastic flow takes place, and using 
the well-known stress field values [15, 16] one gets 100 r for Tc--Tc o. When 
plastic deformation relaxes the stress field to the value of the flow stress 
(N1 hg �9 mm -2 [18]) the change in the transformation temperature is 5 ~ 
According to these considerations a constant driving force results owing to an 
interplay between the Clausius-Clapeyron type change in the equilibrium 
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transformation temperature and the restricted plastic deformation of the 
matrix. The one-dimensional growth may be explained in the following way: 
in the first stage disk-like nuelei ate formed in the grain boundaries of the 
polycrystalline B 2 phase; these nuclei grow rapidly along the B 2 phase grain 
boundaries; during this growth the thickness of the B 1 phase grains remains 
as small as tha t  of the nuclei. At the end of the first stage the atea of the 
original B 2 grain boundaries is covered with B 1 phase grains, whose slow growth 
normal to the surface of the original B 2 phase is considered to account for 
the one dimensional growth characteristic of the second stage. 

I f  the nucleation rate were constant during stage I, log 1/1--x 1 would be a 
third order parabola. I f  the nucleation tate were a rapidly decreasing function 
of time, owing to the decrease of the grain boundary atea of the B z phase, 
log 1/1--xl would be a second order parabola. A numerical test has shown 
that  the experimental curve has an intermediate position between these two 
extreme possibilities. 

I t  should be noted that  the formation of disk-like nuclei in the original 
grain boundaries is favoured by two effects: i) disk-like nuclei indicate the 
smallest possible accommodation energy in the two phase aggregate, as was 
shown by NABARRO [19]; ii) the rapid growth along the grain boundaries might 
be associated with the Clausius-Clapeyron type change in the equilibrium 
transition temperature. (The plastic relaxation is certainly favoured by the 
plastie shear of the grain boundaries. This gives rise to a rather easy stress 
relaxation which in consequence makes the Clausius-Clapeyron type decrease 
of the driving force less effective in the direction parallel to the grain boundaries 
than in the direetion normal to it.) 

The decrease of the  transformation rate in stage I I I  may probably also 
be assoeiated with the Clausius-Clapeyron type decrease of the driving force. 
ro  show tbis, let us assume that  the plastic flow resulting from the accommoda- 
tion stress has exhausted the lower yield point region of the matrix, and now 
work hardening becomes a dominant factor. When the tate of recovery does 
not compensate the hardening in exactly the same tate as the phase transforma- 
tion goes on, a deerease or ah increase might both be observable. This depends 
only on the relative rate of these two reactions. 

4. Discussion 

Let us now diseuss some other experimental results supporting the model 
suggested. 

One of us described some isothermic conductivity measurements carried 
o•t slightly above Te [6]. The change of the conductivity was not a monotonic 
function of time; ah increasing transformation tate was followed by a consider- 

.4eta Physica Academiae Scientiarum Hungaricae 27, 1969 



32 L GAAL et al, 

able slowing down af ter  which the t rans format ion  ra te  increased again. This 
proeess which was repea ted  several  t imes seems to be ve ry  similar to  the  " f ine  
s t r u c t u r e "  of phase t r ans fo rmat ion  observed b y  ARENDS [20]. These effects 
m a y  be associated with the  Clausius-Clapeyron t y p e  changes in the  driving 
foree (see stage ] I I ) .  The  in terna l  stress field which p layed an im p o r t an t  role 
in the  suggested model  appears  direct ly  in the  anomalous change of the  la t t ice  
p a r a m e t e r  of the phase during phase t r ans fo rmat ion  observed in [8]. F r o m  the 
amoun t  of the anomalous change in the  la t t ice  pa rame te r  a value of several  
degrees arises for Te--Te,. 

In  another  set  of exper iments ,  published earlier, it was shown t h a t  t h e  
t r ans fo rma t ion  process is ex t r eme ly  s t rueture-sens i t ive  whieh means t h a t  the  
t r ans fo rmat ion  kinetics depends s t rongly on the  defect  s ta te  of the la t t ice  [5]. 
The exper imenta l  facts can easily be explained with our suggested model  b y  
considering three effeets of a hea t  t r e a t m e n t  sl ightly above Tc: i) some B 1 
grains are formed;  ii) the  grain size of the  B 2 grains decreases as a resul t  of 
the  driving force b rough t  abou t  f rom the decrease of the  to ta l  grain b o u n d a r y  
area;  iii) the  overall  dislocation densi ty  deereases b y  annihilat ion,  and the  
dens i ty  of movable  dislocation decreases by  im p u r i t y  reactions.  If ,  a f ter  the  
hea t  t r e a t m e n t  at the equil ibr ium t empera tu re  of t ransformat ion ,  the  sample 
is quenched  and then  warmed  up again (as t h e y  actual ly  were in the  experi- 
ments  described in [5]), the  nucleat ion and two dimensional  growth along the  
grain boundaries  will eover  a smaller to ta l  grain b o u n d a r y  area t h a n  before 
the  hea t  t r ea tment .  Consequent ly ,  the  t a t e  of t rans format ion  decreases. 
A second effect in the same line arises f rom the  fae t  t h a t  plastie deformat ion  
becomes more difficult  af ter  hea t  t r ea tmen t .  This should be expeeted  becau~e 
an increase of the yield stress makes the Clausius-Clapeyron type  decrease of 
the  driving force more effeetive.  When  the  increase in yield stress is ex t remely  
large the  t a t e  of t r ans fo rmat ion  m a y  beeome vanishingly  small before obtaining 
a single phase matr ix .  

Final ly ,  it  should be ment ioned  t h a t  the  simplest direct  tes t  of the 
suggested model  should be given by  the micrographie  invest igat ion of the phase 
t ransformat ion .  We hope to  present  some results in chis line in due t ime.  

The authors are much indebted to Dr. J. ARENDS for letting them know bis results about 
the "fine structure" of transformation before publication. It is a pleasure to thank Prof. 
Dr. S.LENgYEL for his helpful interest. 
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0 K H H E M A T H K E  ~ A 3 O B O F O  FIEPEXO~(A KPHCTAMJ-IOB 

CsCI II 

ii. FAfl, 3. MOPZIFIH ~ Id. TAPbYlH 

P e 3 ~ o M e  

I~HHeTHqecKaa KpHBa~ qba3oB0r0 nepexo~a B 2 ~-B~,  Ha6J]mJiaeMoro npn paBHOMepHOM 
Harpese, Mo~r ‰ pa33Ie3ieHa Ha TpH pa3Hble ~ba3bi. B nepBofi ~ba3e qbopMHpyloTC~ ~lllCKO- 
0‰ ~~pa, KOTOpi~e 661CTp0 paCTyT B HarlpaBfleHH~ qba3OBblX rpaHHqHl~X .UVlHH~ B~. 
B0 BT0p0~ ~a3e ~i~pa He o£ ii p0CT npoTeKaeT B HanpaB~eHHa, nepnen~H}r 
K KOHTypaM nepBoHaqa31bHbIX 3epeH. HaKOHell, yMeHbmeHHe cKop0cTH nepexo~a B TpeTbefi 
qba3e BepogTH0 MOXZHO CB~13aTb C yMeHbIlIeHHeM Bo36y>K~amii~e~ CHnb[ THI]a K~ay3Hyca--K~a- 
Iie~poHa. B paMKax J]aHHOFO npejlcTaBJaeHH~ KIIHeTHqeCK0~ KplIBOi] HMeeTc~ B03MO)KH0CTI, 
Jl.rl~ 0‰ HeKoTopI~X paHHHX pe3yIlbTaTOB. 
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