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In this paper using the approximate Rozental solution for the Thomas-Fermi function
for free neutral atoms we derive a formula for the phase shifts for the Thomas-Fermi poten-
tial, which does not include the electrostatic self-interaction of the electron. The derivation
of this formula for the considered phase shift is similar to the Born method, and the difference
consists only in the fact that instead of Bessel functions we take hydrogenic functions.

As known a number of modifications in the Thomas-Fermi potential
have been suggested [1], one of them is the Thomas-Fermi potential corrected
for the self-interaction of the electron which may be expressed by the following
formula :
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where @ (r/x) is the universal Thomas-Fermi function for free neutral atoms
of atomic number Z and u = 0.88534 a,/Z"». In the last formula for f; a,
is the Bohr radius. In the present paper we derive an analytical formula for
the phase shifts using the potential given by equation (1). First we write the
Schrédinger equation for this potential :
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Since the Thomas-Fermi function @(r/u) vanishes more rapidly than the

term e*/r, the Schrédinger equation (2) turns for a sufficient large r into the
following Schrddinger equation
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we can write the bounded solution (R, of the Schrédinger equation (3), as
known [2], in the following form :
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The properties of the bounded solution R, have been studied extensively
by BRrerT and his collaborators. They have shown that this solution has for
large kr the following asymptotic behaviour :
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where the symbol ;. denotes the Coulomb phase shifts
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The bounded solution R, of the Schrédinger equation given by equation (5)
has for large kr according to the theory of the phase shifts the following
asymptotic behaviour:

R, (kr) > sin (kr — niln 2kr — L;-t— +6.+94), (8)

where &, is the phase shift caused by the term of the Schrédinger equation
(2) which includes the Thomas-Fermi function. Multiplying the Schrédinger
equation (3) by (R, and the Schrédinger equation (2) by R, and subtracting
we obtain an expression which after integration, bearing in mind the
asymptotic behaviours of (R, and R, given by formulas (6) and (8), gives us
for the phase shift §, the following expreseion :

siné,:—zm

(@ = 1)e Tdrd (rf) oR, (kr) R (kr) rt ©)
- 0

Using the notation ¢ = kr and substituting for the unknown bounded solution
R, the known solution (R; we obtain for larger quantum numbers ! the following
approximate expression for the phase shift §;:
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In order to obtain an analytical expression for §; we must admit such appro-
ximate solutions for the Thomas-Fermi function @ appearing in equation (10)
which allows calculating the integral occurring in equation (10).

A convenient form is the approximate solution of the Thomas-Fermi
function for free neutral atoms given by RozentaL [3],

3 .
P(r/p) = Yoo, (1)

where the constants a; and b, are given by a;, = 0,255, a, = 0,581,
ay = 0,164, b, =: 0,246, by = 0,947, by == 4,356,

Substituting equation (11) into equation (10) we obtain for the phase shift the
following formula [4] :
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where the symbol M; (1 4 2z7%) is given by
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In the last formula for M, the symbol ,F, denotes the hypergeometric
function. The formula for the phase shifts §; for the Thomas-Fermi potential
which is corrected for the self-interaction of the clectron is not simple for
practical calculations. If we adopt for the Thomas-Fermi potential

V)= —Zet® (r/u)r (14)

it means that the potential of equation (14) includes the electrostatic self-
interaction of the electron ; in this case in the BORN approximation we obtain
for the phase shifts in atomic units the following formula [S] for the RozenTAL
approximate solution for 7; (Born) :

b, \®
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The symbol Q; denotes the Legendre functions of second kind. In Table I we
have a comparison of 7; (BorN) with the numerical values for the phase
shift given by HENNEBERG [6] for Z = 80 and E = Z3,



172 T, TIETZ

Table 1

A comparison of the phase shifts according to formula (15) with the numerical values
of HENNEBERG

1 [ Ve e T (Boxr) eq. (19)
0 203° 208°40¢
1 157 152°11"
2 129°50° 124°48"
3 111°30’ 107°04’
4 98° 94°15’
5 87°50” 84°18’

For the constants a; and b; were taken the values of RozENTAL. Table I shows
that for larger { the phase shifts 7, (BorN) give good results. Since the formula
(12) for ; was carried out in the same mode as is required by the BorN appro-
ximation we may expect that &, will give also good results. It is necessary to
stress that the solution R, fits the exact solution R; better, than the Bessel
function of half integral fits the exact solution of the Schrédinger equation
for the potential given by eq. (14).
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CIOBUI'H {®A3 JUIA TIOTEHLMAJIA TOMACA —OEPMH, CKOPPEKTHPOBAHHOIO
COBCTBEHHBIM B3AUMOJEACTBUEM 3JIEKTPOHOB

T. TUTL

Peswome

B Hacrosime#t pa6orte ¢ nomowbio NpHGIKEHHOr0 peluenusi PoseHTanst yHxumd Tomaca
—®DepMH 1 HCHTPAIBHOI'0 ATOMA BHIBOJHM Takyio GOPMYNY RS CABHIOB (a3 NMOTeHLMAIA
Tomaca—DepMH, KOTOpAsi HE COACPYKHT IEKTPOCTATHYECKOTO COGCTBEHHOTO B3aHMOfiEHCT-
BHS IEKTPOHA. BHBOA (OpMY. 1N aHaj0rH4yeH MeToay Bopha, ¢ Tolt pasHuueH,yro MH I07b-
8yeMCsl BOROPOAHKIMH GYHKIUHSMH BMeCTO BecceneBnix QyHKHH.



