Acta Physica Hungarice 74 (4), pp. 427-448 (1994)

APPLICATION OF RENNER-TELLER AND
JAHN-TELLER EFFECT TO HIGH T,
SUPERCONDUCTIVITY THEORY WITH
LCG-MG AND COVALON MODELS

YING-NaN CHivu*

Center for Molecular Dynamics and Energy Transfer
Department of Chemistry, The Catholic University of America
Washington DC 20064 U.S.A.

and

Institute of Chemistry, Academia Sinica?

Taipei, Taiwan, R.0O.C.
and
Maz-Planck Institut fir Strémungsforschung
Bunsenstrasse 10, D-3400 Géttingen, Germany®

(Received 28 April 1994)

For combination and extension of physical and chemical approaches, instead of the
BCS Theory in momentum space for low T'¢ superconductors, we propose the position-space
theory for high T'c superconductors using quantum chemistry of molecular geminal orbital
and valence-bond states. Qur spectroscopy related vibronic geminals and vibronic ‘Coval-
ons’ will serve as Boson-state quasi-particles. With emphasis on equal-minima double-well
potential, besides the Jahn-Teller effect we consider the Renner—Teller effect because of
the geminals and cyclic crystal boundary. It will have “first-order” vibronic degenerate
perturbation in addition to the second-order perturbation energies of BCS and Bipolaron
theories.

* YNC is in honor of Prof. Istvan Kovacs whose distinguished works on spectroscopy were
highly appreciated when YNC was a post doctor in 1962 at the late Prof. Robert Mulliken's
Laboratory of Molecular Structure and Spectra. He and fellow chemists were also very impressed
by Prof. Kovacs's book entitled “Rotational Structure in the Spectra of Diatomic Molecules”.
YNC is grateful for Prof. Kovacs’ inspirations that encourage him to continue works on the
theory of molecular structure and spectroscopy.

1 Permanent address for reprint requests.

2 (Foreign) Academician, supported by Academia Sinica and National Science Council,
Taiwan, R.0.C.

3 Invited by Institute Director Prof. J. Peter Toennies, July/August 1989

Acta Physica Hungarica 74, 1994
Akadémias Kiadé, Budapest
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1. Introduction and comparison of degenerate perturbation
of Renner—Teller effect with BCS and Bipolaron theory

The BCS theory [1-6] for low temperature superconductors such as Nb3Sn
deals mainly with essentially free electron pairs of opposite spins and opposite mo-
menta in momentum space. It makes use of electron—phonon interaction to lower
the energy of the ground state to create the superconductivity gap and to con-
struct the Boson state of the Cooper pair quasi-particle consisting of two electrons.
All of the (anti-parallel) spin paired electrons can occupy the same Boson state
quasi-particle, and there will be no collision between paired electrons belonging
to the same Cooper pair state. Because vibrations are already included in the
electron-phonon interaction of the Cooper pair state, further vibrational preven-
tion of electron conductivity no longer exists. The electron—phonon interaction
of paired electrons in the Cooper pair involves second-order perturbation for the
mixing of different electron momenta through vibrational running waves with ap-
propriate momenta. There will be an average long-range order and coherence effect.
The total zero momentum of the Cooper pair (of two electrons one with +k and
one with —%) produces the London Equation for the current density (J) dependent
only on the electromagnetic vector potential A. This then leads to the penetration
depth to reach the Meissner Effect of perfect diamagnetism. We shall make use of
some of the wisdom of the above theory for low T¢ and propose new approaches
for the theory of high Tc. For the high T'c superconducting copper oxides [7-17]
which are close to tight-binding molecular crystals with covalent bonds, we pro-
pose to consider the quantum chemical position-space treatment of the movement
of spin-paired bonding (or antibonding) electrons (or holes) affected by ‘first-order’
degenerate vibronic interaction of the Renner—Teller and Jahn-Teller perturbation
besides the usual second-order perturbation.

(1) As an alternative to the linear combination of atomic orbitals to form
molecular orbitals (LCAO-MO) and to form electronic bands, we propose the lin-
ear combination of (bonding/antibonding) two-electron geminals to form molecular
(bonding/antibonding) geminals: LCG-MG. This differs from BCS theory which
starts essentially free one-electron states in momentum space.

(2) As an extension of chemical valence bond theory and Resonating Valence
Bond (RVB) theory of Anderson [18], we propose the linear combination of covalent
electron bonds in a ‘Covalon’ model that involves detailed chemical structural effects
on conjugate (or alternating) covalent bonds [19]. And we include the vibrational
effect on deformations (changes in the lengths of unit cells and/or structural bond
lengths). This is also different from the Bipolaron theory [9] which deals with more
ionic crystals.

(3) As an addition to the electronic effects we include vibronic interaction.
But, instead of the usual linear combination of individual atomic movements, we
consider the linear combination of individual bond vibrations (or unit cell vibra-
tions) to match our proposed linear combination of binding geminals and covalent
bonds.

(4) As a complement to Peierls distortion [20] we propose the consideration
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APPLICATION OF RENNER-TELLER AND JAHN—TELLER EFFECT 429

of the Renner-Teller splitting of the doubly degenerate vibronic states and the
Jahn-Teller splitting of doubly degenerate electronic states by negative as well as
positive vibrations resulting in equal-minimum double-well potential as the ground
state. Such deformation is still different from the Bisoliton theory [21, 22] that deals
with acoustic vibrations.

The Renner—Teller Effect in spectroscopy deals with (equal to and more than
triatomic) linear molecules (along axis z) with cylindrical (Ceoy or Doop) symmetry
which has cylindrical electronic state 9§ ~ exp(iA¢.) with cyclic electronic angular
momentum A = 0,1,2,3.-- = £, II,A,®... with angle ¢.. It also has cyclic
vibrational angular momentum A = 0,1 = X+ II. The non-zero vibrational angular
momentum of doubly degenerate vibrations results from the linear combination of
bending vibrations along z and y perpendicular to the linear molecular axis z, i.e.

Qir = Q1 = Q £iQ, = e¥'?~.

A linear crystal with N atoms of cyclic boundary condition is similar to the
cylindrical symmetry (of the z, y axes of linear molecules along z axis). The crystal’s
electronic and phonon states around the cyclic boundary also have pseudo angular
momentum comparable with the true angular momentum of linear molecules. For
example, the normal phonon mode of the crystal vibration with pseudo-angular
momentum A is:

2xidn

—_ —_ 1 ! __1_ tkna
qA-QA—ﬁr;e—w—en-ﬁznje én, (1)

where £, is the local atom n’s movement. The linear molecule with = electronic
state and v(7)(= @~ = Q1) normal mode will have two degenerate vibronic states
such as ¥¢x*(Q-1) and ¥¢,x'(Q1) where x"(Q) stands for the vibrational state
with n quanta. These will have mixing interaction of Renner-Teller Effect [23, 24].
It will be perturbed by a simply shown operator of Pople and Longuet-Higgins [25]

H = fr2(62i(¢e-¢u) + e"z"(d’e-¢v))/2 = fr2 cos2(¢e — ¢v) (2a)

which we will rewrite as

,_10°H , 10°H
H'= 5501 @+ 550 % (2b)

for degenerate perturbation mixing matrix element

(¥ix'(@-0) [} poa-@ha [ weaxi(@n) 0 ®)
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Q A Q-A - OA_ —'Q A
—Q —0Q
electronic vibrational electronic vibrational
Y02x'Q,) degererate with ¥o02x(Q,)

Fig. 1a. The vibronic state 95 (12)x'(Q—_x) with one vibrational quantum (1) and with overall
zero pseudo-angular momentum A — A = 0 is degenerate with ¢° , (1 2)x'(Qa). They will have
‘first-order’'degenerate vibronic perturbation by Renner-Teller effect. The perturbation operator

is 1/2(82H/6Q% ,)Q% 4

KR

KO, @ non-degenemte with gl @i
electron kinetics electron kinetics

Fig. 1b. The Cooper pair with kinetic energy of momentum k, ¥, (1) T ¥_x(2) | is not degenerate
with x4 4(1) T ¥_x_4(2) | with phonon energy and will have electron-phonon interaction of
second-order perturbation energy

The mixing interaction of BCS theory of Cooper pairs may be written in
detail as follows (see Fig. 1).

Y(12) =) ax¥i ¥, |
k
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= (207 H{ar [Wr (D)5 (2) + Ve (2) ¥k (V)] + Qg [Trrg(D)¥-k-(2)  (4)

g ¥oag(1)] 4.} 220D,

The mixing coefficient is related to phonon (¢) addition and subtraction from elec-

tronic momentum and the ¥ and ¥4, states are not degenerate and will result in
second-order perturbation energy in the Hamiltonian with creation C* and annihi-

lation C' one-electron operators: (where k' = —k for zero total momentum)
1 1
D"’ +,CeCi_ C [ - ] , (B
qg:k' A (Bk — Ex—g—wy) (Ex' — Epryq +wy) ®

which is related to the second-order vibronic interaction | < (9H/8¢)q > |?/AE.
The Herzberg-Teller expansion for first-order vibronic interaction (§H/3¢)q is re-
lated to the BCS theory of first-order perturbation operator H' = i¥,D,C pd . qC'k(aq—
afq) which deals with non-degenerate electronic states, ¥ # k + g.

But, because we choose two-electron molecular geminal orbitals (Fig. 1) in-
stead of one-electron molecular orbitals we will have ¥4(1,2)x!(Q-a) which is
degenerate with 1 ,(1,2)x*(Qa). This yields degenerate perturbation matrix ele-
ment similar to Renner—Teller effect with double-well potential

62
FAe A = <‘I’°A(12)x @) |= 1 QIZQA e (12)x1(Q- A)>
E=E"+ Hepe gpe. (6)

This is beyond the second-order interaction of the BCS theory as well as Bipolaron
theory (see below). Because of the infinite crystal with cyclic boundary condition,
there will be much more vibrational pseudo-angular momenta A = 0,1,2,3...,
beyond the limited A = 0, ¥»(X*) and A = 1, v(x) (= Q» = Q41) vibrations of a
linear molecule.

The simple Hamiltonian we use is the Herzberg—Teller expansion of vibronic
interaction

H=Ho(reQ°)+;(%) QA+2EE(6QA60 )Q,\QA'+-~- (7)

We emphasize the use of such vibronic interaction for Renner-Teller splitting (and
Jahn-Teller splitting) of degenerate states similar to first-order perturbation and
with double-well potential.

To compare the bipolaron treatment [9] with ours, we will visualize the small
bipolaron treatment as follows:

H= Z(a+2ﬁcos A) b+bA+Ehw,\aAaA

h

A 1/2
+ ;; (‘7)\ + 26, cos T) (m) (ax +ay )bAbA, (8)
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where bl"\' and bp are creation and annihilation operators for the electronic wave-

functions
N-1

¥y = Z exp(27iAn/N)¢,, 9)
n=0

1
vN
where ¢, may be the linear combination of two ions that attract two electrons
(bipolarons). Therefore for pairs of electrons bt = C} Cg’ and b = C3C, where C*
and C are creation and annihilation for one electron only. Also

& = (¢n|Ho(reQ°)[¢n); B = ($ns1|Ho(reQ°)|gn)- (10)

af and a, are the creation and annihilation of vibrational wavefunction x”(Qax)
with v number of quanta for the normal mode vibration Q. The vibration related

terms are approximated
oOH OH
A n); 0= n A n />
(5:)|#): 8= (e (55),| )

B\ l/2
(—) = (@@ = (K @I@IC@), (1)

2mwy

T = <¢n

where Q) is defined in Eq. (1). Here the matrix element between ¢,41 and ¢,
is the interaction between displaced neighboring ions. Qur first-order Jahn—Teller
vibronic interaction may also be extended to the interaction between two degenerate
displaced oscillators and 6, (h/2mw,)!/? is related to the D, of BCS theory H' =
iEquqC,':' +qu (aqg — a’_Lq) which, however, deals with electronic momentum k and
vibrational momentum ¢q. The bipolaron theory deals, however, with local sites n
and nearest neighbor ions n & 1. Such bipolaron although treats pseudo-angular
momentum A related to momentum k, yet it does not emphasize zero momentum we
choose 14(1,2) and mixtures with zero momentum to satisfy the London equation.
In general this kind of bipolaron physical treatment we can simplify to

H= EAbXbA + Zhw;\aj\’a)\ + ZD)‘bXbA(a)‘ + aj). (12)
A A

The usual diagonalization by canonical transformation, we will consider as
S = b+bAZ—D"—(a+ —ay) (13a)
A " ﬁw,\ A !

that yields

bibaD?

=H°-H®.  (13b)
hw,\

&

=eSHe % = Exbfba+ Y hwrafar— )
A A
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This shows only the “second-order” vibronic interaction (AE) = hw,)

2
°(@))| ZEax I‘I’XI(Q,\»I
APFE, ’

(13¢)

Py |<‘I’x
A

However, in our treatment we want to emphasize the possibility of degenerate first-
order Renner—Teller and Jahn—Teller vibronic interactions that lead to double-well
potential. This is because of the degeneracy of ¥, electronic states mix with
degenerate Qx4 vibrational states to agree with A = 0 state with zero momentum
to satisfy the London equation.

2. The proposed model of linear combination of geminals
to form molecular geminals (LCG-MG) and the
proposed model of “Covalons”

To show the linear combination of (bonding) geminals we consider the 2¥ +2
hypothetical bonds between 2N + 3 “atoms” with a total of 2N + 2 higher energy
mobile electrons from the conjugate double, triple or quadruple [26] (7 and/or 6)
bonds or antibonds. These are the electrons besides the lower energy non-moving
o-bonding electrons. The consideration of higher energy electrons is still different
from the BCS theory of top Fermi level electrons. Our Bloch sum running wave
with linear combination of geminals to form molecular geminals (LCG-MG) is as
follows:

2N+1

1 z : 27iAn/(2N+2)
e Yy € én,n+1(112)
2N + 2 n=0

= \/_z‘_zs—ﬁzeik"a‘ﬁ"’"“(l’ 2) = We(1,2). (14a)

‘I’A(lw 2) =

This is different from the usual one-electron Bloch sum of nearly free electron waves.
Our bonding (or antibonding) geminal is

bunsi(12) = 56D 11(D) + 0n(Dbnss(D@sfa — frad)  (14b)

and A(=0,1,2,...,2N +1=10,%1,4£2,...,2N, N + 1) is the pseudo-angular mo-
mentum for cyclic boundary condition (of circumference 27 R = (2N + 2)a) related
to momentum p(= hk) as follows:

2
2rAh __ 2nAh _ 2m(Rx P), _RP _, (14c)

= BN +3a - 2R 2R R
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The (antiparallel) spin pairing of two electrons in a bond (or antibonding) in
®n nt+1(1,2) may be replaced by the two paired antibonding electrons (or antibond-
ing holes) of the unit cell of four (CuO3). In such a unit cell two Cut2(3d°) will give
two antibonding 3d;5_y2 electrons and two Cut3(3d®) will give zero antibonding
electrons or two antibonding holes. The energy of such a LCG-MG of a given A is

Er=E; =a+28cos = a + 28 cos(ka), (15a)

27A
2N +2
where « is the Coulomb energy and # is the resonance integral between nearest
neighbor geminals (neglecting next nearest neighbor and beyond)

B =< ¢nns1(1,2)Hbns1ns2(1,2) > . (15b)

Taking %o(1,2) with A = 0 as the basis, the quasi-particle for the ground state
containing vibronic interaction [27] with LCG-MG of A # 0 is called a vibronic
geminal as follows [28]:

TA(L 2 Q) |20 | Wo(1, 2)%(Q-
‘I’gr(1,2)=\110(1,2)+2< Al 2x( ;’)o’iql_;‘;Q ;L (1,2)x%( A)>
A T oA

+¥A(1,2)x(Q-4)- (16)

In addition, at high A # 0, there are also vibronic geminals which are degenerate

(Wo(1,2) | 2L Qn| ¥a(1,2x1(@-))
Exn+ ES - Eq
(U (1, DX (Q-1) | 52z QarQn| ¥a (1, 2)X'(@-0))
Exn+ ES, — Ep - ES,,

1/)0(1»2)

Wiae(1,2) = UaA(1,2)x1(Q-n) +

Tar(1,2)x1(Q-n),

+
Af

(%o(1,2)| oL Q-a| ¥-(1,2x'(Qn))

= 1
‘I’—l\‘(l’ 2) = ‘I'—A(lx 2)X (QA) + E_x+t ES _ &, ‘I’o(l, 2)
W_ar(1,2 ' : W_a(1,2)x!
< A( )X (QA )laq A OQ AQ AQ- AQI A( )X (Q )> \IJ_A,(I,Q)Xl(QA,).
E_A+ES—E_p - ES, (17a)

This kind of vibronic degeneracy is responsible for Renner—Teller effect with matrix
element similar to Eq. (6)

1 8°H
H+Ae —Ae = <‘~I’+A¢(1 2) }2 BQZ Q—A + .. .|\I’_A¢(1,2)> . (17b)
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The vibronic interaction is comparable to the electron—phonon interaction. The
vibrational running wave (Q) is taken to be the Bloch sum of the vibration of
local bonds (€41 — &n) instead of the motion of individual atom (£,) so as to be
comparable with the electronic running wave of bonds in LCG-MG

1 N1 2riAn

Qi = _2]\/_43 ';) exp(-2—N—+2)qn,n+1; Innt+1 = €ny1 — &n. (18)

Such local bond vibration may be the unit cell vibrations of quadrupole (CuO,)
structures. Such vibrational shortening or lengthening of bonds are related to the
bonding/antibonding due to the presence or absence of electrons or holes. Because
the vibronically mixed LCG-MG quasi-particle (vibronic geminal) is a Boson state,
it can accommodate any number of paired electrons. The total wavefunction for
2N + 2 electrons will be as follows

¥(1,2,3,...,2N +2) = A¥(1,2)¥(3,4)...¥(2N + 1,2N + 2), (19a)
where the normalization constant and antisymmetrizer is
-1/2 (2N+2)!
A= [(2!)<2N+2>/2 (%ﬂ) (2N + 2)!] > &P, (19b)

The choice of zero total angular momentum and linear crystal momentum (A—A =
0, hk = 0) is comparable to the choice of +k and —k for each of the two electrons
respectively in the Cooper pair. It leads to the London equation that requires
momentum P = 0

c N 1 e ..  nge? c
(Z;VxB_)J_—n,em(p+cA)_ A=A (209)
£ - _fvyvip-_ 2 1
=V VB=-C_VB= 4pVxA V’B = B, (20b)

where ) is the penetration depth to reach the Meissner effect of perfect diamag-
netism. The energy of the quasi-particle of LCG-MG (Eq. (16)) is in general as
follows

g,_E0+E [<"’Q <9 A>} Ent.... (21a)

In addition there will be the second-order Jahn—Teller effect [30, 31] interaction
energy

ng) - __<3Q AQ A>|

(\IIA(l 2)X1(Q—A)| Q A |%o(1,2)x%(Q- A))'
Er+ EQ — Eq

(21b)
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As an extension and special molecular structures we could also consider first-order
Jahn-Teller splitting of the degenerate W4,(1,2) states by degenerate Q424 vibra-
tions

!(‘I’:tA(ly 2)x!(Qx24)] 582E=Qu2a [T (1, 2)x%(Qx24)) |

(2) - _
E hwap

(21¢)

This may be compared with the tunneling interaction of displaced oscillators with
equal electronic energy and potential. Aside from the Jahn—Teller effect due to
the first-order Herzberg—Teller expansion (0H/0Q)Q, there should also be a first-
order energy due to the second-order Herzberg-Teller expansion for the special
case of doubly degenerate £+ vibrations and non-zero A £ A total pseudo angular
momentum.

B = (V1L DX (@) |5 — @@ 4 (L (@)X (@)

3Q>0Q_»
(21d)

This is different form the London equation requirement of zero (= A — A) total
pseudo angular momentum with operator 1/2(8?H/9Q3 ,)Q%, in Renner-Teller
effect (Egs (6) and (17)). The linear combination of the degenerate complex +A and
—A states can yield states with bonding/antibonding electron geminals at conjugate
resonant positions or at left versus right positions. Instead of the simple splitting
of degeneracy by vibration as in Peierls distortion, we shall consider the detailed
lowering of, for example, the ‘right’ position e.g. C — C = C state by the positive
antisymmetric vibration — C C —« C (and the simultaneous raising of the left
state C = C' — C). Similarly the equal level of lowering of the ‘left’ position state
C = C — C by the negative anti-symmetric vibration C —— C C — (and the
simultaneous raising of the right state e.g. C—C = C). This is similar to the Jahn-
Teller effect [27, 30, 31]. It results in a double-well potential with two equal minima:
one at the positive equilibrium (vibrational) position (+Qo) and one at the negative
(vibrational) equilibrium position (—Qp). This will be illustrated in Section 3 and
Fig. 2. Such a double-well potential resembles intervalent charge transfer [32]. We
believe such a double-well potential will always exist. For example, whenever a pair
of bonding electrons moves into a core ¢ bond it will tend to shorten the bond to
one of the double potential minimum positions. There will be a cooperative action
when the speed of the tunneling movement matches the velocity of vibration [33, 34].
When the zero point vibration of the ground state is raised up to vibrational level at
the top of the double-well potential barrier the antisymmetric vibration coordinate
becomes zero. The difference between left and right bonding length disappears and
there will be complete delocalization of the bonding electrons. As a result the quasi-
particle of (antiparallel) spin-paired two electron geminals may disintegrate. This
is because there will no longer be any localization of bonding/antibonding electron
pairs. An illustration of this vibronic geminal model is given in Section 3 and Fig. 2
that also shows the gap.

The above LCG-MG treatment is an alternative to the LCAO-MO. Next we
shall consider the extension of valence bond theory. We shall propose a Covalon
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Fig. 2a. Linear combination of four (7) bonding geminals and linear combination of vibrations of
four bonds (Q) in Cp — Cy — C; — C3 — Cy in the extension from a simple cyclic case to a linear
case. Both + and — signs of the coefficients indicate the (r) bonding amplitude phases. Only
when the two neighboring #-bonds have opposite phases (+ versus —) and a node, there will be

anti(#-)bonding between the two bonds. No + or — sign means no coefficient or no bonding

I
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Fig. 2b. When the above linear combinations of bonding geminals, 15 , are extended from a small
cyclic case to an infinite cyclic boundary condition of infinite linear chains, there will be degener-
acy of £A # 0. For example, the degeneracy of d:f‘ and q/zf‘ is similar to the linear combination
of (++) at k = 2xA/(Na} = n/a with A = N/2 resulting in (++)(——}(++)(——). The split-
ting of electronic ¢¥ and ¢} (which come from the linear combination of the degenerate states
of Fig. 2a) is based on the first-order Jahn—Teller effect. It results in a double-well potential.
Similarly, the Renner—Teller splitting of vibronic states ¥ x'(Q—;) and ¢_;x!(Q1) by opera-
tor 1/2(82H/8Q%,)Q%, is shown by the real vibronic states ¥z x! (Qz) and ¥yx'(Qy) by real

vibrations because Q?ﬂ ~ (x £ iy)? ~ (22 — y?) * 2i(xy) is related to Qr2—y2
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model [33, 34] that involves the dumping of (antiparallel) spin-paired electrons to
crowd around conjugate valence bonds (e.g. the hypothetical C=C*=C-C=C of
CsH7 in the illustration of Section 4) and to push the bonds away in cooperation
with vibration. The crowded bonds at position s, ¢} are taken to be the basis of the
Covalon. Their movement as a running wave is similar to the movement of Excitons
(35, 36]. Again we consider the hypothetical case of 2N +2 “bonds” between 2N +3
“atoms” with a total of two more 7 electrons than the 2N + 2 ‘mobile’ = electrons
in the previous LCG-MG treatment. This means the mobile 2N + 4 7 electrons
occupy totally N + 2 (alternating) conjugate resonance bonds. The Bloch sum of
the linear combination of the different localized crowded bonds is as follows [28]:

UA(L,2,... 2N +3,2N +4) = Ao 2§2ex 2miAs ) g
AL, 400, s - 2N + 3 p 9N +3 s

s=0

= ATV\/_I-F=3 Z,:exp(iksa')\ll:, (22a)

where the normalization constant and antisymmetrizer is

1 (2N+4)!

A= Jaor N T o 2 8P

p=1

(22b)

and
-3 2N 41

. S=odd ,,
U= [ tnmer [I 0 dmmen, (22c)

n=0,2... m=s+2,s+4...
2N+2

-3
» S=even .,
7= [ ¢nmer I ¢mmer (22d)

n=1,3... m=s+2,5+4...

The two crowded bonds with four electrons (1,2,3,4) are

L1 & .
¢; = m—!Eéwm-l(l)@(zw,(3)¢.+1(4)

X (a10203P4 + Prazfaas — a1faf3a4 — Brozasfy)
(23a)

and the (resonant or conjugate) bond with two (i and j) of the higher energy mobile
w electrons is

1 . . . .
bnnt1 = 3[bn(Dbnt1(3) + n(i)dn41())(iBly — Bis). (23b)
The general energy for such a Covalon state is
Ern=FEy=a+28"cos?2 2rA = o+ 28" cos 2ka’ (23¢)
* 2N +3 ’
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where 3" is the resonance integral between two alternating resonant crowded bonds
(A = A* = A) that have their “atomic” centers (A*) different by two atomic units.
This is similarto A= A*=A—-A=Aversus A=A—-A=A4"=A

A" = (¢51H|434,)- (23d)

The resonant integral between crowded bonds that differ by one ‘atomic’ unit will
involve too many differently placed conjugate bonds and will be smaller and is

neglected. Thismeans A=A*=A—-A=A—-Aversus A—A=A"=A-A=A
B = (6;1H|854,) ~ 0. (23e)

The so-called ‘bonds’ can be replaced by the paired bonding/antibonding elec-
trons/holes of a given unit cell. The so-called neighboring ‘atoms’ similarly can
be replaced by the neighboring unit cells.

pon Q e

0.5
/3 4y
2 3

W x @ Y =0* ;0

AN @ V=0 Puo
FY @ W‘4:¢‘4¢l.2
ARRAS

Fig. 3a. The illustration of Covalons using a hypothetical example similar to cyclic CsH,  with
six m-electrons. It is translated into a corresponding linear case similar to CsH; also with cyclic
boundary condition

To include vibronic interaction, we use again the same running-wave vibration
of bonds (Eq. 18) to match with our treatment of ‘bonds’. To satisfy the London
equation, again we choose A = 0 as the basis to mix with other A # 0 states through
vibronic interaction by Q_x:

¥(1,2,...,2N + 3,2N +4) = ¥o(1,2,...,2N + 3,2N + 4) (24)
¥Ax(Q-a) 55—8H Q-A| ¥ox(Q-a)
+2 < | -2 |Q >\IIA(1,2,...,2N+3,2N+4)x1(Q_A).
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Fig. 3b. The movement of paired electrons in a Covalon model in cooperation with the anti-
symmetric vibration. The degeneracy of left and right side of Covalon state before and after pair
electron transfer. The splitting of degeneracy results in double-well potential. The splitting AFp
of neighboring equal vibrations at zero quanta is smaller than AEy of n quanta. The raise to the
top of the potential barrier AE with delocalization and disintegration of the local Boson pairs is

related to the gap

In addition, at high A # 0, there will also be Covalon states that are degenerate
and will yield Renner—Teller effect. In addition, there will also be the second-
order Jahn-Teller vibronic interaction energy and first-order Jahn—Teller splitting
by antisymmetric vibration of the degeneracy of the two conjugate resonant Cov-
alon bonding states of +A and —A. We will consider for example, the left-handed
vibrational contraction (say +Q,) that will lower the energy of the left bonding
state (and raise the right bonding state). Similarly, we will also consider the op-
posite (say —Q,) right-handed vibrational contraction that will lower the right
bonding state (and raise the left bonding state). For example the positive vibration
— AAA—> A Afavors A = A— A = A = A and the negative vibration
A—A—AAA—-favors A=A =A— A= A. As aresult there will be an equal
minimum double-well potential state, which we will consider as the ground state
with zero-point vibration. There will also be a cooperative effect if the movement of
Covalon bonds coincides with the frequency of the anti-symmetric vibration. When
this zero-point vibration is raised to the top of the double-well potential barrier at
Q = 0, the difference between left-versus right conjugate bonding will disappear
and the Covalon quasi-particle state is disintegrated. This difference between the
potential minimum and the barrier top is considered to be the energy gap. An
illustrative example of the Covalon model is shown in Section 4 and Fig. 3.
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3. Ilustrative example of vibronic interaction and
double-well potential for linear combination of geminals
to form molecular geminals (LCG-MG)

To illustrate the vibronic interaction and double-well potential for LCG-MG,
consider the hypothetical case of CsH¥ (or linear CsH}) with cyclic boundary con-
ditions and four = bonding (higher energy) electrons besides the “core” ¢ bonding
electrons. For simplicity, first consider the reduction to a linear case where there
are only 4 bonds. The four possible linear combinations of these four bonds and the
linear combinations of the vibrations of these four = bonds in Co—C1 —C2—C3—C4
(Fig. 2a) are as follows (see Eqs (14) and (18)) (cyclic boundary condition assumed)

3
1 X
¥A(1,2) = Vi Z eImihn/ag  41(1,2), (25a)
3
1 27xiAn
= _ZZ AN/ g1 (25b)

Because the LCG-MG can be extended to infinity and the cyclic boundary condition
is applied, there will be +A and —A double degeneracy for all of the molecular
geminals of A # 0 (Fig. 2b). We shall name the two degenerate geminals as % (1,2)
and ¢f(1,2) instead of the sine function versus cosine function from the linear
combination of ¥4A(1,2) and ¥_4(1,2).

W, (cosine) = \/%[‘1'1(1, 2) 4+ U_y(1,2)] = 71_5[450,,(1,2) — $25(1,2)] = ¥F, (26a)

¥, (sine) = %[wl(l, 2) — ¥_y(1,2)] = %[451,2(1,2) — $34(1,2)] = WY, (26b)

U = [ 4+ 60.1(1,2) + 61,2(1,2) — 62,3(1,2) — ¢3,4(1,2) + .. .], (26¢)
YR = —01(1,2) — ¢1,2(1,2) + 62,3(1,2) + ¢3.4(1,2) + .. .]. (26d)

The vibronic interaction due to Q_, that gives rise to a paired two-electron quasi-
particle ¥(1,2) is as follows:

2 (WE (L 2X (@-n) |85 Q-4| ¥o(1,2X°(Q-0))
¥(1,2) = ¥o(1,2 -2
(1.2 =¥(1,9+ 3 Ty

x UX Py (Q-n), (27)

where the ¥Ax'(Q-a) and ¥_Ax'(Qa) are the degenerate vibronic states that will
have ‘first-order’ degenerate Renner—Teller interaction energy by operator
1/2(8?H/8Q3% ,)Q% A- The combination of A = +1 7-electronic state with A = +1
n-vibrational state will give four states with two sets of degeneracies X, ¥ and Ay,
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A or ©t, £~ and A*, A-. Figure 2 illustrates the real (not complex) vibronic
states in terms of # and y products. Because it is a Boson state, we can put all
other pairs of electrons into this quasi-particle to yield the state of the whole system

¥(1234) = [(2!)22!4!]'1/2i6,,P,,\II(1, 2)¥(3,4) (28)

= 371/2[W(1,2)¥(3,4) — ¥(1, 3)¥(2,4) — ¥(1,4)¥(3,2)].

The splitting of the two degenerate (L & R) electronic-geminal states by Qia
vibration is similar to Peierls distortion. As an extension of Peierls distortion, we
consider not only the raising of ¥y (and lowering of ¥g) by a positive vibration
but also the raising of ¥ g (and lowering of ¥ ) by a negative vibration (Fig. 2).
We also consider the interaction of ¥y and ¥ of the whole system resulting in two
equal-minimum double-well potentials. The figures are just qualitative illustrations,
the detailed numerical vibronic perturbation will be based on detailed and real
vibrational coordinates of the similar symmetry.

So far we have considered only four electrons. If we dump in more electrons
to add up to six electrons in, for example, the cyclic CsH; (or linear CsH7),
the conjugate bonding style will be different and there will be more crowding of
bonds (and more excitation to different atomic orbitals to satisfy Pauli’s exclusion
principle). But the total state based on the occupation of Boson quasi-particle is
similar to Eq. (28) (for a definitive D state)

¥p(123456) = [(2!)33!6!]‘1/2i:é,,P,,\IID(l,2)\IID(3,4)\I!D(5, 6) (29)

= 15_1/2{[‘11D(1, 2)\111)(3, 4) - ‘I’D(l, 3)‘1’1)(2, 4) - ‘I’D(l, 4)\I’D(3, 2)]\1’1)(5, 6)
- [¥p(1,2)¥p(3,5) - ¥p(1,3)¥p(2, 5)— ¥p(1,5)¥p(3,2)]¥p(4,6)
- [¥n(1, 2)¥p(5,4)— ¥p(1,5)¥p(2,4) - ¥p(1,4)¥p(5,2)]¥pn(3,6)
— [p(1,5)¥p(3,4) — ¥n(1,3)¥p(5,4) — ¥p(1,4)¥p(3,5)]¥n(2, 6)
—[¥p(5,2)¥p(3,4) — ¥p(5,3)¥p(2,4) — ¥p(5,4)¥p(3,2)]¥p(1,6)}.

4. Ilustrative example of the “Covalon” model for the
effect on the movement of covalent electron pairs

Consider the hypothetical special case of cyclic CsHy with six 7 electrons. It
can be translated into a linear case similar to CsH; but also with cyclic boundary
condition to imitate the infinite linear crystal chain (Fig. 3a). The ‘Covalon’ [33,
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34] running wave consists of Bloch sums as follows (see the general case of Eq. 22)

2710 A1
\/_{e p W; &5®P2 3 + exp 2mi

2w - 2 2miA -3, 2mi) - 4

¥,(123456) =

D13 4

+exp —/—— 5 ——P5P40 + exp 5 ———®3%P,1 + exp 39,2}
4
27iA - s
=A— —;,
A\/_ Z exp —— (30a)
where the normalization constant and antisymmetrizer are
6!
A=[41216]712) "6, P, (30b)
v=1
and for example
1 4!
®; = 5[4!]"1/2 > 6, P.$1(1)62(2)85(3)83(4) (31a)
v=1
X (a1P203P4 + Prazfaas — a1z P304 — Prazasfa),
1
@40 = 5[64(5)90(6) + 64(6)do(5))(esfs — Bscxe); %3 = D3%a,0. (31b)

This does not yet contain any vibronic interaction. But qualitatively, the antisym-
metric vibration will help the dumped-in extra pair of electrons to push the other
(double w-bonding) electrons to move along the chain. The structures at left and
right before and after the movement are doubly degenerate and can be split to
produce a double-well potential by this antisymmetric vibration (Fig. 3b).

To be more quantitative we shall derive the five Covalon states with A = 0,
+1,+2. Instead of complex wavefunctions with complex exponential coefficients, we
take linear combinations to get sine and cosine as coefficients. In order to visualize
the positional change of ‘bond’ movements we further take the linear combination of
the sine and cosine wavefunctions to get degenerate (+A) left versus right bonding
states (similar to Eq. (26)).

Because these Covalon states involve bonds, we will again consider the vi-
bronic mixing with vibrations of bonds (Eq. (18)). We shall take the ground state
running wave with A = 0 to be the basic state to combine with Covalons with A # 0
through vibronic mixing:

¥(123456) = ¥y (123456) (32)
(¥5 X @-n) I%’f—AQ—Al ¥ox(@-)) , p 1
+3 Fe—E, L7, ¥ER(123456)x(Q4)-
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5. Discussion

The above treatments deal mainly with the principles of the proposed models.
The actual application to (copper-oxide) high Tc¢ superconductors and numerical
calculations remain to be done. For example in LCG-MG, the two-electron geminal,
instead of being a Heitler-London type valence bond, may involve two electrons in
the antibonding molecular orbital of the copper oxide superconductor, e.g. 6Ag* of
the quadrupole CuO;. As a result Eq. (14b) may become

C——»—«—C:C——»—<—C=C—>—4—C=C—*—<—C

B

Fig. 4. Comparison of the cooperative charge transfer in a linear conjugate carbon chain and a
linear Cu—O chain. The antisymmetric breathing vibration of CuO4 will cooperate with the trans-
fer of two antibonding electrons from Cut to Cu®+t. The expanding vibration favors the entrance
of the antibonding electrons of Cu—O. In the case of the carbon chain the contracting vibration

favors the entrance of the bonding #-electrons

brmsr(1,2) = —}ieAg*(nsAg*(z)(alﬂz ~ Braa). (33)

Similarly, while we have taken the linear combination of the vibration of bonds
(Eq. (18)), for application to copper-oxide superconductors, we may translate the
local bond vibration into the CuQ, vibration in a unit cell of the lattice (Fig. 4).
This vibration is related to the movement of the antibonding electrons, similar to
the movement of 7 electrons in resonant conjugate = bonds (Fig. 4). The crystal
vibrations for the movement from local bonds to neighbors are different from the
local structure Jahn-Teller effects considered by Johnson et al [37, 38]. Their work
involves the splitting of the Jocal degeneracy electronic e, state of D4, symmetry
of CuO3 unit cell by v(bz,) and v(bsy) local vibrations. While we have emphasized
in Covalon theory the movement of crowded bond to nearest neighbors in regular
conjugate w-bonding structures, different anti-symmetric vibrations and different
resonance structures may favor different lengths of movement. The probability
of coherence length for movement to longer distance will of course depend on the

Acta Physica Hungarica 74, 1994



APPLICATION OF RENNER—TELLER AND JAHN-—TELLER EFFECT 445

resonant integral between the structures with different v-bond positions. Such pair-
wise electron/hole transfer has some similarity with the intervalent charge transfer
[39-42] between two molecules, but has many differences such as long range order,
vibronic interaction with infinite crystals, and electron-correlation of many body
system, etc. The latter are considered in our proposed LCG-MG and Covalon mod-
els. The tunneling of two-electron pair quasi-particles through the double potential
barrier reaching other potential wells at different lengths may also be related to the
Josephson effect [29].

Fig. 5. The conduction plane of the crystal with quadruple unit cell with two holes on one of
the quadruple CuO; and no hole in the neighboring quadruple CuO;. Such alternating on and
off of double holes is similar to the (alternating) conjugate resonance of double bonds with two

m-electrons

The review [16] of the doped structure in cuprate superconductors shows that
high T¢ occurs at about 0.2 holes per CuQO; unit. This means one hole per five
copper atoms. For the sake of symmetry in periodic structures of solids, we shall
consider the case of one hole per four copper atoms. To have two holes to simulate
the Cooper Pairs (of two electrons), we propose an idealized quadruple cluster cell
structure (Fig. 5). For example if we start with a basic quadruple perovskite-like
structure (La4Cu303)4, after doping, in order to satisfy electrical neutrality, we may
have the atomic charges arranged as follows: (Lat3);5(Sr*2)(Cut?)s(0~2)3:(07);.
This amounts to non-stoichiometric fractions La; g75Srp.125CuQO4 which is not incon-
sistent with the experimental superconductor Laz_;Sr;CuO4 (z = 0.006—0.2). The
O~ ion is a symbolic designation of a hole within the CuO; layer. In the quadruple
cell with 32 oxygens, if we place the holes on the top or bottom CuQ; layer, then
it will be the conducting layer with alternating zero hole and two holes per four
copper atoms (Fig. 5). We shall use this structure for the application of our prin-
ciples to high T'c superconductors. It is perhaps not a simple coincidence that such
a quadruple cluster cell [43] with the right number of conducting holes/electrons
can also be postulated for the hole superconductor, 123 compound (YBa;Cu3QOs.75)4
and the electron superconductor [44] (Nd+3);5(Cet*)(Cut?)g(Cut!)2(0~2)a1 s
which amounts to Nd; g75Ceg.125CuQ03 9375, (comparable to the experimentally pro-
ven superconductor Nd; g5Cep.15CuQ3 93). In all of these cases, the quadruple cells
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help to resolve the fractional atomic ratios of non-stoichiometry to produce paired
holes and electrons [43], and to yield a periodic series of quadruple cells with alter-
nating short versus long bonds that will produce double-well potentials similar to
those of intervalent (double) charge transfers.

Because each of the 3d° configuration of Cu*? has one 3d;2_y2 electron, in
principle [45] four Cu*? with four spins can have a total spin angular momentum of
S =2,1 and 0. One must also consider the magneton property and Meissner Effect.
In the switch from ferromagnetic to antiferromagnetic spin waves, the artificial
change of parallel to antiparallel spins (or change of signs from J to —J) in the same
artificial approximate Hamiltonian H = —2J 3" S, e S, does not necessarily
speak for the true dynamics and does not imply any basic mechanism. This is
because the change from parallel spin S = 2 (or § = 1) to antiparallel spin S =0
may require a second-rank tensor operator of small spin—spin magnetic (dipole-
dipole) interaction (or small first-order spin—orbit operator for AS = 1) [3, 46]
which is totally symmetric in a given point group. From the viewpoint of chemical
structure, we ask what point group symmetry of the superconducting lattice will
let the S =2 (or § = 1) and S = 0 structures have the same symmetry [47] and
will be connected by these small interaction operators.

The quadruple CuQO; lattice with four Cutt atoms can in principle have
Dy tetragonal symmetry. But, because the superconductor is of orthorhombic
symmetry (for example the 1, 2, 3 cuprate [48]) and because of the presence of
holes the quadruple CuQ; lattice may descend into the subgroup D2 symmetry. If
there is a Q(B,) vibration which correlates to the Ag symmetry of Cy;, subgroup,
then it will involve the descent from the higher symmetry D2, structure to the Cgp
structure for the quadruple CuQO;. In the latter, both the S = 2 and § = 1, can
have the same Ag symmetry as § = 0. This is illustrated in Table I [30, 47].

Table I
S=2 S=1 S=0
Don 2Ag + B1g + Bag + Bsy Big + B2y + B3y Ag
Can 3Ag + 2Bg Ag + 2Bg Ag

We shall consider the (antisymmetric) linear combination of such a Q(B,) type
vibration for its coupling with LCG-MG and with Covalons. The investigation of
such details and variations in actual application and the comparison with newest
developments [49] are now in progress.
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