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In HEISENBERG'S nonlinear theory some new results are presented concerning mainly 
the properties of strange elementary partieles. 

In the nonlinear theory of HEISEI~BERG and coworkers it was suggested 
that  the occurrence of the approximate conservation laws in nature may result 
from a rather complicated structure of the ground state, the vacuum state, 
rather than an unsymmetrical dynamical law. This conjecture has been very 
successful in various fields, and, in fact, constitutes the main topic of this 
conference. Its importance in elementary particle physics, however, has stiU 
to be demonstrated. 

In our theory, ir was particularly assumed that  the deviations from the 
isotopic spin symmetry in the interactions of elementary particles arise from 
isotopic spin properties of the vacuum, which otherwise has the common 
features. 

Such an asymmetrical vacuum state may be pictured as a state filled 
with an infinite number of certain "bosons".These bosons do not have any 
Lorentz properties, i.e. mass and spin, but do carry isotopic spin. We have 
called these entities "spurions" because of their similarity to the particles 
introduced by WENTZEL and others in connection with weak interactions. 

Such a "vacuum"  has two different effects on the particles: 
1. As a result of the interaction of the particles with the infinite spurion 

sea a s a  whole, which eventually will be assumed to have an infinite net 
isospin polarization, the mass degeneracy of the states with respect to isospin 
rotations, in particular the mass degeneracy of all particle isomultiplets, 
will be removed. E.g. the proton and neutron states which differ by the 
direction of their isotopic spin, will split up as a consequence of their different 
residual interaction with the unsymmetrical ground state; their isospin will 
be parallel of antiparallel to the vacuum isospin polarization. 

A vacuum state which carries an infinite isotopic spin is necessarily 
infinitely degenerate in an isotopic spin symmetrical theory. The degenerate 
vacuum states differ by the direction of their infinite polarization in isospin 
space. They ate transformed into each other under isospin rotations. Because 
of the infinite size of the polarization, however, such a rotation, as was frequently 
emphasized, cannot be generated by a unitary transformation in Hilbert 
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space: vacuum states which are polarized in different directions do not belong 
to the same I-Iilbert space; they are orthogonal to each other in the sense of 
vAr~ I-Iov~ and HAAG. Hence we have only to consider one vacuum isospin 
polarization which we identify with the z-direction. We also prefer to talk 
about ah "unsymmetrical vacuum" instead of a "degenerate vacuum" which 
are group theoretically synonymous. 

2. The particles do not interact so to say only with the sea a s a  whole 
but also with its members, the spurions. This intercation will be present even 
ir the net isospin polarization of the vacuum would be assumed to be zero. 
In particular, "particles" may be strongly bound to a finite number of spurions. 
In this way we may create from every "particle" a whole family of particles 
with indentieal Lorentz properties but different isospin properties. Such 
"anormal"  states may be identified with the strange particles. I t  should 
be emphasized that  the operation of rotating the isospin of any finite number 
of spurions can be represented by a unitary transformation. I t  does not lead 
out of the Hilbert spaee. (We ate studying, at present, eertain models in whieh 
the existence of such "anormal"  states can  be more clearly established. 
In ferromagnets it would correspond to ah electron riding on a spin wave.) 

In my report today I will solely eoncern myself with this second aspect 
of ah unsymmetrical ground state. I will t ry to demonstrate that  strange 
partieles and their properties may be understood on such a basis. 

I will subdivide my talk into two parts: 
A) I will discuss the symmetry properties of the spurion in particular, 

in contrast to earlier assumptions, and eonsider the general forro of their inter- 
action terms. Subsequently we investigate the forro of the interaction terms 
of particles eonstructed from the fundamental fields and spurions. 

B) I will outline the procedure by which we advance to calculate the 
masses of the simplest fermions and bosons and their coupling constants. 

A. Symmetry properties of the spurions and the form of their 
interaction terms 

Spurions are considered to carry an isospin :/2" However, in addition 
to isospin further properties have to be attributed to the spurions to be con- 
sistent with the requirement of Lorentz- and CPT-invarianee of the vacuum. 
Aceording to earlier investigations three such possibilities present themselves: 
The first and simplest possibility from a group theoretieal point ofview adds 
a pari ty property. About this possibility I have reported earlier. Here the 
spurions transform according to the simplest, nontrivial representation of 
P • SU z (discrete reflection group X isospin group). This leads to a close connee- 
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tion between parity and isotopic spin. Some immediate implications with 
respect to the mass spectrum of the baryons and their properties, e.g. odd 
.IZ-parity, however, ate in contradiction to present experimental evidence. 
Therefore this possibility is ruled out. This possibility also has the disadvantage 
that strangeness, of hypercharge, cannot be understood without enlarging 
the group spaee of the spurions to indude a gauge group. 

Hence the second possibility was investigated which is the subject of the 
present report. (The third possibility is a combination of this possibility with 
the first one, which was actually used in the former papers after the indusion 
of hypercharge). In this seeond possibility a "spurion number"  (gauge group) 
is defined in addition to the isospin which then is identified with the hyper- 
charge Y. The spurions in this case transform according to the simplest, 
nontrivial representation of U 2 : g•  SU 2 in which four different states (spurions 
and antispurions with 13 = i 1/2) can be distinguished. Spurions and anti- 
spurions are transformed into each other under ~-eonjugation. Because 
of the absence of spin they obey Bose statisties. 

A s a  first step we considera general system composed of ns spurions and 
n a antispurions, and construct the most general 2-spu¡ eorrelation operator, 
i.e. the operator which for ordinary particles corresponds to the pair interaction 
operator. We find that  

[ /~s na ]2 
O(ns,  na) = . ~ " u  - -  . ~ u  - -  f ( n s  + na) = 4([, - i a )  2 - - f ( n  s ~- na) : 

s=l a=l 

rt,s+na 

= 2 .~"  e ,1u165 i -4- [ 3 n - - f ( n ) ] ,  
i < j  

n = ns--~-- nn , 

where Ys, Ya are the isospin matrices acting on the spurions and antispurions, 
respeetively; f ( n )  is some arbitrary function of the total number of spurions 
and antispurions n ~ ns ~ na; eq is a sign function 4-1 depending on whether 
the indices refer to like of unlike "particles". The operator is determined by 
the requirements of isospin-, gauge- and a~-invariance, and the condition that  
O(ns,  na) --* O(ns -4-1, na T 1) under ~Ÿ of a single spurion or anti- 
spurion, respectively, which can be deduced from the fact, that  the annihilation 
of a spu¡ is equivalent to a creation of ah antispu¡ 

The eigenvalue of the operator f o r a  system with isospin I and hyper- 
charge Y =. 2 (n  s - -  na) is given by 

O(n~,na)  = - - 4 [ I ( I  ~ - l ) - - - - ~ - Y 2 ] - ~ [ n ( n - ~  4) - - f (n ) ] ,  
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i.e. the I, Y combination is exactly of the forro which occurs in connection 
with broken SU3 theories. However, it should be emphasized that  the above 
formula does not contain any of the feicatures partular to S U  3, whieh -- 
depending on the representation -- express themselves in certain limitations 
on the possible values of I and Y, leading to the characteristic multiplets. 

1 Y. The characteristic I and Y in the above formula ate only limited by  I > 

combination of I and Y in the above formula is brought about by  the special 
forro of the interaction (opposite sign for particle-partiele and particle-anti- 
particle systems; this, in fact, is common to many other theories, e.g. inter- 
action via zt-mesons) and the permutation symmetry of the spurions (only 
symmetrical combinations are admitted). 

UP to now we have dealt only with the spurions and general spurion 
systems. To connect these results with our actual problem, i.e. the determi- 
nation of the isospin-hypercharge dependence of the mass operators of single 
particle states, we have to consider systems which ate constructedfrom spurions 
and the spinor-isospinor field operator y(x) which occurs in the differential 
equation ofour theory: 

i .~  ~(x) = 12 ~ , :  ~(x) [~* (x) .~ ~(x)] : .  
~ x  v 

In the field operator the isospin-hypercharge properties seem inseparably 
connected with the Lorentz properties. In particular, the isospins of two field 
operators will not be symmetrical, in general, as required for the spurions, 
since only the space-spin-isospin-dependence is required to be antisymmetrical. 

However, the situation is diffcrent ir only field operators at the same 
spacetime point are considered. Due to our particular interaction r = 
--= -- I I ~- ~~, the interaction will vanish whenever the spins in y(x) y(x) are 
symmetrical (~~" = q-1). Since in this case the space-dependence is symmetrical 
this immediately implies that  therc is no interaction if the isospins ate anti- 
symmetrical, i.e. whenever they do not behave like spurions. Hence the above 
spurion considerations can be equally applied for states which are constructed 
from spurions and field operators at the same space-time point. Particles 
which can be constructed in this way will be called"primary particles". Therefore 
we expect "primary particles" to behave very much like a many-spurion 
system. On the other liand "pr imary p• are also distinguished dynamic- 
ally since they can take immediate advantage of the original contact inter- 
action. 

Ir  we deal with systems of non-zero baryon number also the operator 
B Y  can occur besides O(ns, n~), which also appears in the GELL-MANN-- 
OKUBO m a s s  formula. 
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I will now proceed to the second part of my talk and give a rough 
description how the above considerations can be utilized to calculate the masses 
and coupling constants of the simplest fermions and mesons. 

B. P r o c e d u r e  to c a l c u l a t e  t h e  m a s s e s  a n d  c o u p l i n g  c o n s t a n t s  

The actual calculations of the masses of the particles proceed according 
to the following program: 

1. We assume the existenee of a dominating baryon pole at some m a s s  

in the propagation function of the field operator ~p(x). The eigenvalue equation 
for the baryon wave function q0(x)- -<olw(x) lp> is then derived in the 
lowest Tamm--Dancoff  approximation as represented by the equation 

I 

T = ~ using the ~v(x)propagation function ~ with only the 

I 
(regularized) baryon pole, as an approximation for the contraction function, 
and is examined with respect to a discrete baryon solution. Such a solution 
exists. The mass of the baryon is fixed by the selfconsistency requirement. 
This calculation is the same as carried out in 1958. We may call it a baryon 
boot-strap calculation. The calculation does not change if we include spur- 
ions in the matrix elements, i.e. there is no splitting of the baryon levels at 
this point. 

2. We proceed to consider the eigenvalue equation for the "pr imary"  
strangeness zero bosons with the eigenfunctions q~B(x) = (0 I ~(x) ~*(x) [p>. 
They are derived again in lowest NTD-approximation which is of the form 

= ~ using the F-contraction function with the selfconsistent baryon 

pole. The bosons appear as "S-states" of the baryon-antibaryon system bound 
by the contact interaction represented by the nonlinear term. The discrete 
solutions belong to the ~, ~, co, ~ mesons. However, only the spin 0 states 
~, .-r were considercd. In case of the co, o also D-states have to be included. 
This is more difficult and is, at present, carried out by STuMPr and YAMAMOTO. 

For the ~/, ~r the eigenvalue equation is of the forro 

1 + [ 3 - I ( I + 1 ) ] 2 Q  g ~ / - - 0 ,  

I where Q ,I ~2) ' is a known function which depends on the mass ratio ~f  meson 

to baryon mass. This again is nothing new (1960). 
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3. A s a  new step we now consider primary boson wave funetions which 
involvc spurions. E .g .  the K-meson wave function is related to the matrix 
element q0t<(x) = (0] s~ ~2(x) ~0~(x) lp>. The isospin wave-function of the spurion 
s and of ~o (which behaves like a spurion) must be symmetrical. Because of the 
well-known relationship (ehange of coupling transformation) 

(1-23) = V4~3 (12"~) q- I / ~  (12-3) , 

where -- designates a symmetrieal, .~  an antisymmetrieal combination, one 
immediately obtains the result that  the K, beeause of the spurion permutation 
symmetry,  behaves like 75% (s~) and 25% (sz~). Sinee the spurion does not 
partieipate in the interaetion (only ~o oeeur in the nonlinear term), the K-eigen- 
value operator direetly refleets this "mixture",  whieh is familiar to us from 
broken SU 3. Henee the boson eigenvalue equation can be generalized to 

1+I 3 I ' " + 1 '  ~']I2Q~~~Y14 ~~2, 0 

to include the K. Aeeording to the above derivation this formula is not to be 

used for other than 7, ~, K states. E.g. a K-quar te t  state [ = ~ ,  Y = 

can only be de¡  if also a I ~--- -4-2, Y =  0 state is contained from the beginning. 
Roughly  speaking the K3t z would be a "mixture"  of sueh a state a n d a  ~. 
The I = 2, Y = 0, however, in our  framework eannot be eonstrueted from 
field operators at the same spaee-time point. They are not "pr imary"  partieles 
and henee ate dynamically quite diffcrent. I f  we eonsider K3I zas  a pure (sz 0 
state then the K3~ z eigenvalue equation is identieal with the equation for the 
~. The spurion in this case is not "bound"  nor loealized but  only formally 
attaehed. 

Hence we conclude that  there exist only 8 "pr imary"  boson states of 
spin 0. Their eigenvaluc operator contains as a factor the familiar I ( I  "4- 1) -- 

1 
_ _  y2. Since the function Q-l(x2) behaves essentiany like In -1 x 2 with 

4 
x 2 = deis2 it can be very well approximated in the relevant region by  a q- bx 2 

which then leads to the well-known boson mass formulas. The same procedure 
would lead to a spin 1 "oc te t "  ir the spin 1 states were predominantly 
3s-states, which does not, however, seem likely from our calculations. 

To emphasize a certain similarity with the adjoint representation of SUz 
we may draw the following diagram of the operators: I+, I_ ,  I0, u are the 
familiar generators of the U 2 group. In addition we now have the 4 spurion 
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creation operators (or eorresponding antispurion annihilation operators) 
s*, s*, aŸ ~, a* which simulate to some extent the operators V_, U+, U_, V+ 
of SU3. 

4. As the next step we now repeat the baryon eigenvalue calculation with 
the inclusion of not only the baryon contraction functions but  also the boson 
contraction funetions. This means a generalisation of the Tamm--Dancof f  
approximation in the sense that  we now not only explicitly pull out the 2 
point contractions but  also a certain part  which contains the meson poles. 
Our integral equation for the baryons is now graphically represented by 

where the first graph corresponds to the dressing of the baryons by  themselves, 
the second graph, however, corresponds to the boson corrections, as calculated 
in the third step. Or more precisely the boson propagator is essentially represent- 
ed by 

I 

where 

0 
is the kernel of the boson eigenvalue integral equation as calculated before. 
The ealeulation of the residium of the poles which oeeur at the boson masses 
leads to a determination of the eoupling eonstants. 

From the above improved eigenvalue equation for the baryons in lowest 
approximations we therefore get eorrections due to the virtual exchange of ~t, 

and K mesons. However, now due to the K-exehange the eigenvalue operators 
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of baryons with zero, oue- and two spurions will differ from each other. One 
can show that  the eigenvalue equation is of the form: 

3 
~ 1 + 2 - ( 2 s t )  ~~) 2 B 

( ~2j] Cp'Br -- q~(p) 

z~ q' (/6/~0 
= 0 ,  

where L, r, q' are all known functions. The L-term already occurs in the original 
approximation, the ~"  stems from the boson contributions. There the K-con- 

n 
tribution is of principal importance, since it depends on the isospin and the 
hypercharge of the baryon. In fact we find: 

CS.K= c o + c 1 B Y  q-cz[I(I  + 1) 1 y21 
' 4 

i.e. we denote that the eigenvalue operator is multiplied by a factor which has the 
GELL-M&r~N--OKuBO form. To the extent that  the dependence of the integral 
operators on the masses is smooth this will also reproduce the GELL-MXNr~-- 
OKUBO formula for the masses. In our case L i s  not sufficiently smooth and 
hence does not gire too good un agreement with the experimental masses, but 
these functions can scarcely be considered reliable to such ah extent. 

To summarize we may state that  the inclusion of the boson contraction 
terms improve firstly the mass ratios between baryons and boson (the baryons 
become relatively heavier, which is in the right direction), and secondly it leads 
to a splitting of the baryons which agrees with the empirical mass sequence. 
However, it turns out that  the zero-spurion system (the original system) 
has to be identified with ~, rather than the N. The one-spurion system corre- 
sponds to the A, 2?. The numerical values of c 1 and c 2 are still somewhat too 
small, but one can show that  the inclusion of the spin 1 mesons will enlarge 
the effects. 

The baryon calculation is not necessarily limited to the "octe t"  states 
but may also include other states, e.g. isoquartet states. To exclude these 
unwanted states the hypothesis was used that  spurions can only be "bound'" 
to a single field operator ~(x) such that  the resulting electric charge never 
exceeds the value one. Sucia an assumption scems necessary in view of the 
local conservation of charge. In this case therc would be only 8 "pr imary"  
baryons. However, this point has to be further investigated. 

5. As a last step one may consider aU elem,:ntary particles which cannot 
be construeted from field operators at the sume space-time point. These 
particles we may eall "seeondary particles". These "secondary" particles 
cannot take immedia te  advantage of the contact interaction. For interaetions 
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at a distance, however, the finite range interactions via exehange of the "pri- 
mary"  bosons may be the most important.  E.g. the 3/2, 3/2 resonance state N* 
may be considered in a good approximation a s a  bound state of an N a n d a  
by virtue of an interaction produced by virtual mesons. For the calcul- 
ation of these"secondary" partieles an approximation scheme which assumes 
the "pr imary"  particles as really "e lementary"  particles a s a  starting point 
may be better than an NTD-approximation. This seems rather obvious in the 
case of the deuteron and higher nuclei. Since the "pr imary"  particles roughly 
allow a broken SU 3 terminology, also the secondary particles may allow a 
similar description. Of course, this has not to be the case since nothing com- 
parable to the SUa-Clebsch--Gordan algebra can be provided in our case. On 
the other hand bootstrap calculations like the ones carried out by ZE~ACH and 
ZACHA.RIA, SEN and by CUTKOVSKY s e e m  to indieate that  the bootstrap mecha- 
nism may produce the higher group if the dimension of the adjoint represent- 
ation (here 8) is somehow provided. On the basis of our present calculation we 
do not expect the coupling constants to follow very closely the SU 3 predictions. 

CTPAHHblE qACTHH~bl H HECHMMETPHqHblf:I BAI~YYM 
F. II. ,/~IOPP 

Pe3~oMe 

[10Ka3blBarOTC~l HeKOTOpble HOBbIe pe3y.qbTaTbI B HeJII4HC~IHO[7I TcopHH Fe~3CH‰ 
I'JIaBHblM 06pfl30M no 0THOIIIeHHIO CBO,~CTB CTpflHHblX 9JleMeHTapHbIX qaCTHtL 
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