THE USE OF PERTURBATION METHODS
FOR QUANTUM-CHEMICAL INVESTIGATIONS
OF SYSTEMS BUILT UP FROM IDENTICAL UNITS

By
R. Pauncz

INSTITUTE FOR THEORETICAL PHYSICS, UNIVERSITY OF SZEGED, SZEGED

(Presented by P. Gombés, — Received 19. IIL. 1956)

The -paper deals with the investigation of molecules built up from n identical units using
perturbation considerations. By means of considerations based on a simple variant of the mole-
cular orbital method we succeeded both in the case of energy values and in that of bond orders
in separating the results into sums of products in which the one factor contains quantities referr-
ing only to the basic unit, and the second depends on the data of the series. The second part of
the paper deals with the calculations relating to the polyrylene series in order to illustrate the
usefulness of the general method. According to the results of the calculations the method can be
successfully applied and by its means it becomes possible to investigate the dependence of the
quantities characterizing the series on the strength of the bonds connecting the single units,

Introduction

In theoretical chemical investigations cases frequently occur, in which the
members of a series of compounds can be obtained by aid of successive conden-
sation of a given unit. Such problems are met with in the theoretical examination
of polymers, further some series of condensed aromatic compounds also belong
here ; thus for instance the members of the polyrylene series can be obtained by
successive condensation of naphtalene, likewise that of anthracene yields the
members of the polyanthene series, etc. For the theoretical investigation of these
kinds of problems a simple variant of the molecular-orbital theory (linear combi-
nation of atomic orbitals) appears above all suitable. For the present, on account
of the complicated molecular structure, there is namely not much hope for the
application of the refinements of the method to the higher members of the series,
on the other hand according to experiences made so far the main regularities
are reproduced quite well also with the above-mentioned version of the molecular-
orbital method. Unfortunately, owing to the high order of the determinantal
equation occurring, the application of even this simple method becomes very
tedious when the higher members of the series are investigated. Therefore it is
desirable to work out a treatment in which the calculations relating to the indivi-
dual members of the series are reduced to those referring to the basic unit. For
this purpose the use of the perturbation method seems most appropriate.

The above-mentioned problems were first successfully investigated by
CoursoN AND RusHBROKE [1]. Their treatment refers to the case in which
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there is a connection between the repeating units only in one place. This results
in an equation suitable for the determination of the energy values. In the following
the same problem is dealt with using the perturbation method.

The case investigated by us is more general in so far as it also extends to
multiple linking of the units, furthermore formulae are developed for the deter-
mination of the energy values as well as for the coefficients. On the basis of the
latter the computation of the bond order and bond length, resp. becomes feasible.

The paper is divided into two parts. In the first the general method is elabo-
rated. The results obtained here are very general and suitable for wide-ranging
application as no special assumption is made regarding the individual units.
Hence they are valid even in those cases when not only m-electrons play an
important role within the unit (the problems of polymers). In the second part
of the paper the treatment of the polyrylene series is presented. This serves on
the one hand as an illustration for the use of the method, and on the other allows
the investigation of some interesting properties of the series.

The perturbation method for the treatment of systems built up from identical units
1. Basic assumptions and notation

The one-electron function extending over the whole molecule (molecular
orbital) is assumed to be the linear combination of functions centered on the
individual atoms (atomic orbitals)

Y =cyur e us+ ... cqup, M

where p; is the i-th molecular orbital and u, represents the electron function
belonging to atom k. The determination of the coefficients is carried out with
the variation method by minimizing the energies of the individual orbitals
according to the following secular equations :

Z(Hik“esik)cik:(), i.—_—1,2’...,n, (2)
k
where
H,—k:jw;Hude, Siszu?ukdr.

H represents the Hamiltonian derived on the basis of the effective potential acting
upon the single electrons and ¢ the energy of the individual molecular orbital.
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In each orbital two electrons with opposite spins can be accomeodated, the filling
up of the orbitals takes place in order of increasing energy.

Regarding the matrix elements the following simplifications are used:

a) S,y =1, 8; = 0 (the overlap integral is taken to be 0).

b) H; differs from zero only in the case when i = k, or when i and k are
indices belonging to neighbouring atoms.

These simplifications allow an alternative discussion of the problem :

Let us consider the coefficients of the i-th molecular orbital (¢, ¢z, . . ., €py)
to be the components of an n-dimensional vector and denote the corresponding
vector with ¥;. In view of the above-mentioned simplifications the secular
equations (2) are equivalent to the matrix eigenvalue problem as follows :

Hy; = ET; . (3)

This method of treatment proves to be very useful in the investigation of systems
built up from identical units when using perturbation calculation.

2. The perturbation calculation

Consider a series, the members of which can be obtained by the repetition
of a given unit. The connection between the single units be as follows :

a) The i-th unit should be joined only to the preceding and the subsequent
unit. (As an exception serve the first and the last units which are joined to the
second and the last but one, resp.)

b) The connection between the units following each other be of the same
structure.

More detailed, the latter means the following. Let us number the atoms
of the first unit from 1 to e. In the following units the same numbering is used,
the upper index indicating only the unit involved. Connection of identical
structure means that the joining between the units following each other is as
follows :

—( s r \—/( s r \—/( s r o \—
N s, r/ — s/ rl . s/ r/ o (4)
—\ S " r " . 3 ” r/l e\ s " r// R

The matrix of the n-th member of the series occurring in equation (3) has
according to the above the following form :
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A B
B 4 B
H= B4 i (5)
B AB
B 4 B
B 4

where, A, ﬁ, B mean matrices of order e. A represents a matrix of a single unit,
B corresponds to the connection between units f and f - 1, its non-vanishing
elements are : H,, Hy, Hongn ... ete. B corresponds to the connection between
the units f and f — 1. This is the transpose of B, its non-vanishing elements are
H,, Hyy Hgr,r ete. The eigenvectors i, ..., q, of the matrix 4 are vectors
of dimension e, their components being @; j¢;;, €y, . - -, cei} and the correspond-
ing eigenvalues g;. In the following only those cases will be investigated in detail
in which the basic unit has no degenerate eigenvalue. The calculations can be
easily generalized for the case when some eigenvalues are degenerate.

For matrix of the unperturbed problem that matrix should be chosen
where B and B, resp. are zero matrices. From the physical point of view this
means that no connection between the individual units is assumed. The eigen-
values and eigenvectors of this matrix can be given at once : its eigenvalues are
identical with those of the basic unit with the difference that each eigenvalue
& is n-fold degenerate, n linearly independent eigenvectors belong to it. By
choosing the latter we have a high degree of arbitrariness, as, if n linearly inde-
pendent vectors belong to the i-th eigenvalue, any linear combination of them
is an eigenvector as well and belongs to the same eigenvalue. It is appropriate
to choose the n linearly independent eigenvectors as follows :

a; 0 0
0 a; 0
0 0 0
0, = 0 th=1,]" Lot = ol (6)
0 0 0
0 0 a;

1Py, I, - .., Iy are vectors of dimension n. e. Each “component” occurring
in formula (6) represents a vector of dimension e (the corresponding eigenvector
of A).

Let us consider the difference between the original matrix and that corre-
sponding to the unperturbed problem to be a perturbation matrix.
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B
B - B
p_| B - P , 1)
B B
% . B
B

In order that this really represents a perturbation it is necessary that the connec-
tion between the single units should be looser than those within the single units,
Thus the non-vanishing matrix elements of B and B are smaller regarding their
numerical values than the elements of matrix A.

On the basis of (6) and (7) the following relation is easily verified :

(¢;jBay), if h=k—1,
(a,-1~3a,-), if h=k+1,.

(1% Prdy) = (8)
| . if hek—1,
{ h£k+1,
where
((1,- B ﬂ,-) = (C[,' .§ C[,‘) = Zcri Hrs Csi =Yis
(a; Bay) = (C(jﬁ o) = Zcri Hrsesj = "%j = ﬁéi s %)

(ajB o) = (a; B aj) = Ecsi Hgcy= 191]'1' = 19£f.

3. The examination of the perturbed eigenvalues

In the first step the exact zero-order coefficients are determined together
with the first:order energy correction which is evaluated on the basis of the
usual secular equations

n . - : ’
b= Sagth, > oy [} P1%) — &7 6] = 0. (10)

=1

Using (8) and (9} it follows that (s Pr}). is zero, except when s =141 and
s = I —1, resp., in which case its value is ;. The secular determinant is the

following
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—¢; Vi
Vi —¢& Vi
Yi —& 7’1 _o. (11)
Vi —& Vi
Vi ""81{ 7i
Vi —%

The secular determinant (11) and the corresponding secular equations resp.
are well known (they occur for instance in the problem of the linear chain
polyenes). The zeros of the determinant and the coefficients of the system of
equations can be given at once :

g = 2y;cos ka, (12)

. 2 7
al, = V’_I__T_ sinsla, a:n+1. (13)

In the first-order approximation the level corresponding to the i-th eigenvalue
is split into n levels, the magnitude of the splitting is 2y; (i. e. the distance of
the highest and lowest levels originating from the i-th level). It is worth wile
to mention that a’;, does not depend on i, accordingly the upper index is omitted
in the following.

The second-order energy correction is as follows :

eh = 2 (0% PPz

jFt fi— & =

Using (10) and (13), further taking (8) and (9) into account

B~

it

.
(P% P-p?l) = > Aruliy (t,uPI?U) = Y 2 agv_10;, +

u r=1 =2

[
—-

(14)

. h—1 .. .n ., .n
+ 9 D apprra, =97 D axpra,+ 3 D aporrap
1 v=1

= v=1

is obtained.
(In the last transformation the fact is used that ay = @ ni1 = 0.)

Consequently

| (0% PyYy) 2= 2 2 Z {992 axr—1 axc w1 + (FF)? G i1 Gerr +

[V::

Il
—_

+ VY (@ o1 @x w1+ Qhvi1 @rw—1 }alv ary .
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n
Summing over [ with givenv and w and taking into account that 2 ap Ay = Orw
=
the following is obtained :

k1+1 + 219” 19” 2 Qpr—1 A y+1=—

1 v=1

M:

(0% Pp%)? = (9)2 3 af,_, + (99)?
1=1 v=1

= (1 —a},) (99)2 4 (1 —af) (99)2 + 207 0F (1 —na}y) .

V=

i

Let us introduce the following notation:

e . P
iy 9 9y 1,
= 2 ——, = (15)
J#Ei & — &j ' 2.
In view of the fact that ai, = ap, (namely ay = — (—1"Y ayn . 1_;), the

second-order energy correction is as follows :

e = (1 — ai?él) (Cn + 529) +2(1— nakl) C
T =i

n+1

{ 2 7 . . 2n
=P g (4 +2{1— sin? k
1Y n+1](11 22) n+1

n -+
In the above results it is essential that both in the first-order and in the second-
order eigenvalue correction we succeeded in separating them into factors, in

the first of which only quantities referring to the basic unit occur (¥:, C}(z),v
whereas in the second only data characterizing the series.

4. Examination of the perturbed eigenvectors

For the investigation of the bond order and the bond length, resp. the
perturbed eigenvectors are needed. For the examination of the bonds connecting
the single units it is sufficient to investigate the first-order perturbation, however,
for the calculation of the bond orders corresponding to bonds within the units
also the second-order perturbation calculation is needed. The perturbed eigen-
vectors in the second-order approximation are as follows :

e = D% + bl + P (17)
where
n e n
Pho= 3 (mfiks 1 phet S 3 (miks 1) (18)
mz#k Jj#Fi m=1

P = (kJiks 2) Pl + N (mfik;2) P+ N S (jmfik;2) B . (19)
m+#k

j#Fi m=1
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The coefficients occurring in formulae (18) and (19) are according to Corson [2]

the following.
n

. S (Pl Ppt) (0 Ppd)
[ik; 1) = = 5 20
(bmfiks 1) ,Z 2 (er—2) (el — &im) @
(jmfit; 1) = B EO8) @y
& — &

(ik/ik: 2) = —~% DD (wvfiks 1)2; 22)

n#Fi v=1

n

v
7 7 ’ 7
J#i r=1 ik — &im ik — €im

(]m/Lk,Z) — 2 2 (pjom Pp?u) (u’U/ik 3 1) . e;k.(‘p.?m Pp?k) . (24)

u#Fi v=1 & — & (& — &)?

Of the vector equations (17)-—(19), which correspond to vectors of dimension
n. e. let us consider those parts which correspond to the f-th components, these
will be vector equations of dimension e.

In other words that vector will be investigated the components of which
are the coefficients belonging to the atoms of the f-th unit,

(th)r = arai + (Pl)s + (V%) 7» (25)

where

X (jmfik; 1) amg 0, (26)

m=1

(hh)sr =

N (imfiks 1) an f) o

m#k j#i

3 (jmfik: 2) amg] o - @7)

m=1 !

('ngk)f = [(ik/tk;z) aif -+ j (lm/bk; 2) amf] a; + j

msk J#i

In the evaluation of the sums occarring in formulae (26) and (27) the procedure given in
detail in the preceding paragraph for the evaluation of the second-order correction of the eigen-
values is followed. The matrix elements (p?mPp%;) are given on the basis of equation (14). In the
following steps, we succeeded using formulae (20)—(24), in separating the summing of each term
into two parts, the first containing only the quantities relating to the basic units, the second
those related to the aix-s

o 2 in ik e 4
U e e
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In the sums referring to the basic unit the following notations are used :

ij
i_ P
i &i—¢j
e
i ij _ij
Q. _—Z a, ai ’
Tl
X e
ij fu quj
ﬂx}."—zl‘ax 0}. *
UEi
. € . e ¢ vj qiu quj
- - ol A = & O O .
Py - % Ap - .
17 7Fi uZi (e1—¢&j) (si—eu)

Using the definition of ﬂij -s the following identities are easily verified :

i [ [ S S I | SRS S
Tyt = T2 =% Tiop = Tap1 S A, Topy = Typp = i -

i i I
T2 = T =i

407

(28)

29

(30)

(1)

(32)

The sums relating to the aj;-s can be divided into two groups : the sums occurring in the

first group can be evaluated simply by utilizing the orthogonality properties of the ajx-s
n
(Z ait ak = 5ik) .
t=1
The sums occurring in the further steps are as follows :

n

t=1 t=1

n
E (@ms t—1 ks t+1 + @y 141 Ghs (—1) = 2 co0s 2ka-Omk + aky amy -+ amn akn ,
t=1

n
E @my t — 1 Gkt — 1 = Omk — amn @kn ; Zam, t+ 18k t+1=Omk — amy @k,

n
Z (@mst —1 Gyt + 2+ @unt + 1 kst —2) = 208 3k Ok + @k2 amy -+ @k n — 1 amn -

t=1
‘The other group consists of the following type of sums :
D
i (cos ke — cos ma)’

mz#k

The computation of the latter is given in detail in the Appendix.

(349

All other sums occurring in the computation can be reduced to the above-mentioned ones
utilizing the orthogonality properties of the a;t-s and other simple trigonometrical relations.
Concerning the sums occurring in the perturbation calculation of the eigenvectors the

following results are obtained by means of the method outlined above :

a) D (imfiki1), anfz-;?{ — Cflzz"f — 5 Zilf +2i, (2i1f+ Z'I‘"f)} (35)

m#£k
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For the computation the following relation was used :

n n n
Z(P?m Pp)( pd Pply) =Z{ﬂjzamt—1au+ 79’2amt+1 au} ;
= i

=1 i=1 =
{19’ Z als aics + 1 +19l Z ais ak s— | %=
§=1
n n L n
= (IW)  ami—t ap—1 + (87 D ami okt + 9702 N (amt 1 ake—1 + ami—i aket1)-
= =1 =1
e n . n
b) (jmfik;1) = aéjz am ai+1 + al]JZaAm aki—1 s (36)
=1 =
e n
2 Z(jm/ik; 1) ams| 6j = aks+1 bi -+ akg—1 & (37)
j#i \m=:1
where . e e
b= > ayaj, = N aflaj . (38)
#i jFi
where
- 2\, i j 2y i
¢) (ikfik s 2) akg = — 3 {@—al)(el; + 03,) + 2(1—nal)) 0f, }ais - (39)

The deduction of this part is essentially identical with the procedure outlined for the second-
order perturbation calculation of the eigenvalue.

d) (jm/ik ;2) = ?iT,{ Sk (2t + )y — il +dif 1)+
+ amt gy (7 — 2 ) - amnain (), —a) (40y

+ > ams aks—2 (75} —yia —{—Zams akss2 (i — yiad)} .

With the method outlined in @) the first member of (24) is as follows :

fﬂ S'ams—laks—l +al Namsrrarstt +

& — &j S

21-«

+at Namsyiacs—1 4+ 2, N ams—1ars1l .
11 & 22

S N

The second member :

23/, cos ka {19.11 2 amt Qki—1 —!——ﬁéjzam{ @hf+1 } .
t

(e — &j)? t
Using the following relation :

2 cos ka-aif= axf+1 + akf—-1
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and (33) the above result is obtained

e n
2( N (jmfik ; 2) amf)a] = akfﬁz + akj—2m; + akf+2ﬂ' , (41)
J#i
where : e ij e ij e wij
3 ? : v ¥ V4 :
ﬂiZZEi_sja,, m=2 o M fi 26,—ej“1' (42)
j#l J#i j#i
n” —}—ngl——yi(a'i’—;—ag), if f#1,f#n.
pif = 'ﬂljz i alj , if f=1, (43)
31211 —y[al . if f=n.

', '/ can be given in an analogous manner, however, their explicit form is not needed in the
following.

noo.. 1 12 —1f
e) 2‘ (@imfik ; 2) am; = Eﬁ {(li — ) 21 4 + (i — W)Zrlm 4 +
ms£k
+ (viey, — ») 27‘”“‘+ (riogy~ 1) 2T+ (i — v, )( ST + ST} -

(2 BE {(1 )iy + 85p) +2(1—na}y) 512} . (44)

i Y, ]
{_Cil ’2mf 22 2;lf+512(‘ v >nnf)}

In deducing formula ¢) the chief steps are the following: For the calculation of the first member
of (23) formula (40) is used and in a manner analogous to that described above the following is
obtained :

>0, ij?v )(jofik s 2) = [vi+ i — yi(ef, + 9;1 )N > am—1axe +
Jj oo t

+ (1 + =i — yi(ely + 0ly)) > ant 1 akt + (A — 1) 6y amg -+ (A — i) akn ama—1 +
t
+ (v — yiei,)(zamt aki—1 — amn akn—1) +(Hi — i eéz)(tZ‘am/ akt+1 — am akg) +
t
+ (ki — pioly) > (@mer1 aki—2 + ami—1 aki2) =
t

n
= (i —7i015) > (@mi—1+amir1) aket i+ pi—pi (07, + 095 ) > (ke 1+ aki—1) ame +
Nr———_ ——— — ——

2amcosma t=1 2aqxicoska
4 (i — i) aiey amz + (A — vi) akn amn—1 —
—(vi — 7i0}|) @mn aka—1 — (Ui — Pi 05, ) ami akz +
+ (A — viely) (amake 4 amn akn—1)

in the case of m # k the values of the first two sums are zero. Summing, the first part of e) is
obtained. For the computation of the second part of the formula the same line must be followed
as in the evaluation of a) and ¢) resp.
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Using the formulae a)—e) and the values of 2;‘“ the perturbed eigen-
vectors take up the following forms :

(%)= arrai,

()r=akpr1(Dia; + b)) - a1 (E;a; — ¢),

(03s = au (Frai+ ) + L Gra + (45)

n? ka
+ @y (H; a; + 1) + ags-2 (1; 0, +f1) .

D; — ... — I; are independent of k, each can be separated into sums of products,
the first factor of which contains quantities referring only to the basic unit,
and the second to the data of the series (n, f). The separations for the quantities
needed in the further steps are given in the following.

Di:n_zfAi’_fIh E;=D;+ 2 A;.
n+1 n-+1
F.__.l_(gi _{_Qi)_l___A_f—_[e(BA_,_C.)_}_ch]_}_
i 9 11 22} 7 2‘}/%(71-—}—1) i i i}~
) (46)
A; f#1,
—(B;+C)(n+1-2)),
oy BAOEFI=2. 0T
a m 1 3 . f=1,
Fg:FiZF;"—‘— 1_ — 0 3
491 +4922 fen,
where
A=l — @+ 8, A= Ch— )
2 2
B =t — (S + ) Com - [ntle—— (¢ + 2l |, @)
i =61 — B i = s ?
512 g it 22 " e 22
e:é—{3(n+1—f)2—2(n+1)2—|—3f2——1}.

5. Calculation of bond order

Formulae (45) allow the investigation of the bond order by means of the
perturbation method. The partial bond order belonging to the (ik)-th level
and referring to two neighbouring atoms @ and b, will be defined as follows:

pll = el it (48)
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Taking components a and b, of the vector equations (45) the coefficients belong-
ing to atom ¢ and b occurring in the f-th unit are obtained. The bond order
is obtained by summing the partial bond orders over the occupied levels and
multiplying them with the number of electrons in the individual levels. In the
following only the case in which the basic unit contains an even number of
atoms will be investigated in detail. In it the summation over ¢ runs from 1 to
¢/2 and over k from 1 to n. Summing over k the following two relations are used :

1 n

a2
Zaklakmzélmo 2——“—‘2 2 fo+1—f). (49

ey = sin2 ka n-+1

The bond order is computed including the second-order members.

a) Both atoms are in the same unit

Because of (45) the first-order correction vanishes and thus within the
individual units only the second-order correction is added to the original bond
order. Likewise the third-order correction vanishes too. All this shows that the
bonds within the single units are affected only to a small extent.

b) The two atoms are in different, neighbouring units

In this case the value of the second-order correction is zero.
In the case of a) and b), resp. the correction of the bond order is the
following :

/s A Loy EN < s C i v
@) Apap =2 > {(D?+ E)cich + D (ch b + cibd) + E; (i + ch &)y +

i=1

+ bé by + & ¢ + (chdf + cj di) + (50)
o 2
+ 2cicy[Fi + 'f(n+1"f)Gi]}-
n-+1
B Apw—2 S{D—E)eic+ebi+abiy. * 70 e
=1 b—>f+1

With this result the purpose outlined in the introduction is achieved also in the
case of the bond orders, as the use of formulae (50) and (51) allow the uniform
treatment of the members of the series. After determining the quantities relating
to the basic unit the bond order for any member of the series can be easily
computed with the help of formulae (50), (51) and (46).
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II
The investigation of the polyrylene series with the perturbation method
1. Justification of the use of the method

The members of the polyrylene series can be obtained by the successive
condensation of naphtalene. A few members were investigated with the molecular
orbital method with respect to their physical and chemical properties by Pauncz
and. WiLHEIM [3]. According to their results the method renders the main
features of the spectra qualitatively correctly, however, from the quantitative
point of view strong deviations occur. As for the first transition a too small
excitation energy is obtained and this result is essentially less good than was to
be expected from the usual power of the molecular orbital method.

The second interesting conclusion is that the bond lengths corresponding
to the bonds connecting the single units are the longest among all the bond
lengths occurring in the molecule ; this shows that the connection between the
individual units is essentially weaker than the connection within the units.
Thus, the condition for the applicability of the perturbation method given
in paragraphI.2is fulfilled and this allows a uniform examination of the series.

In the treatment of the condensed aromatic compounds using the molecular
orbital method the following assumptions are made :

The most important physical and chemical properties of the molecule
are determined by the so called w-electron distributions. Their number equals
the number of the carbon atoms. The molecular orbital givenin I.1 is a linear
combination of these n-electron atomic orbitals. Regarding the H;, matrix
elements the following assumptions are used :

a) H,-i=a; b) Hik:ﬁ;

it and k are indices of neighbouring atoms.

Let us divide each equation in the systems of equations (2) by f and introduce
the following notation :

S (52)

In the investigation of PAUNCz and WILHEIM the value of all integrals ( ui Huy dr
corresponding to neighbouring atoms was assumed to be equal.

The perturbation method renders possible the investigation of the problem
of how the eigenvalues and bond orders are affected if allowance is made for
the fact that the values of the integrals ‘ u; Huy dv are different in the molecule,
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as a consequence of the differences in the bond lengths. In the following it will
only be taken into account that the bond lengths corresponding to the bonds
connecting the individual units are greater than the length of the average bond
within the individual units. Consequently, the value of 8 belonging to the former
is smaller than that of the average f,,. In the further steps allowance should
be made for the fact that even within the units the bond lengths are not the
same and consequently the p-values are different. This problem will not be
investigated in this paper.

It follows from the above that our aim is not the full exploration of the
problem, but only the examination of the extent to which the method elaborated
in I contributes to the explanation of the physical and chemical behaviour of the
series.

Let us denote the quotient of 8 and §,, by A. Allowing for the dependence
of § on the bond length, the value 0,8 will be used for A.

2. Symmetry considerations

Each member of the series has the common property of being symmetrical
with respect to the vertical axis of the molecule, the molecular orbitals are
therefore either symmetrical or antisymmetrical with respect to that axis.
This fact allows a simplification in the computations, as the value of 97 and
94 occurring in each quantity and referring to the basic unit is zero, if i and
j refer to two states belonging to different symmetry species. Therefore, the
summations can be carried out separately for the symmetrical and antisymme-
trical levels. In the case of the eigenvalues this means that for a symmetrical
eigenvalue the corrections are calculated only from the symmetrical ﬁilj and '¢9i2j,
respectively and the situation is analogous in the case of the antisymmetrical
eigenvalues.

A further simplification arises from the fact that the basic unit (the naphta-
lene molecule) is symmetrical with respect to the horizontal axis. As the atoms
occurring in the bonds connecting the single units are arranged symmetrically
about the horizontal axis, their coefficients are either identical or have opposite
sign. With an appropriate numbering of the levels

9= (1) Y.
From this follows :
Q'il:@%za 5{12@2-

It is worth while to mention the fact that in the levels 48 of the basic unit
both the values of #{ and ¥4 are zero for all j-s. As a consequence all expressions

5 Acta Physica VI/3—4
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occurring in the perturbation formulae vanish as all of them are derived from
the 97 .s. This consideration remains valid even for the higher approximations,
hence the levels 1§ are not at all affected by the perturbation, the only difference
being that they occur with the corresponding multiplicity : in the molecule
containing n units the levels 4§ and —8 occur n times. This result is in complete
agreement with the conclusions of BRADBURN, CouLsoN and RusHBROKE[4],
who investigated the eigenvalues of the same compounds using RUTHERFORDs
method [5]. From the above it follows that these levels do not contribute to
the correction of the bond orders.

3. Results of calculation

Our results obtained by means of formulae (13) and (16) referring to the
perturbation calculation of the eigenvalues are shown in Table I below. The bond
lengths calculated with the use of bond orders (CouLson’s semi-empirical
method [6]) are illustrated in the Figure.

Both in the case of the eigenvalues and the bond lengths the calculations
were performed for the following cases: a) The strength of the bond connecting
the units is taken to be equal to the strength of other bonds (A = 1). ) The
results of the preceding calculation can be compared with those obtained by the
straightforward application of the molecular orbital method (direct calculation),
where the same assumptions were used. ¢) In the further calculation allowance
was made for the fact that the strength of the bonds between the units is weaker
than the strength of the other bonds. Accordingly, A is taken to be 0,8. In the
case of the eigenvalues the levels corresponding to states which are symmetrical
and antisymmetrical, resp. with respect to the vertical axis are shown separately.

In Table I only the positive levels are shown. The absolute values of the
negative levels are identical with those of the positive levels. The perturbation
preserves the property of the levels characteristic for alternant hydrocarbons.
The levels corresponding to x = 1 possessing the given multiplicity are not
shown in Table I as their value does not change under the influence of the
perturbation.

4. The discussion of the results

The results will be discussed from two points of view. On hand of the
given example it will be examined to what extent the method elaborated in I
is useful for the investigation of series, and further the dependence of the
quantities occurring in the investigation of the polyrylene series on the para-
meter A will be investigated. To judge the applicability of the method we
have to compare the first and second columns of the Figure and Table I, resp.
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Surveying the data of the Table it canbe concluded thatthe eigenvalues calculated
by means of the perturbation method show an acceptable agreement with

the values calculated by the direct method using the same assumptions. In view
of the fact that the calculation of the eigenvalues by means of the perturbation

Table I
Symmetrical levels i Antisymmetrical levels
pert. (A =1) ‘ (1 =1) direct | pert. (2 = 0,8) pert. (A =1) ! (4 = 1) direct | pert. (1= 0,8)
n = 2 perylene
2,5642 ‘i 2,5863 t 2,4990 1,8345 1,8794 1,7786
2,2030 [ 2,1819 ‘ 2,2100 1,5581 1,5321 1,5576
1,6195 ‘ 1,5936 1,5566 1,0581 1 0,9575
0,9809 ‘ 1 1,0458 0,3345 0,3474 0,3787
n =3 terylene
2,6650 2,6614 2,5690 1,8973 1,9419 1,8280
2,4324 2,4550 2,3857 1,7633 1,7709 1,7110
2,1442 2,1299 2,1604 1,5065 1,4970 1,5154
1,7677 1,7171 1,6726 1,2135 1,1361 1,0810
1,2656 1,2703 1,2790 0,7633 0,7092 0,7110
0,8647 0,8895 0,9502 0,1903 0,2410 0,2624
n = 4 quaterylene
2,6907 2,6902 2,5978 1,9166 1,9659 1,8449
2,5613 2,5666 2,4861 1,8633 1,8649 1,7889
2,3379 2,3669 2,3073 1,6925 1,7044 1,6517
2,1061 2,1010 2,1302 1,4694 1,4780 1,4871
1,8458 1,7837 1,7330 1,2783 1,2053 1,1342
1,4659 1,4377 1,4387 1,0015 0,8914 0,8992
1,0713 1,1004 1,1231 0.5543 0,5473 0,5414
0,8130 0,8359 0,9064 0,1077 0,1845 0,1978
Table I
The wavelength corresponding to the first allowed transition (mpu)
direct (A =1) pert. (1 = 0,8) experiment
perylene ....... 621 564 438
terylene ...... 893 818 516
quaterylene 1168 1087
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method is very simple, it is worth while to use this treatment for a rapid appro-
ximative determination of the level-system of series.

The agreement in the case of the bond length is somewhat weaker but
acceptable. The difference between the two results calculated by the two methods
is not greater than the error occurring in the present experimental determination
of bond lengths. The method is especially suitable for the investigation of the
bond length of bonds connecting units as the calculation is relatively simple.

In making a comparison one must take into account the fact that the
case A = 1 is disadvantageous for the convergence of the perturbation treatment,
in the case A <1 a better agreement can be expected. The other advantage
of the use of the perturbation method consists in the fact that it renders easily
possible the examination of the dependence on A of the quantities characterising
the molecule, i. e. the dependence on the strength of the bonds connecting the
single units.

From this point of view the behaviour of the polyrylene series can be
examined by comparing the second and third columns of Table I and the Figure,
resp. For the eigenvalues it is found that for A = 0,8 the distance of the highest
and lowest occupied levels decreases as compared to the case A = 1. The levels
get closer to each other and simultaneously the distance corresponding to the
first allowed tranmsition increases. In Table II the wavelengths corresponding
to the first allowed transition are summarized.

From the data it can be seen that parallel to the increasing of the bond
length of the bonds connecting the units the wavelength corresponding to the
first allowed transition decreases, that means a better result is obtained than
in the calculation of Pauncz and WiLHEiM. The magnitude of the decrease
is, however, not yet big enough, because even in this case the wavelength of the
first transition turns out to be too great. This shows that other factors besides
that mentioned above have to be taken into account, in order to get an acceptable
agreement with the experiment (configurational interaction, etc.)

The calculations relating to the bond lengths show that the bond lengths,
mainly those within a unit, are not much affected by the perturbation.
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APPENDIX

In the investigation of the eigenvectors using the perturbation method the following
SuIS OCCUr :

n
Nl N OkAOmu@mf i

. P a =
i =y (coska — cos ma)’ ’ n+1
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Their computation can be reduced to the evaluation of the followings sums :

n
(f)Ai N cos mf

rrAz/;'k (cos ka — cos ma)’

(4.1)

In view of the fact that, beside the completion of the above-mentioned task, their use makes
possible the evaluation of some quantities occurring in the perturbation treatment of the polyenes,
their investigation seems useful.

From their definition the following properties follow :

@) W _Wyf b) O gn+1—f _ & (—1)" cos mfa
ko ke k h ( cos ka — ces ma)i
m#k

c) (i)/l,];_l — 2 cos ka(i)/l,{ + (i)./li"'1 = — Z(i_l)/l"i
In the latter case the following identity was used :
cosm(f — 1)a — 2 coska cos mfa + cos m (f + 1) a = — 2 (eos ka — cos ma) cos mfa .
With a) and ¢) is obtained for f = 0
DA} —coska (P49 — DA0 (4.2)

It is sufficient to evaluate (DA% as on this basis (knowing the value of " DAR) from equation(2)
DAL, further using c) all others ean be successively evaluated.

1. @40 — 2 cosmb-a=n—1, (4. 3)
m#Eh
n —1—coskfa, if f is even,
(0)A£ = 2 cosmfa — cos Kfa = (4. 4)
= —coskfa , if f is odd.

2, For the evaluation of (DAY the fact is used that cos k a is the k-th root of the Tscheby-
heff polynomial of n-th degree, of second kind.

_sin (n4-1)9
Un(cos?) = s (4. 5)
With the use of the factored form of the polynomial
n
Un{cos & = II (cos ¥ — cos ma) (4. 6)
m=1
n
U/
2 et emma O — &) 4.
is obtained, where
1 1
g(cosﬁ):m{cosﬁ-—(n—kl)cos(n—I-1)19-@7}. (A. 8)
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(The derivation occurs w1th respect to x = cos 9.)
On the basis of (7) (DAY can be obtained as follows :

D4 = lim (g ( (cos#) — L _ ) . (4. 9)

“cosd — cos ka

The prescribed passage to limit can be performed with the repeated application of I’'Hospital’s
rule, the result being:

(1) 40 __ 9 cos ka
A - 2 sin? ko (4.10)
On the basis of equations (2), (3) and (10):
Mt cos2 ka ﬂ
A= 2sintha (4.11)
In the following we shall verify that for ()4}, the formula is valid :
Waf sl_n kfa coskfacoska + A
A, =[f—(m+1)sgf] + PPy s (4.12)
where
2 cos ka , if f even, s 1, >0,
h = sgf=1! 0, if f=0,
2, if £ odd ; | -1, <0.

For f= 0 and f = 1 formula (12) is the same as (10) and (11). To prove it one must only show
that formula (12) satisfies equation ¢}. Let f be even, then the following relation must be fulfilled :

(I)A]}:‘.l — 2 cos ka (I)A,{ + (I)Afk"'1 =24 2coskfa .

Substituting (12)

[f — 0+ Dogfl

{sink(f— 1)a — 2 cos ka sin kfa + sink(f + l)a} —
== 0

_ snk(f— l)g;ciink<f+ a + ;;:1’;; {cosk(f—l)a—2coskacoslgf‘a+coek(f+l)u}+
=0

4 — 4 costka
Sty <2 2eos Kfo

is obtained.
Thus the correctness of the formula is proved. In a completely analogous manner the proof

can also be performed in the case of odd f
3. The calculation of (3)4; occurs in a manner analogous io the procedure given in detail

above. By means of equation (7):

n

5‘ ———— — g’ (cos B) »

o= (cos ¥ — cos cos ma)?

(4. 13)

)40 _ 1z o —_ —’1——‘
Ay = 01i)nllm{ g (cos #) (cos & — cos ka)”'} )
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The limit operation gives the following result :

@ 40 _ 412+ 17 11
k= " T2emika Tsintha - (4.14)
Using equations (2), (10) and (16) the following is obtained :
@4t 4(n+1P -1 _ llcoska
Ak 12sint ke " ka 4sintka (4.15)

The formula for (PA] for arbitrary f is as follows :

sy A0+ 10— 12t D gf 1 677 + 53 O
k= 12 sin? ka cos kfa Sin® kat cos ka sin kfa
_ Wecoskfa | 2eos(|f|—Dka 0
“4sintka sin ka +h®

3 4 cos2ka . .
— V*_;—E'n‘ o if fis even,
h(® — 2 con k (4. 16)
— _SYI%E“— , if  fis odd.

The demonstration of formula (16) occurs in the same manner as that of (12) above. Substituting
F=0and f = 1, equations (14) and (15) are obtained. In the further steps using simple trigono-
metrical relations it can be proved that (16) satisfies the following equation :

DAL _ 9 cos ka DAL 4 PASHT - _ gy

On the basis of (12) and (16) all 2% 2/ occurring in the second-order perturbation calculation can
be calculated. The results are gwen below.

(n+Dsgf—2f=¢g

- 1
DM 1{(5*1)“kf+1—(g+1)“kf—1}’
n+ (4.17)
Z}If_ Wnnf ‘"ng{akf-{—l—‘akf—l}
: _ 1
2 i2f+2’1m if i {(g— 8)arf 2+ 2ary— (g + 3)akf—2} ,
(4.18)
S P U gp{agea—aya}
& Al P 1 )
2 21f | 5n Inf __ 1{(g—_1) akf+2‘2akf—(g+1)akf—2},
n+ (A.19)
:w ?lf _ Ztlp—lnf = sgf{ akf+o — akj‘—2} .

ES N 3 sinka }akf’ (4. 20)
22 = 2 =12y |

2;1f+ 1nnf 1 ]3(n+1—f)3—2(n—1—1)2 3f2-—1
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{IPMMEHEHUE METOMOB MAJIbIX BO3MVYIIEHWUMA [PM KBAHTOBO-XWMMH-
YECKOM HCCJIIEQOBAHHWHM CHCTEM, COCTOAIUMNX W3 TOXXOECTBEHHbLIX
YACTEHN

P. MAVHL]
Peswme

B palore AaeTcst MCCHEAOBAHME MOJIEKYJDBL, COCTOAIEH U3 TOWAECTBEHHBIX 3JIEMEH-
TAPHBIX efMHKMI, METOAOM MAJIbIX BO3MyIleHuil. C MOMOILBIO paCCy KACHHH, OMMPAOWUXCA HA
NPOCTOH BAPHAHT METONA MOJEKYJISIPHON TPACKTOPHH, YAAETCS PA3AENUTh PE3YILTAT HA CyMMy
TIPOM3BENCHNH, KAK B CTy4ae 3HAUEHH S SHEPTHH, TAK H NOPSAKA cBsidn, ONMH U3 COMHOYKNTENEH
COREPIHKUT TONbKO TAKHE [AHHBIE, KOTOPHIE OTHOCATCS K OCHOBHOMY DJIEMEHTY, @ JIPVIOH COM-
HOMHUTENb 3aBUCUT OT AAHHBIX psfa.

Bo BTOpO#i YacTy MoKasana NPUMEHUMOCTE 3TOIQ METOJA HA NPUMEPE [OJMPHIEHOBOTO
psiga. Pe3yJsibTaT pacyera N0Ka3bBaEeT, YTO METO/l IPUMEHHM ¢ YCNEXOM H C €T0 MOMOILBIO MOYKHO
MCCNENOBATh, KAKUM 00DPa30M 3aBUCST XapPAaKTEPHCTHKN PSUIA 0T NPOYHOCTH CBSI3H MEXAY
OTAENBHBIMUA 3JIEMEHTAMH.



