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A direct proof is given for the equivalence of two types of integro-differential equations
treated formerly by KrOrxowskl and Rzewusxi. The calculation shows a close connection
between the equivalence theorem and the well-known initial value problem.

In the course of mathematical calculations in field theory we meet fre-
quently integro-differential equations of the type

Dy =_fK1pdx,

where D is some differential operator, K is the kernel of the euqation and y
is the unknown function of any number of points of the four-dimensional world.
The integral is taken (for any number of arguments) over a domain of space-time
contained between two arbitrary space-like surfaces. This domain is most
frequently the whole four-dimensional world. Equations of the above type
occur e.g. in non-local field theories or in different approximation methods.
Such equations are the Tamm-Dancoff or the Bethe-Salpeter equations.

Itis of great importance for the better physical understanding of the pro-
blem (from the practical just as much as from the theoretical point of view)
that this equation is equivalent to an equation of the type

Dw:fAzpdo

as it was proved [1]—[4] and applied [4]—[5] by KrOLIEOWSKI and RzEWUSKY
in a series of papers. Here on the right side the integration is extended over
one (or any number of) space-like surface, i.e. over a three-dimensional
volume.

Here we give a direct proof for the equivalence which shows the connec-
tion between the equivalence theorem and the well-known initial value pro-
blem, thus it might serve for the better understanding of the former. In the
course of the calculations, moreover we obtain the kernel A4 directly (naturally
as a power series in the coupling constant only) without facing the necessity
of determining it first from an extra integral equation as in [1]—[4].
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For the sake of simplicity we confine ourselves to the treatment of the
equation

(78 + %) v (x) = g [ K (x, 2) y («) de, @)
more complicated equations can be treated similarly. The integral e§uation
corresponding to (1), satisfying the initial condition y (x) equal a prescribed
given y (x) on an arbitrary space-like surface o, is

(%) = v, (%) + & [ N, (x, 2) p (') dv, @)
where
N, (5, %) = i, K} (5, %) 3)
with the denotation
{4B.. C}= {. A (x,8) B(§L, 8. . C(én, ') det, . dém,
S, is the Yang-Feldman’s Green function

5, (x, %) = 859 (x — ) —afs(x — ) 9,80 (2" — &) do, ("),  (4)

where S is any of the Green’s function satisfying

(74 84 + %) S (x) = 8 ().
v (0) =[S (& —=)y,v () do, (%), )
thus
(74 84+ %)y, (x) = 0,

the value of which is the prescribed y (x) on 0. In this case the right side of
(2) is indeed equal to the prescribed y (x), if x€g, since from (4) S, (x, ') = 0
if x€o.

Supposing (2) has a unique solution (which naturally depends on the
kernel K) which can be obtained by means of successive approximation,
we have

v (2) = v, (x) + g[ R, (x, &) y, (%) dx’, (6)

where

R, (x, ') = ’é'l g1 {N1}(x,x'). (M
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Substituting (5) into (6) we get

p(2) =y (x) + & { L, (x, %) 7, p (¥) do, (x) (8)
which is the solution of the initial value problem. Here
L, (% %) = IR, S} (x %) (9)
Applying the operator (y,8, + %) to (8) we obtain
(VuBu + %) v (x) =g [ 4, (x, %) y, y () do, (x) (10)

which is the equation we wanted to derive. In (10) using (3), (7) and (9)

A; (%, 2') = (Yu8 + %) Lo (x, ') = né‘l g"'l{K N1 S} (x, %) =
={K S}(x, %) + 8{K R. S} (, ). (11)

The initial value problem of (10) can be solved by only one integration
in contrast with eq. (1), because we obtained (10) from (8) by means of one
differentiation. Indeed from (10) we get

v (x) = p, (%) + g_q S, (x,2) A_ (2, x") y,p (x") do (x") dx’. (12)

Here on the right side only the arbitrary form of y on the surface o occurs.
It can be seen indeed from (9) and (11) that

L (x,x)=1{S A} (x,2").

oin the right side of (10) is arbitrary and the right side is independent of
the special choice of ¢. This can be seen explicitly, forming the functional
derivative of (10). Using (10) and

A (x,x') (yu0, +%)=0,
0 A, (x,x')

—AG"AUx’,',
Pl EUCEY NGy

which can be obtained from (11) the independence can be easily proved.
(11) is the solution of the integral equation for 4 which can be found e.g. in
31 p- 199.

Because in (10) o can be chosen arbitrarily it is advantageous to choose
it as a plane going through the point x. In this case p contains in each side of
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the equation the same time arguments only. This makes possible the separation
of the time variable, leaving thus only an eigenvalue problem with a non-local
“potential”. This is just the chief advantage of (10) in comparison to (1).
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(2 L0 N

O TEOPEME 3KBHBAJIEHTHOCTH B CJIYUAE HHTEI'PO-IUPPEPEHIIMAJILHEIX
YPABHEHUH, UMEKIIUX MECTO B TEOPUH I10JIS

K. JI. HAOb
PeswnomMme
HemnocpeacTBeHHO [OKA3WBAETCS IKBUBAJIEHTHOCTL HHTErpO-IHpe PeHIHANBHEX YpaB-

HeHHH IBYX BHJIOB, HCcllefyeMbX panee KpymxoBckHM H HKeBYCKHM. B BHUHC/IEHHAX HILTYCT-
PHPYETCS1 CBsI3b TeOPeMH 9KBHBAJICHTHOCTH C M3BeCTHOH 3aayel HayasbHHIX 3HaueAHH.



