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The paper deals with the investigation of molecales built up from n identical units using 
perturbation considerations. By means of considerations based on a simple variant of the mole- 
calar orbital method we succeeded both in the case of energy values and in that of bond orders 
in separating the resalts into sums of products in which the one factor contains quantities referr- 
ing only to the basic unit, and the second depends on the data of the series. The second part of 
the paper deals with the calcalations relating to the polyrylene series in order to illustrate the 
usefalness of the general method. According to the resalts of the calcalations the method can be 
suecessfally applied and by its means it becomes possible to investigate the dependence of the 
quantities characterizing the series on the strength of the bonds connecting the single units. 

Introduction 

In  theoretical chemieal investigations cases frequently oecur, in which the 

members of a series of compounds can be obtained by  aid of successive conden- 

sation of a given unit. Such problems ate met  with in the theoretical examination 

of polymers, further some series of condensed aromatic compounds also belong 

here ; thus for instance the members of the polyrylene series can be obtained by 

successive condensation of naphtalene, likewise that  of anthracene yields the 

members of the polyanthene series, etc. For the theoretical investigation of these 

kinds of problems a simple variant  of the molecular-orbital theory (linear combi- 

nation of atomic orbitals) appears above all suitable. For the present, on account 

of the complicated molecular structure, there is namely not much hope for the 

application of the rei inements  of the method to the higher members of the series, 

on the other hand according to experiences made so lar the main regularities 
ate reproduced quite well also with the above-mentioned version of the molecular- 

orbital method. Unfortunately,  owing to the high order of the determinantal  

equation occurring, the application of even this simple method becomes very 
tedious when the higher members of the series are investigated. Therefore it is 

desirable to work out a t reatment  in which the calculations relating to the indivi- 

dual members of the series are reduced to those referring to the basic unit. For 
this purpose the use of the perturbation method seems most appropriate. 

The above-mentioned problems were first successfully investigated by 

COULSON AND RUSHBROKE [ 1 ] .  Their t rea tment  refers to the case in which 
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there is a connection between the repeating units only in one place. This results 
in an equation suitable for the determinat ion of the energy values. In the following 
the same problem is dealt with using the per turbat ion method. 

The case investigated by  us is more general in so far as it also extends to 
multiple linking of the units, fur thermore formulae are developed for the deter- 
mination of the energy values as well as for the coefficients. On the basis of the 
lat ter  the computat ion of the bond order and bond length, resp. becomes feasible. 

The paper is divided into tw0 parts. In the first the general method is elabo- 
rated. The results obtained here are very  general and suitable for wide-ranging 
application as no special assumption is made regarding the individual units. 
Hence they  are valid even in those cases when not  only ~r-electrons play an 
impor tant  role within the unit  (the problems of polymers). In the second par t  
of the paper  the t rea tment  of the polyrylene series is presented. This serves on 
the one hand as an illustration for the use of the method,  and on the other allows 
the investigation of some interesting properties of the series. 

I 

The perturbation method for the treatment of systems built up from identical units 

1. B a s i c  a s s u m p t i o n s  and  notat ion 

The one-electron funct[on extending over the whole molecule (molecular 
orbital) is assumed to be the linear combination of functions centered on the 
individual atoms (atomic orbitals) 

~i = cli u l  -4- c2i u2 + . . .  ~ cni Un , (1) 

where ~vi is the i-th molecular orbital and uk represents the electron function 
belonging to a tom k. The determinat ion of the coefficients is carried out with 
the variat ion method by  minimizing the energies of the individual orbitals 
according to the following secular equations : 

where 

.~~ (Hik  - -  s Sik)  cik = O,  i = 1,2 . . . . .  n ,  (2) 
k 

Hik ----- S u�91 H u k d ~ ,  Sik = y u*i ukdT: . 

H represents the Hamil tonian derived on the basis of the effective potential  acting 
upon the single electrons and s the energy of  the individual molecular orbital. 
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In each orbital two electrons with opposite spins can be accomodated,  the filling 
up of the orbitals takes place in order of increasing energy. 

Regarding the matr ix  elements the following simplifications are used: 
a )  Srr = 1, Ssr = 0 (the overlap integral is taken to be 0). 
b) Hik differs from zero only in the case when i = k, or when i and k are 

indices belonging to neighbouring atoms. 
These simplifications allow an al ternative discussion of the p rob lem:  
Let  us consider the coefficients of the i-th molecular orbital (cai, c2i, �9 �9 o ,  C n i )  

to be the components  of ah n-dimensional r ec to r  and denote the corresponding 
vector  with ti. In  view of the above-mentioned simplifications the secular 
equa t ions  (2) are equivalent to the mat r ix  eigenvalue problem as follows : 

Hri = ~i~i �9 (3) 

This method of t r ea tmen t  proves to be very  useful in tlke investigation of systems 
built  up from identical units when using per turbat ion  calculation. 

2. The perturbation calculation 

Considera  series, the members  of which can be obtained b y  the repeti t ion 
of a given unit.  The connection between the single units be as follows : 

a) The i-th unit  should be joined only to the preceding and the subsequent 
unir. (As an exception serve the first  and the last units which are joined to the 
second and the last bu t  one, resp.) 

b) The connection between the units following each other  be of the same 
structure.  

More detailed, the lat ter  means the following. Let  us number  the atoms 
of the first  unit  f rom 1 to e. In the following units the same numbering is used, 
the upper  index indicating only the unit  involved. Connection of identical 
s t ructure means tha t  the joining between the units following each other is as 
follows : 

f - - 1  f f-4- 1 

t ~ 1~( s i i  s 1 SP r t SP r p s ~ r t 

�9 Srr r "  s tr F fl , s ~r r ~r 

(4) 

The matr ix  of the n-th member  of the series occurring in equation (3)has  
according to the above the following for ro :  
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H = 

A B 

~ A  B 

A B  

~ A  B 

A B 

A 

(5) 

where, A, B,  B mean matriees of  order e. A represents a matr ix  of a single unit ,  
B corresponds to the connection between units f and f +  1, its non-vanishing 
elements are : Hrs, Hr,s, Hr,,s . . . . .  etc. B corresponds to the connection between 
the units f and f - -  1. This is the transpose of B,  its non-vanishing elements ate 
Hsr Hs,r, Hs"r" etc. The eigenvectors al . . . . .  ae of the matr ix  A ate vectors 
of dimension e, their  components  being al {Cli , c2i . . . . .  Cei} and the correspond- 
ing eigenvalues ii. In the following only those cases will be investigated in detail 
in which the basic unit  has no degenerate eigenvalue. The calculations can be 
easily generalized for the case when some eigenvalues are degenerate. 

For  matr ix  of the unper turbed  problem tha t  mat r ix  should be chosen 
where B and ~ ,  resp. ate zero matrices. F rom the physical point of view this 
means t ha t  no connection between the individual units is assumed. The eigen- 
values and eigenvectors of this mat r ix  can be given at  once : its eigenvalues ate 
identical  with those of the basic unit  with the difference tha t  each eigenvalue 
ei is n-fold degenerate, n l inearly independent  eigenvectors belong to it. By  
choosing the la t ter  we have a high degree of arbitrariness, as, if n l inearly inde- 
pendent  veetors belong to the i-th eigenvalue, any  l inear  combination o f  them 
is ah eigenvector as well and  belongs to the same eigenvalue. I t  is approp¡  
to choose the  n linearly independent  eigenvectors as follows : 

I a~] 
!0  

lo 
O 

0 

Ol 

ol 
ai 

0 

0 ' 

0 

0 

�9 �9 �9 l ~ ~ . r l  = 

o~ 
0 

0 

0 ' 

0 

(6) 

r~l, r~ . . . ,  ron are vectors of dimension n. e.  Each  " c o m p o n e n t "  occurring 
in formula (6) represents a r e c t o r  of dimension e (the corresponding eigenvector 
of  A). 

Let  us consider the diffeience between the original matr ix  and tha t  corre- 
s ponding to the unper turbed  problem to be a per turba t ion  matr ix.  
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p __ 

B 

B 

B 
B B 

B 

(7) 

In  order tha t  this really represents a perturbat ion it is necessary tha t  the connec- 
tion between the single units should be looser than  those within the single units. 
Thus the non-vanishing matr ix elements of B and B ate smaller regarding their 
numerical values than  the elements of matr ix A. 

On the basis of (6) and (7) the following relation is easily verified : 

where 

! ( a / B a i ) ,  if  h - - - - -k - - l ,  

0 0 ~ (Ijh Prik)  = (a/B cti) if h k + 1 

] 0 if { h=;&k-- 1, 
[ ' h ~ k + l ,  

(Ct i B Qi) = (Cti B r = S Cri Hrs Csi =--- g i ,  

(8) 

(al B aj) = (aj B ai) = ~ Cri Hrs csj = ~[J - 0 ji , (9) 

(ftj B Cti) = (ai B ftj) = S C s i  Hsr Crj =-- Zg{ i -  z$i2 j �9 

3. The  examinat io 'n  o f  the per turbed eigenvalues 

In the first step the exact zero-order coefficients are determined together 
with the first ,order energy correction which is evaluated on the basis of the 
usual secular equations 

// 

po s ----- , ~  a/, L~ _~~~ a~/[(r~ Pr  ~ -- ~Ÿ �91 = 0. (10) 
l==l 

Using (8) and (9 ) i t  follows tha t  (r,~176 is zero, except when s = l +  1 and 
s = l -  1, resp., in which case its value is ~i. The secular determinant  is the 

following 
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- - S Ÿ  ~i 

7i - -eŸ 7i 

7i - - eŸ  7~ 

Yi - - eŸ 7~ 

7i - -eŸ 7~ 

~i - - S Ÿ  

= 0 .  (11) 

The secular de terminant  (11) and the corresponding secular equations resp. 
are well known (they occur for instance in the problem of the linear chain 
polyenes). The zeros of the determinant  and the coefficients of the system of  
equations can be given at  once : 

t 
eik = 2 Yi cos k a ,  (12) 

V 7~ �9 2 sin sl a ,  a - -  (13) 
a~l = n q- 1 n ff- 1 

In  the f irst-order approximat ion the level corresponding to the i-th eigenvalue 
is split into n levels, the magni tude  of the splitting is 27i (i. e. the distance o f  
the highest and lowest levels originating from the i-th level). I t  is worth wile 
to ment ion tha t  a~l does not  depend on i, accordingly the upper  index is omi t t ed  
in the following. 

The second-order energy correction is as follows : 

eik = (p~ k Ppj~ 
j # i  8i - -  e1 t = l  

Using (10) and (13), fur ther  taking (8) and (9) into account  

ti n /1 
(po k p p o )  = ~" ~_. akua,v (r~176 = v~i; ~~" ak v - l a ,  v + 

u= l  v=l  v=2 

n - 1  
q-#igJ ~~' a k v § l al v = v~ i i , , ~  ak v - t al v q-  v~i2 j , ~  ak v § l a l ~, 

~'=1 v=l  v=l  

(14) 

is obtained.  
(In the last t ransformat ion the fact is used tha t  ako = a k n + l  = 0.) 

Consequently 

/2 n n ti 
,~~" (~30kppo/) 2 =  ~ .~  , ~ "  ~ .~  {(vailJ)2akv'laKw-1 -~- (t,gij)2akv+lakw+l -q- 
l=1 1=1 v=l  w=1 

"~ Of j ?~i2J (ak v - 1  ak  w + l  -4- ak v§  ak w-l)} a,~ a, . .  
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/1 

Summing over I with given v and w and taking into account tha t  ~.7 al,, alw = ~,.~ 
/ = 1  

the following is obta ined:  

~1 n TI H 

~, (po k ppo,)2 (~ij)2 ~�91 a 2 " _~ = k, ,- ,  q-  (a'~')2 ~~.~ a2,,+, q- 2 a{JO~ ] . ~ ' a k , , - l  akt,+l : 
1 = 1  v = l  v = l  v = l  

= (1 - -a2n  ) (~q 2 + ( 1 -  a2,)(0~J) 2 + 2 0~ j 0~ j ( 1 -  n a 2 , ) .  

Let us introduce the following notation: 

j#~ ei - -  si i 2 . 

2 2 (namely = - -  (--1 k) akn~l--]) ,  the  In  view of the fact tha t  akl = akn ak] 
second-order energy correction is as follows : 

sik" = (1 -- a2z) (~~, q- ~~2) q- 2 (1 - -  na21) ~,2 ~' = 
(16) 

[1 2 sin2k n ~ ) [ 2n ~ 1 ) "  . . . .  '~12  �9 n q- 1 i (~~1 -}- ~~2) -}- 2 1 sin" k 
n-4-1 n 

In  the above resuhs it is essential tha t  both in the first-order and in the second- 
order eigenvalue correction we succeeded in separating them into factors ,  in 
the first of which only quantities referring to the basic unit  occur (Yi, ~~<x), 
whereas in the second only data characterizing the series. 

4. E x a m i n a t i o n  o f  the per turbed  eigenvectors 

For the investigation of the bond order and the bond length, resp. the 
perturbed eigenvecters are needed. For the examination of the bonds connecting 
the single units ir is sufficient to investigate the first-order perturbation,  however, 
for the calculation of the bond orders corresponding to bonds within the units  
also the second-order perturbation calculation is needed. The per turbed eigen- 
vectors in the second-order approximation are as follows : 

rŸ = ~o~ + ~~~ + G ,  (17) 
where 

/2 e n 

Pik ~- ~ f ,  ( im / i k  ; 1) p~ q- ~ ~,] ( j m [ i k  ; 1) P~m , (18) 
m - ~ k  j # i  m = l  

n e n 

p2 K = ( i k / i k  ; 2) p~ k -k ~" ( im]ik  ; 2) p~ m q- ~ ;  ~ ( j m ] i k  ; 2) p~ (19) 
m~Sk j # i  m=l 
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T h e  coef f ic ien ts  occurr ing  in f o r m u l a e  (18) and  (19) are  accord ing  to  CoRsoN [2 ] 
the  fol lowing.  

( i m / i k ; 1 ) - - - - ~ ~  (po p p o )  o p  o (20) 
ir t~~ ( ~ ; - -  ~i) (~;~ - -  ~;~) ; 

( jm/ ik  ; 1) = (p~ PP~ ,- (21)  
8 i ~ 8 j  

(ik/ik ; 2) = - -  - -  1 ~ 2 (uv/ik; 1)2; (22) 

2 ~ . ~  I .o  p•o 2) (im/ik ; 2) : wim ~yv) (jv/ ik ; 
j # i  . c=l  8 i k -  '~im 

eŸ (im/ik; 1) 
�9 p 

8ik  - -  Eim 

; (23) 

2 2  0 0 1) , 0 0 (im/ik ; 2) = - -  (Pjm Pp,~.) (uv/ik ; - -  e,k.(Pjm PPtk) 
~ r  ~,=1 ~i  - ~i (~j  - ~i)  2 

(24) 

O f  the  r e c t o r  equa t ions  (17) - - (19) ,  which  co r r e spond  to  vec to rs  of  d imens ion  
n. e. le t  us consider  those  p a r t s  which  co r respond  to  t he  f - t h  c o m p o n e n t s ,  t hese  

will be  r e c t o r  equa t ions  of  d imens ion  e. 
I n  o the r  words  t h a t  r e c t o r  will be  i n v e s t i g a t e d  t h e  c o m p o n e n t s  of  which  

are  t he  coeff icients  be longing  to  the  a t o m s  of  the  f - t h  unŸ 

where  

" = ( P i k ) z ,  (Pik)1 + 2 (~ik)f ak! ai -4- 1 

I = " " ( jml ik ;  1) aros a j ,  (Pik)J ( tm/ tk;  1) aro ai + 
j : / : i  m = l  

(25) 

(26) 

2 (jm/ik; 2) gr, aj (27) (Pik)f = (ik/ik;2) ak [+  "~ ( imq cti + 
m # k  j ~ i  . 

In the evaluation of the sums occurring in formulae (26) and (27) the procedure given in 
detail in the preceding paragraph for the evaluati0n of the second-order correction of the eigen- 
values is followed. The matrix elements (~~176 ate given on the basis of equation (14). In the 
foUowing steps, we succeeded using formulae (20)--(24), in separating the summing of each terna 
into two parts, the first containing only the quantities relating to the basic units, the second 
those related to the aik-s 

V~ 2 aik = A- 1 sin i k - -n+ l  
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In  the sums referring to the basic unir the  following notat ions ate used : 

ai~ J -  oij (28) 
e i - - e j  

e 
i .. ij 

O~X = ~ .  a~ a l  , (29) 
j ~ : t  

e 

;; ~' d" ~~; (30) 
u # t  

~.~ .... e e e~ j o~u e~j (31) 

Using the definition of v~~; - s  the following identities are easily verified : 

i i ~- ~ i  i i m ~ i  i i 
T I21  : T 2 1 2  ~ T 1 2 2 : T 2 1 1  , T221 : ~ 2 2 2 - ~  ~ i  �9 

i i 
T I I  2 : T l l  I ~ vi  �9 

(32) 

The sums relat ing to the aik-S can be divided into two groups : the sums oeeurring in the 
f i rs t  group can be evaluated simply by utilizing the  orthogonality properties of the  aik-s 

t n ) , ~  ait akt : (~ik �9 
t t= l  

The sums oecurring in the  further  steps a r e a s  follows : 

tl tl 

~ _  am, t - I ak, t -- I Jmk -- amn ; ~ "  aro, t + I ak, t + I t~mk aro1 ak 1, akn 

t= l  t= l  

ti 

. ~  (am, t--! ak, t+ l @ aro, t+l ak, t--f) = 2 cos 2 k ~ . d m k  --}- akl aml "Je amn akn , 
t = l  

n 

~__~ (am, t - -1  ak, t + 2 -~ am, t + I ak, t -- 2) 3ka~mk@ ak2 ~- n -- ] �9 2 COS aro! ak~ amtl 

t = l  

"the other group eonsists of the following type of sums : 

Z ~ l ~ f =  ~ ak,, aro, ctinf (34) 
i (cos ka  --  Cosma) i " m ~ k  

The  computat ion of the lat ter  is given in detail in the Appendix. 
AII other sums occurring in the computat ion can be reduced to the above-mentioned ones 

utilizing the orthogonali ty properties of the aik-s and other simple trigonometrical relations. 
Coneerning the  sums oecurring in the  per turba t ion  ealeulation of the eigenvectors the 

following resuhs ate obtained by means of the method outlined above : 

~a) ~_~( im/ ik ;1 ) ,  a n f =  __ ~ill~.~l'~nnf ~22i ~"dl~-'llf ~_ ~12 
m ~ k  
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For  the  computa t ion  the  following relat ion was used : 

v ~ aro t -- 1 alt -~- ~2 j aro t + 1 alt �9 ( ~o m p~o)( ~o, p~?.) 

~… als ak s + 1 ~- ~ als ak s - -  1 : 
s : l  

t i  

: (v~~J) 2 ~_~" a m t - I  ak t - I  + 
t = l  

/1 t i  

(~.~J)2 ~~" amt+l akt+l  -J- ~iJ~~J ~ TM (amt +-] akt--! -~- amt--]  a k t + ! ) .  
t= l  t= l  

t i  t i  

b) ( j m / i k  ; 1)  = ai2J ~ amt ak,+l -4- a~J X a.nt akt--I , (36) 
t= l  t=!  

where  

where  

~ "  ( j m / i k ;  1) amf a j  : akf  +1 bi -~ a k f - 1  ~i , 
j~=i ~m=l 

(37) 

e e 

j # i  j # i  

= - -  ~12} ak] (39) ( i l z / i k ; 2 ) a k f  1 { ( 1  - -  2 i i 2(1_na21) i akl)(  Q 11 + ~22) + 

The deduc t ion  of  this pa r t  is essentially identical  wi th  the  procedure  outl ined for the  second- 
order  pe r tu rba t ion  calculation of  the  eigenvalue. 

] f ~mk (JziŸ -[- i j  iJ d) ( j m / i k  ; 2) - -  ei e~ I ~z21 - -  7/[Ctl ~- ai2j] ) -~  

i] i j  t i 
+ aro, a~l 0'1~ - -~2,  ) + am~ o~~ (~22 ~12) + (40> 

.. i i  
4- ~ ' a m s a k s - - 2 ( : t i l  j - - 7 q 2 3 7  ) +  X a m s a k s + 2 ( : t 2 U 2 - - T i a 2 ) }  �9 

s 8 

W i t h  the  m e t h o d  outl ined in a) the  f i r s t  member  of  (24) is as follows : 

iJ ~~~" am s + l ak s + l -~ 
ei - -  ej I s s 

iJ ~~~~ ams--I  aks+l~ �9 
s s t 

The second m e m ber  : 

2 7 i c ~  "" amtak: - !  + v~i21~Ÿ amtak t+l  . 

Using the  following relation : 

2 cos k a . a k f  = akf+ I + ak]--] 
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and  (33) the above result  is obtained 

where : 

, ~  ( j m / i k  ; 2) arnf ay : a k l b i  q- a k f - 2  ni -~ a k f + 2 ~ ,  (41) 
j # i  = 

s "" e i" e "" qJ J ~p J %. L v: ~~ ,  ~ . : ~ .  ~~ .  (42) Ctj ~, ni : ~  ~7- ~ 8j 8i - -  8j ~Ÿ --- 8i - -  ~j j~�91 j ~ i  j # i  

I ii - - ~ i ]  . l . i J  , iY 
~12 ~-,~21 - -  ~'t k=l ~- a2 ) , if f r  

i ii �9 iJ if f = i  , (43) ctgiJ ~ ~12 --  ~'t a2 

I~i2J " iJ if f =  n 
- -  7 ~ a l  , 

V u, Z Zj can be given in  an analogous manner ,  however, their explicit form is no t  needed in the 
following. 

m # k  

_ i \ ,  ~ - ~ 2 1 f  ~,~~n--1 n f ) }  _ 
~ -  ( ~ i O i l -  ~i) ~ 7 - - 1 n f  ~ - (7iQi92 Izi) ~ 2 1 f - ~  - ( 2 i -  t i  Q 1 2 ) [ , ~ l  -~ ~.wl 

1 {(1 2 i i ( 1 - - n a k l ) r  �9 (44) (2~i)2 - - a k l ) ( ~ l l  -[- ~22) ~- 2 2 i 

~211f  i "~  11f "~~nnf~ 

I n  deducing formula e) the chief steps are the following: For the calculation of the first member  
of (23) formula (40) is used and in a manner  analogous to tha t  described above the following is 
obtained : 

~ ' r  p ,  0 2) ~i(Q[1 -~- i )l  , ~  amt-1  akt -~ , ~ ;  'P im Pjv ) ( j v / i k  ; = [vi-~ ~i - -  ~21 
j v t 

"4- [t~i + x i -  7i(~12 @ Q22)] 2 "  ant +l akt -~ (2i - -  bti) akl am~ -~ (2i - -  vi) akn gran-1 @ 
t 

-~ (Vi i i - -  aml ak2) -~ �9 - -  7i ~11 ) ( , � 91  amt a k , - I  - -  amn a k n - I  ) @(Pi  - -  7i Q 2 2 ) ( , ~ a m t  akt+l  
t t 

-[- (2i - -  ~ i 0 1 2 ) 2 " ( a m t + l  akt--2 -[- amt--I akt+2) = 
t 

n 
i 

: ( x i - - 7 i e l 2 ) ~  (amt - - l - [ -amt+l )  a k t + ( v i - ~ - : t i - - ~ i  [Qil-[- i Q22 ] ) , ~ '  {akt + 1-[- akt-- t!  amt -~- 

2 a m t c o s m a  t= l  2 a k t c o s k a  

@ (2i - - / t i )  aal am2 -~ (2i - -  vi) akn amn--I - -  

--(~i - -  ~tQll' i ) a m n a ~ n - - l - - ( q 1 6 1  

+ (~i - r,  4 2 )  (.r.~ak~ + a,.~ak~--O 

in  the case of m # k the values of the first two sums are zero. Summing,  the first par t  of e) is 
obtained. For the computa t ion  of the second part  of the formula the same line must  be foUowed 
as in the evaluat ion of a)  and c) resp. 
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Using the formulae a)  e )  and the values o f ~ ~  zf the perturbed eigen- 
vectors take up the following forros : 

(P~ : aks al ,  

(P~k)f : atcf+l (Di ai A- �91 - aks -x  (Ez al - -  ~i) , 

2 (F i  al + ~z) -~- ak!  Gi czi -}- 
sin 2 k a  

~- akf  + 2 (Hi  ai" -~" fti) -~- akf  - 2 ( l i  Oz "2]- ~') �9 

(45) 

Di ~ �9 �9 �9 - -  I i  ate independent of k, each can be separated into sums of products, 
the first  factor of which contains quantities referring only to the basic unit ,  
and the second to the da ta  of the series (n,f) .  The separations for the quantities 
needed in the further steps ate given in the following. 

Di  - -  n - -  2 f  A i  - -  - ~ i ,  E i  = Di  -}- 2 / 1 i  . 
n + l  n q - 1  

F i  -- 1 (e~, -~- e~2) " Ai [e ( B  i -F- C,) -4- 2 Ci] ~- 
2 2 72 (n + 1) 

A; (Bi + Ci) (n -f- 1 -- 2 f ) ,  

o )  <n) F . ~ l  . 3 i 
Fi : F i  : ' 4 ~ Ÿ  - ~  4 - 2 2 2 '  

f:# 1, 
f - - f i n ,  

f = l ,  

where 

~ i  - ~i 1(~~~ + ~{2) 
- -  '~12 - -  

1 

B, = r237 + 2 ( ~ , ,  + 22), 

(46) 

- -  n ~ i 2 - -  ~~I q- ~~2 , (47)  
n q - 1  

1 { 3 ( n + l - - f ) 2 - - 2 ( n q - 1 ) 2 + 3 f 2  1} . 
3 

5. Calcula t ion  o f  bond order 

Formulae (45) allow the investigation of the bond order by means of the 
perturbat ion method. The partial  bond order bclonging to the (ik)-th level 
and referring to two neighbouring atoms a and b, will be defined as follows : 

pi~ = c~ c~ k . (48) 
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Taking components  a and b, of the vector  equations (45) the coefficients belong- 
ing to a t o m a  and b occurring in the f - t h  unit  are obtained. The  bond order 
is obtained by  summing the par t ia l  bond orders over the occupied levels and 
multiplying them with the number  of electrons in the individual levels. In  the 
following only the case in which the basic unit  contains an even number  of  
atoms will be invest igated in detail. In  ir the summation over i runs from 1 to 
e/2 and over k f rom 1 to n. Summing over k the following two relations are used : 

2 2 a2 2 akl akm ~- O,m, k; __ - -  f ( n  -4- 1 -- f )  �9 (49) 
K=I ~=1 sin 2 k a  n ~ - I  

The bond order is computed including the second-order members.  

a) Both atoms are in the same unit 

Because of (45) the first-order correction vanishes and thus within the 
individual units only the second-order correction is added to the original bond 
order. Likewise the third-order  correetion vanishes too. Al1 this shows tha t  the 
bonds within the single units are affected only to a small extent .  

b) The two atoms ate in different, neighbouring units 

In  this case the value of the second-order correction is zero. 
In the case of a) and b), resp. the correction of the bond order is the 

following : 

a) 
es 

Ei) caca + Di (c• �91 + i" i i Vi : ca ba) ~- Ee (c i % A- ca ca ) +  
i = 1  

* " ~"  v i  ' i * i  l + b• b~ ~- ca �91 + (ca da -4- % da) + (50) 

+ 2 c~ c~ [Fi -4- - -  
2 

n + l  
f ( n  q- 1 - - f )  G~] } .  

e / ~  v . 

�9 ; b�91 + cb �91 } a --~ f ,  (51) b) Apa b = 2 ~ "  { ( D i -  E,) c̀ c~ -4- ca 
i=i b --+ f + l .  

With this result  the  purpose outlined in the introduct ion is achieved also in the 
case of the bond orders, as the use of formulae (50) and (51) allow the uniform 
t rea tment  of the members of the series. After determining the quantit ies relating 
to the basic unit  the bond order for any  member  of the series can be easily 
computed with the help of formulae (50), (51) and (46). 
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II 

The invest igation of  the polyrylene series with the perturbation method 

1. Justification of the use of the method 

The members of the polyrylene series can be obtained by the successive 
condensation of naphtalene. A few members were investigated with the  molecular 
orbital method with respect to their physical and chemical properties by PAv~cz 
and. WILI~EIM [3]. According to their results the method renders the main 
features of the spectra qualitatively correctly, however, from the quantitative 
point of view strong deviations occur. As for the first transition a too small 
excitation energy is obtained and this result is essentially less good than was to 
be expected from the usual power of the molecular orbital method. 

The second interesting conclusion is that  the bond lengths corresponding 
to the bonds connecting the single uuits are the longest among all the bond 
lengths occurring in the molecule ; tbis shows that  the connection between the 
individual units is essentially weaker than the connection within the units. 
Thus, the condition for the applicability of the perturbation method given 
in paragraph 1.2 is fulfilled and this allows a uniform examination of the series. 

In the treatment of the condensed aromatic compounds using the molecular 
orbital method the following assumptions ate made:  

The most important physical and chemical properties of the molecule 
ate determined by the so called ~-electron distributions. Their number equals 
the number of the carbon atoms. The molecular orbital given in 1.1 is a linear 
combination of these ~r-electron atomic orbitals. Regarding the Hik matrix 
elements the following assumptions ate used: 

a) H .  = a ; b)  H~~ = / 3  ; 

i and k are Ÿ of neighbouring atoms. 

Let us divide each equation in the systems of equations (2) by q and introduce 
the following notatfon: 

~ 2 - - E  

- -  x . (52) 
/3 

* Huk dr In the investigation ofPAuNcz and WILHEIM the value of all integrals f u i  
corresponding to neighbouring atoms was assumed to be equal. 

The perturbation method renders possible the investigation of the problem 
of how the eigenvalues and bond orders are affected if allowance is made for 
the fact that  the values of the integrals ,1" u*i Huk dT are different in the molecule, 
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as a consequence of the differences in the bond lengths. In the following it wiU 
only be taken into account that  the bond lengths corresponding to the bonds 
connecting the individual units are greater than the length of the average bond 
within the individual units. Consequently, the value of/~ belonging to the former 
is smaller than that  of the average /~av. In the further steps allowance should 
be made for the fact that  even within the units the bond lengths ate not the 
same and consequently the q are different. This problem will not be 
investigat› in this paper. 

I t  follows from the above that  our aim is not the full exploration of the 
problem, but only the examination of the extent to which the method elaborated 
in I contributes to the explanation of the physical and chemical behaviour of the 
series. 

Let us denote the quotient of ~ and/~~v by Ÿ Allowing for the dependence 
of ~ on the bond length, the value 0,8 will be used for Ÿ 

2. Symmetry considerations 

Each member of the series has the common property of being symmetrical 
with respeet to the vertical axis of the molecule, the molecular orbitals are 
therefore either symmetrical or antisymmetrieal with respect to that  axis. 
This fact allows a simplification in the computations, as the value of t~~ and 
~~ occurring in eaeh quantity and referring to the basic unir is zero, ir i and 
j refer to two states belonging to different symmetry speeies. Therefore, the 
summations can be earried out separately for the symmetrical and antisymme- 
trical levels. In the case of the eigenvalues this means that  fo ra  symmetrieal 
eigenvalue the corrections ate caleulated only from the symmetrical ~~ and ~9~, 
respectively and the situation is analogous in the case of the antisymmetrical 
eigenvalues. 

A further simplification arises from the fact that  the basic unir (the naphta- 
lene moleeule) is symmetrical with respect to the horizontal axis. As the atoms 
oecurring in the bonds connecting the single units are arranged symmetfically 
about the horizontal axis, their coefficients are either identieal of have opposite 
sign. With an appropriate numbering of the levels 

From this follows : 

I t  is worth while to mention the faet that  in the levels -}-/~ of the basic unir 
both the values of~~ and ~/2 j are zero for aH j-s. As a consequence aH expressions 

5 Acta Physica ~�91 
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oecurring in the perturbation formulae vanish as all of them are derived from 
the v qq -s. This consideration remains va[id even for the higher approximations, 
hence the levels ~:fl ate not at all affected by the perturbation, the only differenee 
being tha t  they occur with the corresponding multiplicity : in the molecule 
containing n units the levels +f l  and --fl occur n times. This result is in complete 
agreement with the conclusions of BRADBVRrr COULSO~ and RUSaBROKE [4 ], 
who investigated the eigenvalues of the same compounds using RVTHEaFOaO'S 
method [5 ]. From the above it follows that  these levels do not eontribute to 
the eorrection of the bond orders. 

3. Results of calculation 

Our results ubtained by means of formulae (13) and (16) referring to the 
perturbation calculation of the eigenvalues are shown in Table I below. The bond 
lengths calculated with the use of bond orders (CouLsor~'s semi-empirical 
method [6 ]) are illustrated in the Figure. 

Both in the case of the eigenvalues and the bond lengths the caleulations 
were performed for the following cases : a) The strength of the bond connecting 
the units is taken to be equal to the strength of other bonds (~ = 1). b) The 
results of the preceding calculation can be compared with those obtained by the 
straightforward applieation of the molecular orbital method (direct calculation), 
where the same assumptions were used. c) In the further caleulation allowance 
was made for the fact that  the strength of the bonds between the units is weaker 
than the strength of the other bonds. Accordingly, ~ is taken to be 0,8. In the 
case of the eigenvalues the levels corresponding to states which are symmetrical 
and antisymmetrical, resp. with respect to the vertical axis are shown separately. 

In Table I only the positive levels are shown. The absolute values of the 
negative levels are identical with those of the positive levels. The perturbation 
preserves the property of the levels characteristic for alternant hydrocarbons. 
The levels corresponding to x----- 1 possessing the given multiplicity ate not 
shown in Table I as their value does not change under the influence of the 
perturbation. 

4. The discussion of the results 

The results will be discussed from two points of view. On hand of the 
given example ir will be examined to what extent the method elaborated in I 
is useful for the investigation of series, and further the dependence of the 
quantities occurring in the investigation of the polyrylene series on the para- 
meter ~ will be investigated. To judge the applicability of the method we 
have to compare the first and second columns of the Figure and Table I, resp. 
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Surveying  the da ta  of the  Table  i t  can be concluded t h a t t h e  eigenvalues calculated 
b y  means  of the pe r tu rba t ion  method  show ah acceptable  agreement  wi th  
the  values  calculated b y  the  direct  me thod  using the  same assumptions.  I n  view 

of  the  fac t  t ha t  the  calculat ion of the  eigenvalues b y  means  of the  pe r tu rba t ion  

Symmetrical levels 

pert. (~ = 1) (~l = 1) direct pert. ( 3. = 0,8) 

n = 2 perylene 

2,5642 
2,2030 
1,6195 
0,9809 

2,5863 
2,1819 
1,5936 
1 

Table I 

n = 3  terylene 

2,6650 
2,4324 
2,1442 
1,7677 
1,2656 
0,8647 

2,6614 
2,4550 
2,1299 
1,7171 
1,2703 
0,8895 

xt 

n = 4 quaterylene 

2,6907 
2,5613 
2,3379 
2,1061 
1,8458 
1,4659 
1,0713 
0,8130 

2,6902 
2,5666 
2,3669 
2,1010 
1,7837 
1,4377 
1,1004 
0,8359 

Antisymmetrical levels 

pert. ( 4 =  1) [ (~ = 1) direct I pert. (~~0,8~ 

2,4990 1,8345 
2,2100 1,5581 
1,5566 1,0581 
1,0458 0,3345 

2,5690 1,8973 
2,3857 1,7633 
2,1604 1,5065 
1,6726 1,2135 
1,2790 0,7633 
0,9502 0,1903 

2,5978 1,9166 
2,4861 1,8633 
2,3073 1,6925 
2,1302 1,4694 
1,7330 1,2783 
1,4387 1,0015 
1,1231 0,5543 
0,9064 0,1077 

1,8794 
1,5321 

1 
0,3474 

1,7786 
1,5576 
0,9575 
0,3787 

1,9419 
1,7709 
1,4970 
1,1361 
0,7092 
0,2410 

1,8280 
1,7110 
1,5154 
1,0810 
0,7110 
0,2624 

1,9659 
1,8649 
1,7044 
1,4780 
1,2053 
0,8914 
0,5473 
0,1845 

1,8449 
1,7889 
1,6517 
1,4871 
1,1342 
0,8992 
0,5414 
0,1978 

Table H 

The wavelength corresponding to the first allowed transition (mg) 

perylene . . . . . . .  
terylene . . . . . .  
quaterylene . . .  

direct (~ = 1) pert. (~, = 0,8) experimeut 

621 
893 

1168 

564 
818 

1087 

438 
516 
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method is very simple, ir is worth while to use this treatment fo ra  rapid appro- 
ximative determination of the level-system of series. 

The agreement in the case of the bond length is somewhat weaker but 
acceptable. The difference between the two results calculated by the two methods 
is not greater than the error occurring in the present experimental determination 
of bond lengths. The method is especially suitable for the investigation of the 
bond length of bonds connecting units as the calculation is relatively simple. 

In making a comparison one must take into account the fact that  the 
case Ÿ = I is disadvantageous for the convergence of the perturbation treatment, 
in the case Ÿ < 1 a better agreement can be expected. The other advantage 
of the use of the perturbation method consists in the fact that  ir renders easily 
possible the examination of the dependence on ), of the quantities characterising 
the molecule, i. e. the dependence on the strength of the bonds connecting the 
single units. 

From this point of view the behaviour of the polyrylene series can be 
examined by comparing the second and third columns of Table I and the Figure, 
resp. For the eigenvalues i t i s  found that  for ~ = 0,8 the distance of the highest 
and lowest occupied levels decreases as compared to the case ~ ----- 1. The levels 
get closer to each other and simultaneously the distance corresponding to the 
first allowed transition increases. In Table II  the wavelengths corresponding 
to the first allowed transition ate summarized. 

From the data it can be seen that  parallel to the increasing of the bond 
length of the bonds connecting the units the wavelength corresponding to the 
first allowed transition decreases, that  means a better result is obtained than 
in the calculation of PAu~cz and WIrrtEIM. The magnitude of the decrease 
is, however, not yet  big enough, because even in this case the wavelength of the 
first transition turns out to be too great. This shows that  other factors besides 
that  mentioned above have to be taken into account, in order to get ah acceptable 
agreement with the experiment (configurational interaction, etc.) 

The calculations relating to the bond lengths show that  the bond lengths, 
mainly those within a unir, ate not much affected by the pertnrbation. 
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APPENDIX 

In the investigation of the eigenveetors using the perturbation method the following 
s u m 8  o c c l l r  : 

ti 

~ - - i  ~ m#k~ ( c o s  k a  - -  c o s  m a )  i ' a - -  n + 1 
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Their  computa t ion  can be reduced to the  evaluat ion of  t he  followings sums : 

n cos mŸ (A. 
(i)Afk= ~ (cos ka_cosr r ta )  i 

1) 
m#k  

In  view of  the  fac t  tha t ,  beside the  complet ion of  the  above-ment ioned  task,  their  use makes  
possible t he  evaluat ion of  some quant i t ies  occurring in t h e  pe r tu rba t ion  t r e a t m e n t  of  the  polyenes,  
the i r  inves t iga t ion  seems usefut. 

F r o m  their  def ini t ion the  following proper t ies  follow : 

-) (i)A~-f = ( i )A f  . b) (i)A~+l--f = 2 (--1)m c ~  
m # k  ( c ~  - -  cosma) i " 

c) (i)Akf--I - -  2 cos ka(i)A] k + (i)A/k+l = - -  2(i--1)A" kf 

I n  t h e  l a t t e r  case t he  following iden t i ty  was used : 

cos m ( f  - -  1) a - -  2 cos ka cos mfa + cos m ( f  -~ 1) a = - -  2 (cos ka -- cos ma) cos rufa . 

W i t h  a) and  c) is obta ined f o r f  = 0 

(OAI - -  cos ka (i)AO k -- ( i - 1 )A~  . (A. 2) 

I t  is sa f f ic ien t  to  evaluate  (i)A~ as  on this  basis (knowing the  value of  ( i - -1 )A~ equat ion(2)  
(0A~,  f u r t he r  using c) all o thers  can  be suceessively evaluated.  

n 

1. ( ~ 1 7 6  = . g~  c o s m O . a  = n -- 1 , (A. 3) 
m#k  

i: lO 7 if 
mffil ~ c o s k f a  if  

f is o y e n ,  
( .4 .  4) 

f is odd. 

2. Fo r  the  evaluat ion of  (•)A O the  fact  is used t h a t  cos k a is the  k . th  root  o f  t he  Tscheby-  
h e f f  polynomial  o f  n - th  degree, o f  second kind.  

si= (n + 1)~ 
Un (cos ~) -- - - s i n  ~ (A. 5) 

W i t h  the  use of  the  factored forro of  the  polynomial  

ti 
Un (cos 0 = H (cos 0 - -  cos ma) (A. 6) 

r n = l  

is ob ta ined ,  where 

/2 

1 _ V ' .  g (cos ~) ( .4 .  7) 
c o s  ~ - -  cos ma Un 

1{ 
g (cos @) s i n 2 ~  cos @ - -  (n -}- 1) cos (n + 1)@. ~ 1  1 
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(The derivation occurs with respect to x ~ cos 0.) 
On the basis of (7) (OA ~ can be obtained as follows : 

( 1 ) A ~  lira (g(cos0)  1 ) 
�9 o - . k o  c o s  0 - :  c o s  k a  " ( A  9 )  

The prescribed passage to limit can be performcd with the repeated application of l'Hosl0ital's 
rule, the result being:  

(I)A ~ _ 3 coska 
2 sin~ka (A. 10) 

On the basis of equations (2), (3) and (10) : 

co# ka + 2 (I)A;.1 = --  n + 
2 sin 2 ka (A. 11) 

In  the following we shall verify that  for (1)A~ the formula is valid : 

where 

sin kfa cos kfa cos ka + h 
O)Af = [f --(n+ l)sgf] s i ¡  + 2sin~ka " 

{ 2coska,  if f even, l i '  > 0 ,  
h = sgf= , ff f =  0, 

2 ,  i f  f o d d  ; - -  , < 0 .  

(A. 12) 

F o r f =  0 a n d f =  1 formula (12) is the same as (10) and (11). To provc it  one must ouly show 
that formula (12) satisfir r c). L e t f b e  even, then the following relation must be fulfilled : 

( l )A /k -~ l -  2cos ka (l)Akf + (1)A~+l = 2 + 2coskfa.  

Substituting (12) 

1 { s i n k ( f _ l ) a _ 2 c o s k a s i n k f a + s i n k ( f + l ! a l _  [ f  -- (n + 1) sgf] 
= 0  

sink(f  -- X)a--s ink(f  + 1)a c o s k a  jcosk(f_l)a_2coskacoskfa+coskOe+l)al + 
- -  - -  s inka + 2sin~ka , ~ , 

4 4 co# ka 
+ 2 sin~ ka = 2 + 2 c o s  kfa 

is obtained. 
Thus the correctness of the formula is proved. In a completely analogous manncr the proof 

can also be performed in the case of odd f l  
3. The calculation of (2)Ak occurs in a manner analogous to the procedure given in detail 

above. By means of equation (7): 

n 

i = - g' (co~ 0) ,  
m'~=l (cos ~ -- cos ma) o" 

�9 1 
(2)A~ = oli_~~a { - - g '  (cos ~) --  (cos /~ - - cos  ka)21 " 

(A. 13) 
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The limit operation gives the following result : 

(2)A 0 = 4 ( n +  1)2 + 17 
k 12 sina ka 

11 
- -  4 s in4ka  ' 

(A. 14) 

Using equations (2), (10) and (16) the following is obtained : 

(2)Al _ 4 ( n +  1)2 _ 1  l l c o s k a  (A. 15) 
12 sin 2 ka cos ka 4 sin ~ k a - -  " 

The formula for (2)A~ for arbitrary f i s  as foqows : 

(2)AI/= 4(n + 1)~ --  12 f (n+  l ) s g f  + 6 f  2 + 53 
12 sin2 ka 

eoskfa  + ~,rtl -- 3)sgf --" coska s ink fa  -- 
sin s ka 

11 cos k fa  2 cos ( [f[ - -  2)ka 
- -  4 sin 4 ka-- + sin 4 ka + h(~') ' 

h(2) 

3 + cos 2 ka 
2 sin 4 ka ' if f is even ,  

2 cos ka 
sin~ka " if  f i s  odd. 

(A. 16) 

The demonstration of formula (16) oeeurs in the same mamaer as that  of (12) above. Substitating 
f =  0 a n d f ~ -  1, equations (14) and (15) ate obtained. In  the further steps using simple trigono- 
metrieal relations it can be proved that  (16) satisfies the following equation : 

( 2 ' A ~ - l _ 2 e o s k a ( 2 ' A {  + ( 2 ) A ( + l = - - 2 ( 1 ) A ~  . 

On the basis of (12) and (16) all ~ ;-1 oeeurring in the seeond-order perturbation caleulation can 
be ealeulated. The results are given below. 

(n+ 1)~gf- 2f =-- g 
.,,,f_)_....: I { } } 

1 - -  ~ 1 rt + ~  (g --  1) akf+l -- (g ~- 1) ak/--1 , (A. 17) 

1' ' -  2 7  U = ~~�88 ~ - ouf-, } 271 

,.~~1 - -  = n + l  ( g - - 3 ) a k : + 2 + 2 a k f - - ( g + 3 ) a k f - - 2  , (A. 18) 

2 1 2 f  ~ ,  nn--lf 
1 - - , , - - I  sg f {a~f+ 2 - - a k f - - 2 } .  

2 '  21f ~ ,  n - - l n f _  1 { ( g _  1 ) a k / + 2 -  2 a k f - - ( g  + 1)akf - -2} ,  t 
~ 1  '1-~-- 1 n + l  

/ ~~ 2U "~ n - ln f  
__  1 -- ~ 1  = sg f{ak f+2 -- akf--2} . 

~ l l f +  mnf 1 t 3 ( n +  l - - f )  ~ - - 2 ( n +  1)2 + 3 f  2 - 1  1 } / 
~-~2 , ~ 2  = n + l  t . . . . . . . . . .  3 . . . . . . . .  + s ~  ak[ ,  

I - - ~ , 2  = ( n + l - - 2 f )  akf. 

(A. 19) 

( A .  20)  
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f l P H M E H E H H E  M E T 0 ~ 0 B  M A f l b l X  B03MYllIEHHI/ ' t  HPH 
LIECNOM H C C f l E ~ 0 B A H H H  CHCTEM, C0CT0~LL[HX H3 

qACTEF[  

P. FIAYHI_[ 

P e 3 H )  Me 

B pa5oTe ~aeTcn gccne~loBaHHe MOJ~eKy~bI, COCTO~mefi H3 TO>~~r~eCTBeHHblX 3~[eMeH- 
TapHblX ej~HuHt[, MeT0~0M ManblX B03My~eHrtfi. C r~0/~0~brO paccy~r241 on~parotUnxcfl Ha 
r[p0cT0fi BapI4aHT MeTOAa M0neKyJl~IpH0fi TpaeKT0priH, y~aeTca pa3~teJIHTb pe3yJIhTaT Ha CyMMy 
IIp0M3BeAeHH~, KaK B Cayqae 3HaqeHH~l 3HepFI4H, TaK H II0p~l~Ka CB:~3H. 0~HH H3 COMH0>KMTe/Ie~I 
C0}Iep)KriT TOJlbK0 TaKrle /laHHble, KOT0pb~e 0TH0CaTCa K 0CHOBHOMy 3J]eMeHTy, a npyrotŸ COM- 
HOL'<HTeJIb 3aBHCHT 0T ~aHHhtX pa~a.  

Bo BT0p0~ qaCTH iioKa3aHa HpHMeHHMOCTb 3TOF0 raeToAa Ha npnMepe IIOJIHpHJIeHOBOF0 
pnna.  Pe3yJIbTaT pacqeTa n0Ka3bIBaeT, qT0 MeTOjI npHMeHHM C ycnexoM H C ero n0M0mbt0 M0>KH0 
HCcJle~0BaTb, KaNHM 0£ 3aBHC~IT xapaKTepncTHKn pn,r~aoT np0qH0CTH CBP.3rl Me>Kzy 
OT, IIe.~bHblMH 3~eMeHTaMH. 

K B A H T O B O - X H M H -  
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