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The angular correlation between a longitudinally polarized neutrino and a circularly
polarized y-quantum released by an L-capture has been determined. For the form of the weak
interaction the linear combination of S, ¥, T, 4, P couplings has been supposed. The angular
correlation was calculated for arbitrary y-transitions and for captures forbidden in any order.
As a special case the »-y-angular correlation by an allowed L-capture has also been given.

1. Introduction

In the recent investigations on the parity violating interactions angular
correlation experiments play an important role. The reason for this is that the
B — v, v — y angular correlations depend rather sensitively on the polarization
of the emitted elementary particles and on the type of the Fermi interaction,
the form of which is of particular interest. Comparing the measurements of
the polarization of electrons and those of the helicity of the neutrino we can
infer the form of the weak interaction. Electron polarization measurements
give unambiguously the result that the S-electrons are longitudinally polarized
in backward directions in the ratio of v/c. This result suggests in the case of
a left-handed neutrino (spin and momentum antiparallel) the VA4 in the case
of a right-handed neutrino (spin and momentum parallel) the ST variants of
the interaction. To decide between these alternatives the helicity of the
neutrino has to be determined. From this point of view angular correlation
measurements by electron capture are very suitable, since in this process only
one particle (the neutrino) is emitted, thus its study is considerably easier
than e.g. that of the S-decay. The wave function determining the electron
before capture is exactly known; consequently, the result of calculations de-
pends essentially only on the type of the interaction and on the helicity of the
neutrino. GOLDHABER et al. [1] have shown just by means of such angalar
correlation measurements that the spin and the momentum of the neutrino
are antiparallel, i.e. it is a left-handed particle. Their measurement strongly
supports the V' A variant of the interaction. The problem, however, cannot be
regarded as completely solved, because the results do not give uniquely deter-
mined values for the coupling constants of the V" and A interactions and for
the relative sign (¥ + A) of them. Since angular correlation investigations
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may give valuable information also regarding the further development of
research further theoretical investigations seem highly desirable.

Recently several papers [2], [3] have dealt with » — y angular correlation
problems. These investigations, however, were confined on the one hand only
to allowed transitions and on the other only to K-capture. In a previous paper
[3] we generalized the calculations for K-captures forbidden in arbitrary order
and for mixed y-transitions. As is well known, under certain circumstances
the probability of an L-capture may be also rather high, but in spite of this
there are no calculations concerning this capture. Our aim is just to fill this
gap. In the following we shall determine the » — y angular correlation for an
L-capture forbidden in arbitrary order. Our results make possible not only the
comparison of the neutrino theory with the experiments, but they may also
serve as a theoretical basis in certain nuclear spectroscopical investigations.

2. Angular correlation formula

Let us consider the following process : A nucleus of charge Z and charac-
terized by the quantum numbers j;, m; captures one electron having been in a
definite quantum state in the atomic shell. The nucleus emitting a neutrino
goes over into an excited state characterized by j,, mg, having the nuclear
charge Z — 1. As a next step the nucleus emitting a y-quantum gets into the
ground state with the quantum numbers jg, m, Let us denote by p and P,
the momentum and the polarization of the neutrino, by k and Py the momentum
and the polarization of the y-quantum, respectively. j, m; (i =1, 2, 3) are
the angular momentum and magnetic quantum numbers of the nucleus in the
states characterized above, thoge values for the initial electron should be
j. and m,. Thus the following composite process has to be considered :

Jismy; e —’*J'a’ my L'J'a, mg.

We want to find the angular correlation between the directions of the emitted
y and » particles ; i.e. we want to determine the transition probability of the
above composite process as a function of the polarizations P,, P, and the angle
# between the vectors p and k. By means of the perturbation theory the
correlation in question is obtained [4] as

W (8,P,P,) = 3 E® (my, mi) B (my, m3). m

2

E®(my, my) and E¥(m,, my) are the density matrices of the above two processes,
which can be obtained by means of the interaction Hamiltonian :

E%;Tl):. m;)=£<jﬁ’m2; ",H(')Ijl my; n’e’je’ m, >'<J.2 m;; ‘le(’(Ul m; ne’jn m, >,
me (2)
E%. my = 2 <jsmg; V| HP|jamg >*< jamy;y | HY [ jym, >, (3)
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where H” and H? are interaction Hamiltonians for electron capture — neutrino
emission and for gamma emission, respectively. Factors irrelevant for the
correlation have been omitted. We shall determine first the density matrices
E" (mg, m3) and EY (my, m3), from which using (1) the correlation w(#, P,, P,)
can be obtained.

3. Electron capture

The Hamilton operator describing the electron capture — neutrino emis-
sion is given by

HO =3 Ci($,0,%y) (%3 (1 + P 73) O + hec. (4)

Here v,, v, v, and 1, are the second quantized neutron, proton, neutrino
and electron field operators, respectively. Indices i refer to the five interactions
S, V, T, A, P.In (4) the quantity characterizing the polarization of the neutrino
may be P, = 4 1, depending on the spin of the neutrino being oriented in
the direction of momentum or in the opposite sense. According to the measure-
ments of GOLDHABER et al. — as we have already mentioned — it is very
likely that P, = — 1, our calculations, however, will be carried out for both
polarizations, thus providing the possibility of deciding the neutrino helicity
on the basis of (also forbidden) L-capture experiments too. O;(i = 1,...,5)
are Dirac matrices corresponding to the five interactions*

. 1
OS= ].; OV——_—IY“; 072;(7#77—777’#); (5)

Op=iys7us Op=1iys.
The matrix element of the Hamiltonian (4) for the electron capture-
neutrino emission 18

<J'ama3”{H(')[f1m13 e> =

A
=f.?/‘ Czng'lf (q’v % (1 + P' 75) Ol we) (@D,m. 7. 0171 ¢_/1 m1) dT'

(6)

@, m, and D, are the state functions of the nucleus in initial and in final
states, respectively. The lepton state functions are to be taken at the place of
the n-th nucleon suffering the transition. The operator O,, acts on the variables
of the n-th nucleon. Summation refers to all the nucleons, integration to the
state function of the nucleus.

* We use x, = ict. The quantities ( 0; ) containing the above O; have the same reality
properties as the corresponding classical tensors. E.g. (yiyry) (r =1, 2, 3) are hermitic,
the fourth component (i y, ) is antihermitic, similarly for the others. In other papers fre-
quently O is taken to be hermitic. In this case Oy = 4, Op = p;. Then the corresponding coef-
ficients Cy and Cp are — 1 times ours. This sign difference manifests itself only in the inter-
ference terms to be calculated later.



202 E NAGY

For the determination of the matrices E’ (m,, ms) let us chose a coordi-
nate system with the z axis in the direction of motion of the neutrino. This
choice makes the calculation easier but it does not impair its generality. Thus
the wave function of the neutrino with momentum p is:

o= s »
For a neutrino polarized forward
1
1—P,y 1o i
— 2y, =9y, =—|. lexp|— pz|, 8
g =P y&(l pfﬁp) (8)
0
similarly for the backward polarized case
0
1—P,y, 1 1 i
Y, =Y. —= — — . 9
g V=Y V-‘l( (l)exP(ﬁpz) 9

Expanding the function exp ( 3 pz) in series of spherical functions we have
i
oxp [ b = SVAR@IFD i[5 f Yo 6). (19)

Here j, (%J is the I-th order Bessel function.

The wave functions of the electron bounded in the Coulomb field are
obtained from the solution of the Dirac equation :

1 o 1
i = —- if =] ——:
if j=1+- j :
I4m4l —
""1=V—2?1’s(r)Yz,m~§, %:V 97T 8" Yin-1,
i—m+1 Toml
r = /—ZT}—ng(’)YI m+1o Y= V—z‘l"_i_—l——g(r)yz,m+§a

(11)

l[1—m +3 l-l—m——
¥3= — / 213 if (r) Yig,, m-_, Y= — l/ oI if(nY,- 1.m—§’

o | .
I+m+43 I—m
Vo= — "Em—z‘f(’) Yl+1,m+%v Yo = l/—g'l—“f(r)Yl Lm+i,
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The radial wave functions g (r) and f(r) for K- and L-shells are given as:

It T i1L. -1
gK(r)_( 2 2111%1311_) 2 L, fK(r)___V}_{_ gx (r) (12a)
for 1S, state (K-shell; n=11=0, j= %) ,
2Z V1] 2 1 1+e _o
e et e e [t
Ny +1 Q“] for 2S,, state
29, + 177 (Ly-shell; n=2, 1=0,j=1),

(12b)

— 1—ey (21, +1)(NVe+2)—(Na+1)0,
50 == T e N et a8

2Z *s 2y, +1 1+ &y 2[ —1 —
8Ly (1) (Ngao] VT(271+1). 4Ny (Ny — 1) ° Ny —2)e}
N —1 yl-l for 2P,/. state
21 (Lyshell; n=2;1=1,j=1),
. 1 —&y 2y, + 1) Ny — (N — 1) 0y r, (12¢)
fun ()= — l/ TTe @t )M (v~ e o
AR ——1‘_[?— _g . for 2P.,. state
fun =3 ) s RN i Vi R
1—¢
fL"[ (T) + Eang( ) : (IZJ)

Here the denotations

71 = V1 —(aZ)*; ys= V4 —(aZ)%;
N, =1; Ne=V2(Q +»); Ny=2; ;=

N,ao;
IR KR
1 1

2]—’/,
have been used. a, is the Bohr radius, Z is the nuclear charge.

For our purposes it is not necessary to treat the electrons relativistically;
consequently we retain only the large components. The radial wave functions
of the electron in the transition matrix elements are substituted — as usual —
by their values on the surface of the nucleus, thus being constants they can
be factored out from the integral. Using (12a)—(12d) and (13) it is easily

(13)
aZ

I
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seen that at distances of the order of a muclear radius the large components

are those terms which contain the functions g(r), g, (r) 8y, (r)s fr (r) for
K-, L L - and L -shel]s respetively. Thus we use the followmg wave

functlons for electrons

1
leshell: me_—..._z—: me=___2_:
1 0
0 —1
Ye = (O)gLJ (r> YOO s Ye= ( 0) 8L, (T) YOO; (140)
0 0
1
L]I'Shell m,= —2— m,= — —

1
Ye = (_?)fL” (1Yo Y, = (g)fLu (N Yo (14b)
0 i

Lyy;-shell : m, = g_: e _—z—:
5 0
Ye = (g) 8L, (NYL (% 9); Ye = (_3) g, (N Y, —1(0,9); (14c)
0 oo
m, = _1_: m,— —
2 2
VgYm(@ ?) Y1 1(6,9)
1
Tl V—gYu oo e o L V 10(0, ®) 8Ly (r). (14d)
0
0 0

These electron and neutrino wave functions (7), (10) are to be substitated
into the transition matrix element (6). The substitution gives e.g. in the case
of the Li-shell :

<Jamg; VHO jimy5 ef >~

— {.,1-P,
>C Va+1 “1—2—}’57401 l f¢},m.]l( ] Y 10(00) ¥4 0in Dy my dr, (15)
il

where u, is the unit spinor occurring in the electron state function. In (15)
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constants irrelevant for the correlation (e.g. f, g, taken on the surface of
the nucleus, Y) have been omitted.
For the matrix element we use the usual denotation

}.m.]l[ 2 ] it Y ( n)740tn¢jlm1d7—<]:mai]l 'Y 740;{jimy >, (16)

n=
from which
<Jams; v|HO|jimy; 6, >~

(. 1—P, . ‘e .
;C, Vol +1 ["I ——é—lé% 0, u,) <jamy|j1i ' Yig9e0/ljymy >. (17)
N

The matrix element < jymy|j,i~' 9, Yio 0;]1j;, my > can be de-
composed using the Wigner-Eckart theorem to the product of a reduced
matrix element independent of the magnetic quantum numbers and a certain
Clebsch-Gordan coefficient. The nucleons are treated in non-relativistic
approximation. The small components of the wave function will not be taken
equal to zero, but terms in the transition matrix elements containing second
and higher powers in v/c are neglected.

Let us treat e.g. in detail the vector interaction. In this case Oy = ip,.
The space-like components (4 =1, 2, 3) are p, ¢; the fourth component
(4 = 4) ie i. The matrix element of HY according to (17) is :

<famz§ V[H\(.f)ifx my; e, >r
—P,ys

uT

2 V@r+1

LYy Pu ue) <Ja’":(]1 Yloih?ulfl m; > =
(18)

1-P, e )
! ~—2——y~‘~elaus <jamgjii ' Y0 0lj;m > —

:;V:"jﬂ ul

mgﬁﬁj qum Yl >

The first sum on the right side is the “relativistic”, the secund is the “ordinary”
transition matrix element. A given order “relativistic” term is v/c times the
corresponding “ordinary” element. (v is the mean velocity of nucleons.) Let
us treat first the “ordinary” matrix element. The leptonic matrix elements
from (8), (9) and (14a) are®

*u, (-{l—) denotes the spinor corresponding to m, = } ~;—, u, (—) that corresponding

o me=——5.
e 2
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[UI 1— Vs ue(+)) — i;
2 V2

(uI —17;”5ue(+))=0; (uI L?‘ue(—)]: — L.

1—
utTyﬁue(—)j=o;

(19)

The nuclear matrix elements, using the Wigner-Eckart theorem, can be writ-
ten

<Jamgjii T Y g jimy > = (— 1) (julmy 0 jamg) <jgl[1]]j2> 8 (mg, (— 1) ),

(20)
where < j3 || I||j; >is the reduced matrix element independent of the magnetic
quantum numbers ; 7; and 7y are the parities of the initial and final states,
respectively. In the following we use the denotation z (I) for & ( 7, (— 1)} 7,).
The reduced matrix elements <C j, || I || j; > are real, the condition for which
is that the temsor operator (,, occurring in the nuclear matrix element

should satisfy
T'(}I?q= (—" l)k_q'Qk,—q T9 (21)

when time is reversed [4]. T is the operator of time reversal. It can be seen
very easily that i’ Yo satisfies condition (21).
From (17) and (20) we get
<Jamg ”IH(&){]}mﬁeLl >~ 2V21+1 (jllmlo’famz) (—D'<jplilllji>a0).
(22)
Substituting this into (2) we obtain
EY, (myymz) ~e 2 SYE 1) @ +1) <JallU1jy > <Jal IV 11y > -
| (23)
(— 1)l+ I’”(l) z () (Gylmy Otjs my) (ju V' my Ojjz ms) .
From (23) it is easily seen that for a given m, my, = my, if not, E(‘;:) (mg, my) =

= 0. The first Clebsch-Gordan coefficient namely differs from zero only if
my, = m, the second if my = m,. Thus

E%(mz,mé)wmf(...)é(mg,m;).

Let us treat now the “‘relativistic’” matrix element. We use for the vector
o its spherical components
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1 . 1 .
glz_ﬁ(ax_}_wy); Oy =0, 0= =(0,—i0). (24)

V2

The scalar product (o, ¢) is then
1
(0,0)= 3 (—1)*0,0.,. (25)
p=—1

The matrix element now contains the operator

(— 1 i 1Y o,

This is the adjunged operator to 'Yy, 0,. Let us introduce the tensor operator
07, as follows :

= 3 (lm'w|LM)I'Y, 0y, (26)
mr+uw=M
from which
#Yind,= > (11mplL M) Q1. 27)
M

(18), (25), (27) and the Wigner-Eckart theorem gives

<Js ”‘2\]1 (— 1) i Yo, Q1|j1 m; > =
(28)

=2(= 1)+ 5+ (110u|Lp) (j, Lmy — plja me) <js || Hes | ja>= (14 1) -

One can easily obtain the lepton matrix elements also in this case and from

(27), (18), (28) we get

EQ)(m,, m;)NZ ggV(ﬂ—F 1)(2r 4-1) (—)IH’ (JelllL oy 71 <Je \r erllj>

L’ 0)(j, Lm0 ‘jz my) (j;L'm, 0 !]'2 ms) +
4 2PIHPEERY (110 — 1L — 1) (P10 — 1|17 — 1) (j, Lmy — P, | jymy) -

(4 Ya @ + 1) {(1100|L0) (100

c(juL'my — P, [jema)} . (29)
We can conclude again that for a given m; my = myi.e.

E®) (mg, my) ~ 3 (...) 8 (mg, m}) .
m,

The reduced matrix elements < jy || ILg, || j1 > in (29) are also real.
This will indeed be the case if .Qﬁzl satisfies (21). Using 0, = — (— 1)*T-10_, T



208 K. NAGY

and oj = T-1g, T, the condition can be easily verified. (* denotes complex

conjugate.)
The full density matrix E{ (mg, m3) according to (2) and (18) besides

the above matrices E(') E(V, contains in addition the interference terms of

the “ordinary” and “relatlwstlc” matrix elements too :

Ey (mg, my) = EV), (mg, my) + EV, (mg, my) + EY, (my, m3) . (30)

E(&)I can be calculated similarly, it is :

Efy(mpm)~—2 3 3 SR+ @ 1 (=) <jal| ] >
my 1 L (31)
<JallV L' ey /ny>7 () (I + 1) (100 | L'0) (j;, L' my 0 | jymg) (i Iy 0] jgmy)
It can be seen from (31) that similarly to the former two expressions
EY (my, mg) ~s 3 (...) 8 (mg, my) .

Other members of the full density matrix E{” (my, mj) can be computed on
similar lines. We give here only the result of the straightforward calculation

E® (mg, my), ~2 YV A+ F D (— D" ey (Wmymygmy) o (W' P,) +
+ L%‘ o3 (W LL' m; mymy, P)b (' LL', P) + (32)
+L2j ey (" L" m; my my) ¢ (wr,p),

where e, ¢,, ¢; and aj, by, ¢ are

e, (IWmy mymg) = (jyImy 0 [jymy) (juVmy 0] jymy) & (my, my),  (33)
e (IWLL mymgm;, P) =
= {(1100 | L0) (1100 | L’0) (j, Lm, 0 | jg my) (j, L'm, 0 | j, my) + (34)
+ 2P/ (110 — 1| L — 1) (10 — 1| L’ — 1) (j, Lm; — P, | j, my) -

(J.lL'"H_P-]J'ams)% 8 (my, m3) ,

e (I L m; my my) =

— (7100 | L/0) (j, L my O | jy mg) (G Iy O | jy mg) & (mgymg), O
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a1 (I, P,) = CE M (I) Mg (V) + Ch My, () My, (1) -+ C4 Moy, () Mo, (1) +
+ Cb Mp(l) Mp (1) — 2C CoM 1, (1) Mp (V) + 2P, [C,Co M, () M (1) +
+ CyCa My M ag(l) — CsCa Ms(D M 4, (1) —Cy Co My, ()) Mo(1)], (36)

by (I LL,P)=CY My (1) My, (' L)+ Ch M (D) My, (VL) +
+ Cr My (L) M, (VL) + CAM 5 (IL) M, ,('L') —
—2Cy Cr My, (IL) My, ('L') + 2P, [— CY M, (IL) M, (VL') +
+CyCr My, (L) My (VL) +Cy Co My (ILYM , , (I'L")),
CLIL, P) = 2{—Cy Myo(D My, (VL) — C4 Moo, () M, I L) —
—CsCrMs(DMp, (FL') + Cy Cr My, () M (VL) +
€1 Cp M () My (VL) -+ Ca Co My () Maay (') +
+ P, [Cs Cr Ms (1) My, (FL') + Cs C Ms (1) M s, (FL') —
—Cy Cr My, (W M7, (VL) —Cy Coa My, (DM, ,(FL’) —
—CyCaAM (DM, (FL') +Cy Co Mp () My, (VL) —
— Cr Cp Mp(D M7, (L'} ]}

(37

M, occurring in the expressions a, bl, c, denotes the product of the
reduced matrix element and the corresponding parity symbol 7 (I). The exact
relations are given in Table 1.

Table I

Ms() = <jallleslljr > (D;

My ()= <jlltljp>a®; My, (L) = <jg || eyl jy > 7 (I 4 1);

My (L) = <jal[lLgg|ljy > ()5 Mr, (L) = <jy || WLigyl[ji > = (t + 1);

My (IL) = <jo | IL || 1 >= ()5 My ()= <jallloyllja>a(+1);
Mp() = <joll ligg || j2 > = (I + 1)

In (32) all the interference terms have been taken into account except
the terms SV and T 4. These terms a8 we know from f-decay experiments do
not appear.

From (32)—(38) it is seen that the density matrix E(I:; for L,-capture
is the same as for K-capture. This can be seen directly from the comparison
of the state functions y, too. The transition probabilities for L;- and K-capture
differ only in terms containing the energy and the radial wave functions of
the electrons. These factors being unimportant for the correlation had formerly
been neglected. The density matrices describing the yp-transition being the

6 Acta Physica X/2.
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same for both captures, the v — yp-angular correlation for the K- and L;-
capture are also the same [3].

The determination of the density matrices E® (m,, ma)L,, E® (m,, mQ)Lm
for L - and L -captures using the electron wave functions (14b)—(14d)
is similar to our former calculations. We quote only the results :

B (my, m), ~ 3 3V + D@ F 1) (1) fog (8 my mgms) oy (W, P) +
+ Xey(W LL' mymgm,, P,) by, (W LL', P,) 4 (39)
L
+ LZ' (W L'm momy)er (W L,Py)},

where c;, ¢, and c; are equal to (33), (34) and (35); ay, by, ¢)p are expressions
containing the reduced matrix elements :

an (W, P)=CGMs()Ms (') + CE My, () My, (D) + Co Ma, () Ma, (1) +
+CAMp(OVMp (V) +2C,Co Ma, () Mp (D) + 2P, [CsCoMs (DM a, () +
+CsCoMs(DMp () +CyCo My () May (') 4+ Cy Co My (1) Mp (1')] ,40

bu(WLL,P)=Ci My, (IL)YMv,(I'L") + o

+ Gy Moy, (ILyMp, (VL) + C3- M7 (IL) M7, (VL) +
+CY My, (IL) Ma, (VL) + 2C, Cr My, (L) Mr (L) + (81
+ 2P, [—Cy Cr My, (IL)M1,(V'L') +Cy CsMv, (IL)Ma,(I'L") —
— C% M, (IL) M1, (F'L))],
et (WL, P)=2{—Cx Mv,()) Mv,(I'L’) — C4, Ma,() Ma, (I'L’) —

—CsCrMs () Mr, (VL) — Cy Cr My, () Mr, (VL) +

+Cr Cp Mp (1) M1, (FL') — C4 Co Mp () Ma, (') +

+ P, [CsCr Ms () M1, (VL)) — CsCo Ms () Ma, (') +  (42)

+Cy Cr My, () M 1, (L)) — Cy Co My, () Ma, ('L’) —

— Cy Cp May (1) My, (FL) — Cy Cp Mp () My, (VL") —

— Cr Cp Mp () M7, (L))}

The M; are given in Table 1.(39) is very similar to (32) only the expressions
a, b, ¢ are different. The electron energy and the radial wave fanctions are
here also different, but being unimportant factors they have been omitted.
EV (mymy),, ~ 3 3 3321+ 1) 20 + 1) [(2J + 1) @F + )]-%(— 1)*.
m W gy
ddy (WIJ'm, mg ms P,) ayy, (W JJ, P)4 Ydy(WJJLL my mygm;, P,)-
LL

by (WIJJ'LL, P+ 3 dy (WIJ'L’ my mgy my, P,) ey (WJIJ'L, P)!, (43)
T
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where

d, (WJJ my my mj, P,) =
— (1100 | JO) (¥ 100 | J70) {2(1100 | JO) (' 100| J70) (j, Jm, O | j, my) -
-(jo J'my 0] jamy) + (1101 | J1) (V101 | J'1) (jy Jmy P, | j, my) -
Gy Jmy P, | jamg) +1(110 — 1| J — 1) (110—1|J —1)-
(i Jmy — P, | jamg) (jy J'my — P, | jo my)} 8 (my, mg) ,

(45)

dy (WJJ'LL' m; my mj, P,) =

= (1100]J0) (' 100 | J0) Py /" *+1+E 41101 | J 1) (¥ 101 |J' 1) -

-(J110 | L1) (J” 110 | L’1) (j, Lm; P, [y my) (jy L' my P, |jg mg) +
+2@10—-1|J—1)F10—-1]J—H(J1—-1—1|L—2).

((J'1 —1—1|L" — 2) (j, Lmy — 2P,|j, m;) (j: L'my — 2Py |j, my) +
+ §(jl Lm, 0 }jz my) (j, L'm, 0 lja m,) [(1101 ‘JI) (J11 —1|L0) — (46)
— (1100 J0) (J100 | LO)} [(' 101|J"1) (J'11 — 1|L0) — (¥ 100 | J"0)-
+(J7100 | L0) + 5(j, Lm, — P-’ja my) (j1 L’ my — P, |j, my) -

-[2 (1100{J0) (J10 — 1|L — 1) — (110 — 1|J — 1) (J1 — 10|L — 1)].
2 (@100]J70)(J7 10 — 1| L'— 1) — (K10 — 1| J'— 1) (J'1 — 10 | L'— 1)]}-

-6 (mZ’ mé) ’

dy (WJJ’L’ my mymj, P,) = (1100 | JO) (I’ 100 | J°0) P, "+ {(1101 | J1).

(101 J71) (J* 110 | I1) (j, Jm; P, |jy mg) (jy L' my P, | jy mg) —
— 2(1100 | JO) [( 101 | J1) (J* 11 — 1} L/0) — (¥ 100 | J0) (J* 100 | L 0)] -
+(jo Jmy 0 |y my) (j, L'm, 0 | jymy) — 2 (110 — 1| J — 1) [2 (P 100]J°0). (47)

-(J'10 — llL’ —1)—-(@ro—-1J7-1)Jl— IOIL’—— 1)]-
'(jl']ml—P"jﬂ my) (j; L'm, _P-lfs mz)}é(mg, my)

ain (WJJ,P)=CEMs(IN)Ms(V'J") +Cy My, (1)) My, (V' J') +
+ CAMa (W) Ma, (V) +ChMp(I)Mp(V'J') —2Cp Co Mp (1) Ma, (V') +
+2P,[—CsCo M (L) Ma,(I'J") + CsCo Ms (L) Mp (V") + (48)
4 Cy CA My, (1) Ma, (J") — Cy Cp My, (LJ) Mp (I'J")],

6‘
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by (WJJ'LL',P,) = CYy My, (JL) Mv,('J'L’) + Gy M1, (JL) M1, (V' J'L’) +
+ CY M1, (JL)M71,(V'J'L’) + CyMa,(IJL)Ma, (¥ J'L’) — (9)
—2Cy Cr My, (ULYMr, (V' J'L') + 2P,{C, Cr My, (IJL) M1, (' J'L') +
+Cy CaMv, (JLYMa,(VJ'L') — C% Mr, (IJL) M1, ('J'L’)],

cn(WJJ'LP)=2{—CsCrMs(lJ) M1, (F J'L')+-Cy Cr My, (1) M, (I'J'L’)+
+ Cr Cp Mp () M1, (VJ'L') 4 C, Co Mp (J) Ma, (¥ J'L’) —
—~ Ct My, (IJ) My, (' J'L’) — Ci Ma, (IJ) M, (' J'L’) + 50)
+ B, [CsCr Ms (W) M7, (VJ'L') + CsC4 Ms (0J) Ma, (VJ'L') —
— Cy Cr My, (IJ) M1y (VJ'L’) — Cy Co My, (1) Ma, (' J'L) —

—Cy Ca May () My, (I'J'L’) + Cy Cp Mp (1) My, (V' J'L’) —
—CrCo Mp (W) M1, (VL))

M, as in Table 1 denotes the product of the reduced matrix element and the
corresponding parity symbol. The reduced matrix elements occurring here
are different from the elements treated before. Matrix elements for the L -
shell contain a spherical function of type Y, _,, Y, or Y,,, these are to be taken
at the place of the nucleon suffering transition. These are thus not constants
as Yy, was before, this making here some small difference. Let us treat e.g.
the transition matrix element of scalar interaction from the electronic state
Je=3/gy m,=3/; to the neutrino state having the polarization P,= | 1.
The leptonic matrix element from (8) and (l4c) is

¢

1 b
(¥! 0g Ye0r) = 7 Y ge *F

Taking into account the series (10) for the I-th term of the matrix element
(after omitting irrelevant constant factors) we obtain

<Jams VIH¥)(OIjlm1; e 111>~ | 4 (214 1)<j2m2,jl('};~r) it Y, Yy 03]5,m > (51)

Yo and Y, are to be taken at the place of the interacting n-th nucleon. Using
the identity

CS[@E)E Y ,
Y i (60) Yo (69) = %[ Py ] (00| JN) (W mm’ | IN)Y ,,(89),
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we obtain

< jamgs »| HY () jymys e >ms —i (20 4-1) V§§(U+ 1)=% (=) (1100 ] JO)-
(53)

. . ri. .
(11011 J1) <jy » Ji (Eﬁ‘] i Y_11Qa|11m1>-

In the sum for J there are only two terms different from zero,because (1100]10)=

=0if J =1L Inthe J =1 4 1-th term the nuclear matrix element contains

i'*1Y,,, , which results (c.f.21) real reduced matrix element.i'*' Y, , occurring

in the term J = ! — 1 can be writtenas i" ' Y,_, ;i? = — i'™! Y,_,,. There-

fore the J =1 — 1-th term after factoring out (— 1) gives a real reduced

matrix element of similar structure. We multiply, consequently, the right side
of (53) by (— 1)*Y"'"V. Thus using the Wigner-Eckart theorem we obtain

<jgmasv | HY D) [jimys epin >~
~ 1 Vg 2+ 1) %' (2J + 1) (——1)”"(-’"_1) (1100} J0)(1101(J1)- (54)
- (jiJmy 1] jamg) <ja|| Jhes||jy > = (J).

It is to be seen from (53) and (54) that the parity symbol occurring in M’
contains J and not /, namely in the nuclear matrix element occurs Y, the
parity of which is be to considered here.

4. The » — y angular correlation

We have determined in Part 3 the density matrix E® (m,, ms) describ-
ing electron capture — neutrino emission for L-capture. The density matrix
describing y-emission is known from our previous paper [3]:

E®) (mymy) = (—Dthertem 3 (—)0 @A T) @+ 1) <jallAllja> -

« < Jall A N1 ja> Py (A1 —1]k0) W (jajadd's kjy) (jajs— mamy|kmy —my) -
Dk o (). (55)

The angular correlation is given by (1).

It is to be seen from (32), (39), (43) and (55) that that part of
3 E”(mg, m}) E® (mg, my) which contains m, and mj is
mymy

Y (= 1)™GiLmy—nP, |jymg) (j L'my — nP,|jymg)-
mymg my
“(JaJg — mgmy | kmg — my) D;‘n;——m.,o (k) 8 (my, my) 5 (56)
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where n is an integer. Using 8 (my m,) one can easily sum for mj, it remains

2 (=)™ (@G, Lm —nP,|j, m,) 011”'"1

— mymy | kO).
mm,

7)

One can easily sum here by means of the Racah theorem. According to that

ﬁZ.;(abaﬂ | e ) (eded | cy) (bdBS | fp) =

= Y@2e+1) 2f + 1) (afap | cy) W (abed 5 ef),  (58)

where W(abcd;ef) is the so-called Racah coefficient, the values of which are
tabulated. We apply the theorem for

ea=L, b=j, c=L, d=j, e=j, f=k
a=nP, B=my, y=nP, 8=—my e=m;, ¢=0.(59)

We use, moreover, the well-known formula

(abaB | e — y) = (— 1)po—c+v— ﬂ‘/§§+1(caya1b_ﬂ)
= (— 1)“*2”—’3+7’V§Zi i (acay|b—p) = (60)

= (=@t (@b —a —fcy)

for the Clebsch-Gordan coefficients. Using (58), (59) and (60) we obtain

2 (=)™, Lm, — "Pr{jzma) (i L'my — nP, | j, my) (jajo — mymy | k0) =

my,m,

= (— YR (25, + 1) (LL nP,, — nP,| kO) W (LL'j; jg; kj0)- (61)
In expressions (32), (39) and (43) occur the values n =0, 1, — 1, 2.
As a final result for the » — y angular correlation we obtain
Wi (3,PnP)=2 APLD AD P, (cos ), (62a)
W, & P,P)= Zk' AL AN P, (cos 9), (62b)

W, 8,P,P)=Y AP AP P, (cos B), (62¢)
4
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where
Ap = (— )0 FY@EF ) OF D) <o 4> <ja | ¥ [ja> (1 B
. 63
(AN 11| KO) W (joju A5 Kfy), (63)
AP = (=D V@) @ 4+ 1) (— D" ey () ar (W, P) +
w
3B (WLL, P) b (WL, P) + 3y, WLy e, WL, P}, (649
LL I
APt —=(— A VEI+ 1) 28 + 1) (11" {a, @) ay (W, P,) +
[{ig
(64b)

+ 3B (WLL", P,) by (WLL', P,) + 3y (WL) ey WL, P,)},
LL L

APH = (— 1k 3 33 @+ 1) @ + 1) [T + 1) @F + D] 7% (— 1)*

wJjr
Ao (WJJ', P,) ayy (WJJ',P,) + 3 w (WJJ'LL, P,) byy (WJJ'LL',P,) +
Lr
+ Z ok (”'JJ’L,, P,) e (ll’JJ’L’, Pv)} , (640)
L
ar (1) = (00 | k0) W (ja o W' kjy) » (65a)
Bx(WLL’, P,) = [(1100|L0) (100|L0) (LL'00 |k0) — 2PL"+* (110 — 1|L — 1)
(10 — 1| L'— 1) (L'l — 1]k0)] W (jy jo LL'; kjy), (655)
e (VL) = (¥100 | L'0) (IL00 | k0) W (s jo 11’3 kfy) (65¢)

o, (WJJ, P,) = (1100 | JO) ('100 | J*0) {2 (1100 | JO) (I'100 | J*0) (JJ00 | kO) —
— [(101]J1) (101 | 1) (— D)/ T/Hep 2110 — 1| T — 1) (65d)
(V10 — 117 — )] (JT'1 — 1|kO)} PHTHR W Gy jy JT7 5 Kjy)

7 (WJJ'LL, P,) = (1100|J0) (100/J70) {2 [(1101 | J1) (J11 — 1|L0) —
— (1100 | J0) (J100 | LO)] [(¥101{J"1) (J'1 — 1|L’0) — (1’100 [ J"0) -
-(J’100| L/0)] (LL’00 [ kO) — [%(2 (1100 [ JO) (J10 — 1|L— 1) —  (65¢)
— (10—1|J—1) (J1 —10[L — 1)) (2 (100 | J°0) (J'10 — 1| L'— 1) —
— (0 —1|J—1)(J1—10|L'— 1)) +
+ (= 1)HFEI101|J1) (101]J71) (J110|L1) (J'110|L'1)] (LL'1 — 1 k0) +
+2(00—-1J—-1)(10 —1|J—1)(J1 —1—1|L —2)-
«(J1—1—1|L'—2)(LL'2 — 2| kO)} P/I+* W (j, js LL; kjy)
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ex (WJJ'L?, P,) = (1100 | JO) (¥100 | J°0) {— 2(1100 | JO) (101 | J'1).
-(J’11 — 1| L’0) — (100 | J°0) (J’100 | L’0)) (JL’00 | k0) +
[3010 — 1] J — 1) (2 (100 | J’0) (J’10 — 1 | L'— 1) — (65f)
— (10 — 1|’ — 1) (J'1 — 10 | L'— 1)) — (3101 | J1) (101 | J*1)-
H(J'110 | L'1) (— 1)HEHH] (JL'L — 1] kO)} PIHT 4+ 7 (o ja JIL 5 Kjy)-
5. Allowed L-capture

We now specialize our general results for allowed L-captures. For allowed
transitions only /= 0-th order ‘“ordinary” matrix elements are different

from gero. In the general expressions (62a)—(62¢) only expressions
A},"t)(t = Ly, Ly, Lyy;) will be modified as follows :

APH = (— 1) [0 (00) g (00) + B (0011, P,) by (0011) +

(66a)
=+ ¢ (001, P,) ¢, (001)] ,
AP = (— 1) [ay (00) ay; (00) + B (0011, P)) by, (0011) + (665)
+ Yk (001) (471 (001,P,)] >
ACLu = (— l)f‘[ak (0011, P,) ay; (0011) + 3 7, (0011LL’, P,).
L (66¢)
. bm (0011LL’) 4+ 3 o4 (0011L’%, P,) ¢yy; (001117, P)] ,
T
where
a; (00) = W (jgja 00; kj)) , (67a)
Bx (0011, P)) = [(1100 | kO) — 2Pf (111 — 1| k0)] W (Jgja 11; kjy), (67b)
7k (001) = W (jq ja 01; kjy) , (67¢)
— {2 e [(— 1) 2 — .
o, (0011, P)) = {8(1100 | kO) [( 1)* 4+ 3](111 1] kO)} (67d)

P W (jaja 115 kjy)
7 (0011LL’, P,) ={2[(111 — 1| LO) — (1100 | L0)] [(111 — 1| L’0) —
— (1100 | L’0)] (LL700 | k0) —[2(110 — 1 | L —1).
(10~ 1| L'—1)(2— (= DY (2 - (—D") + (676)
+ (— DEHETR (1110 | L1) (1110 | /D) (LL' — 1| K0) +
+2(11—-1—1|L—2)(11 —1—1[L—2)-
“(LL’2 — 2 | kO)} P W (jy ja LL; kfy) »



e

oo o 0 0 o
a (00) W (j2Ja 003 0j)
- « o k3 — Y > . 1. l . 0 0
Bi (0011) —V3 W(jajs 11 0) VP, W(jjs11; 1j)
W (jajs 01; 17y) 0 0
. (001) 0 GaJa
2 s . Ve - . 0 0
— ; 2P, W(ja 115 1
7, (0011) ﬁW(sz,II, ) 3 P W Usha J)
8 S 00503 0 0 0
7 (001100) 5 W Uads 0050
4 , ,
=P, W(jsjr01; 1j) 0 0
7% (001101) 0 Ve ’ 2J2
2y . , 0
0 ——VZW(J] 02; 2j)
7 (001102) 0 3 2 Js
=3 s 1035 1 jp 0 0
7% (001110) 0 3V
———:W jajg 115 17, ———W(],],ll;2jl) 0
75 (001111) -—7: W (jis 11:041) T3 (Jsda J) ¥e
! fa Js 123 15, W (G Ja 125 340
———P, W 12;1j 0 n 3
% (001112) 0 730" Giads )] 3V5
2 s . . .
0 0 —5 V2W (Gajs 205 2j) 0
71 (001120)
1 0 —4P_’W(j,j,21;3jl)
74 (001121) 0 V-—W(hh 215 1j) 373
k
nr 2 Wi 225 25 2B W Gada 22 3jp
5 . ; W(jrja22; 1 —— W (ujs 223 2 2 s j
7% (001122) §V§W(J, 7222:05) W10 Uads 5) o1z Urds 3V1
— 2 WGi0s 1)) 0 0
0k (00110) [} 3V§ Jada
2 .. .
2 .. , RITRT — =P, W (jyja11; 2j) 0
ox (00111) WE‘P,W(J,),II; ) W (jada 115 1jy) a3 7
2 .. , 0
=W Uais12; 1j ZPW 12; 2j)
ok (00112) 0 3V1 Gajs v 3P Wy liss
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0« (001117, P,) = {— 3 [(111 — 1| L’0) — (1100 | L’0)] (LL’00 | k0) +

+ [110 — 1| L'— 1) 2 — (— ") — (67f)

— (1110 L’1) (— 1)+ +*] (111 — 1| KO} PX+! W (jyja LL'; Kjy) .
a; (00) = C¥ M%(0) 4- G} MY, (0), (68a)
by (0011) = C} M3} (01) + C} M3 (O1), (685)

¢1 (001, P,) = 2P, [Cs Cr M (0) M1,(01) + C5C, Mg (0) Ma, (01)—

—CyCrMy,(0)M7,(01) —C,C, Mv,(0) M4, (o1y], (68¢
arg (00) = ay (00) ’ (69“)
by (0011) = b, (0011), (69b)

CI1 (001,P,) - 2P, [CSCTMS (O) MTO (01) — CSCA Ms (O)MAD (01) +
69¢)
+Cy Cr My, (0) M, (01) — Cy C, My, (0) M4, (01)],

a111 (0011) = C3 M3 (01) + Cb My, (01), (70a)
by11 (0011 LL') = C% M, (01L) M1, (01L') + C4 Ma, (0O1L) M4, (01L’),  (70b)
ciry (00111, P,)= 2P, [C5Cr Mg(01) M1, (01L") + CsC, Mg (01) Ma, (01L') —

—CyCr My, (01) M7, (01L") — Cy, Cx Mv,(01) Ma, (01L)].
(70¢)

From formulae (67a)—(67f) it can be seen what values of k may occur
and from tables the Clebsch-Gordan coefficients ay, By, .. can be determined.
The results of the straightforward calculations are tabulated in Table 2.

For allowed L-captures k equals at most 3. The coefficients ay, S, ..
for k more than three all vanish. The correlation term with k = ( is independent
of the angle # between the neutrino and y-quantum. Thus if kX = 0 there
is no correlation. Table 2 shows that for allowed L;- and Ly-captures in the
case of pure Fermi (S, V) transitions there is no ¥ — y correlation, naturally
there is no correlation for K-captures but there is for Gamow-Teller (4, T)
transitions having the form 1 + K cos # (K is some constant depending on
the nuclear state and on the multipolarity of the y-transition). The situation
is different for Ly;-captures, here also for Fermi transitions arises a correlation

(o, (0011) £ 0) of form 1 + K| cos 8.
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6. Discussion

From the general expressions (62a)—(65f) it is to be seen that — just
as in K-captures — ALY and 4P depend on P, and P, only if k is odd. This
is trivial for (55). In the case of A" let us consider e.g. the term of (64a)
containing ay. This depends on P, through a; (1 I', P,). From (65a) it follows
that a; is different from zero only if I + I’ + k = an even number, namely
(W00 | k0) = 0if I 4 I’ + k is odd. Let us suppose first that k is even. Then
I+ I is also even. There are two cases: (i) both I and I’ are even and (ii)
both ! and ! are odd. In (36) each term in the brackets beside P, contains a
factor = (i) and 7 (I’ - 1), thus these terms vanish if I and I’ are both even
or odd. Therefore the term of (646) containing ay does not depend on P, if
k is even. Let us consider now the case when k is odd. Then a; is different
from zero if ] + I’ = an odd number. We have again two possibilities : (i) !
is even, I’ is odd and (it) I is odd, I’ is even. In this case those terms of
a; (11, P,) are different from zero which contain the product of n (l) z (I’ + 1);
these are just proportional to P,. This can be seen similarly also for terms
B> 7k - - - ete. Thus AT A is proportional to P, P, if k is odd. Therefore
if we do not measure the polarization of the y-quantum (i.e. we sum for P,}
the angular correlation does not depend on the neutrino polarization P,. The
v — y angular correlation measurements with circularly polarized y-quanta
on the other hand make possible the determination of P,.

Finally we should like to mention one more problem. The universal
Fermi interaction proposed by FEYNMAN and GELL-MANN, SUDARSHAN and
MagrsuAK as well as by SAKURAI [7] is — using the usual terminology ot the
p-decay — a V.A-interaction. According to the theory both the combinations
V 4 A4 and V — A4 are possible. The relative sign has to be determined by
means of experiments. Therefore measurements have to be carried out involv-
ing interference terms. It is very likely from the measurements of TELEGDI
et al. [8] of the electron distribution in polarized neutron decay that ¥V — A4
is the correct combination. As it is to be seen from our general expressions also
the » — y angular correlation formulae contain interference terms, thus
experiments of the above type are suitable for the clearing up of this problem
as well,
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VIJIOBASI KOPPEJIALIMST HENTPMHO W FAMMA-KBAHTA TITPHU L-3AXBATE
JJIEKTPOHA

K. HAOb

Peswome

ABTOpPOM oOIipefieieHa YIJIOBAsi KODPPESIUHST MEXKAY HEHTPUHO M ramMa-KBAHTOM,
HCNYyCKaeMBMH NIpH L-3axXpaTe B Cjiy4ae HMPKYJSIPHO ITOJISIDH30BAHHOIO TIaMMa-KBAHTA
H NPOIONBHO TOJISIPU3OBAHHOI0 HeWTPHHO.  B3aWMOAeHCTBHE, OMMCHBAIINEE 3aXBAT JJIEKT-
poHa 6bUIO0 B3SITO HAMH KAaK JHMHeapHas KOMOWHALMs1 B3ammoneHctBuit S, V, T, A u P. Kop-
PEJISIHS BHUMCIIEHA IJIs1 3alpelieHHOr0 B IPOH3BOJbHOM IODSAKE 3aXBaTa SJIEKTPOHA H ANst
Jmo6oro ramMma-nepexoaa. Kax yacTHuifi cnydaft qaHa KOpPPesTUMs ¥ —y, OTHOCSINASICH K pas-
pemennoMy L-3axBaTy.



