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1. Introduction and comparison of  degenerate perturbation 
of  Renner-Teller effect with BCS and Bipolaron theory 

The BCS theory [1-6] for low temperature superconductors such as Nb3Sn 
deals mainly with essentially free electron pairs of opposite spins and opposite mo- 
menta in momentum space. It makes use of electron-phonon interaction to lower 
the energy of the ground state to create the superconductivity gap and to con- 
struct the Boson state of the Cooper pair quasi-particle consisting of two electrons. 
All of the (anti-parallel) spin paired electrons can occupy the same Boson state 
quasi-particle, and there will be no collision between paired electrons belonging 
to the same Cooper pair state. Because vibrations ate already included in the 
electron-phonon interaction of the Cooper pair state, further vibrational preven- 
tion of electron conductivity no longer exists. The electron-phonon interaction 
of paired electrons in the Cooper pair involves second-order perturbation for the 
mixing of different electron momenta through vibrational running waves with ap- 
propriate momenta. There will be an average long-range order and coherence effect. 
The total zero momentum of the Cooper pair (of two electrons one with +k and 
one with -k )  produces the London Equation for the current density (J) dependent 
only on the electromagnetic vector potential A. This then leads to the penetration 
depth to reach the Meissner Effect of perfect diamagnetism. We shall make use of 
some of the wisdom of the above theory for low Tc and propose new approaches 
for the theory of high Tc. For the high Tc  supercond~cting copper oxides [7-17] 
which are close to tight-binding molecular crystals with covalent bonds, we pro- 
pose to consider the quantum chemical position-space treatment of the movement 
of spin-paired bonding (of antibonding) electrons (of holes) affected by 'first-order' 
degenerate vibronic interaction of the Renner-Teller and Jahn-Teller perturbation 
besides the usual second-order perturbation. 

(1) As an alternative to the linear combination of atomic orbitals to form 
molecular orbitals (LCAO-MO) and to form electronic bands, we propose the lin- 
ear combination of (bonding/antibonding) two-electron geminals to form molecular 
(bonding/antibonding) geminals: LCG-MG. This differs from BCS theory which 
starts essentially free one-electron states in momentum space. 

(2) As ah extension of chemical valence bond theory and Resonating Valence 
Bond (RVB) theory of Anderson [18], we propose the linear combination of covalent 
electron bonds in a 'Covalon' model that involves detailed chemical structural effects 
on conjugate (of alternating) covalent bonds [19]. And we include the vibrational 
effect on deformations (changes in the lengths of unir cetls and/or structural bond 
lengths). This is also different from the Bipolaron theory [9] which deals with more 
ionic crystals. 

(3) As an addition to the electronic effects we include vibronic interaction. 
But, instead of the usual linear combination of individual atomic movements, we 
consider the linear combination of individual bond vibrations (of unit cell vibra- 
tions) to match our proposed linear combination of binding geminals and covalent 
bonds. 

(4) A s a  complement to Peierls distortion [20] we propose the consideration 
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of the Renner-Teller splitting of the doubly degenerate vibronic states and the 
Jahn-Teller splitting of doubly degenerate electronic states by negative as well as 
positive vibrations resulting in equal-minimum double-well potential as the ground 
state. Such deformation is still different from the Bisoliton theory [21, 22] that deals 
with acoustic vibrations. 

The Renner-Teller Effect in spectroscopy deals with (equal to and more than 
triatomic) linear molecules (along axis z) with cylindrical (Coo~ or Dooh) symmetry 
which has cylindrical electronic state r ~ exp(iAr with cyclic electronic angular 
momentum A = 0,1,2,3--- -- ~,II ,  A,(I)... with angle r Ir also has cyclic 
vibrational angular momentum A = 0, 1 = ~+, II. The non-zero vibrational angular 
momentum of doubly degenerate vibrations results from the linear combination of 
bending vibrations along x and y perpendicular to the linear molecular axis z, i.e. 

Q+. = Q• = Q~ 4- iQu = e :t:ir . 

A linear crystal with N atoms of cyclic boundary condition is similar to the 
cylindrical symmetry (of the x, y axes of linear molecules along z axis). The crystal's 
electronic and phonon states around the cyclic boundary also have pseudo angular 
momentum comparable with the true angular momentum of linear molecules. For 
example, the normal phonon mode of the crystal vibration with pseudo-angular 
momentum Ais: 

N-1 
1 e_.X.__{n2.i~. = 1 ~ e i k n a { n ,  q~ = Q~ = - ~  ~ ,/~ 

n~-O 

(1) 

where {n is the local atom n's movement. The linear molecule with ~r electronic 
state and v(~r)(= Q,  = Q+) normal mode will have two degenerate vibronic states 
such as r and ee_xxl(Q1 ) where xn(Q) stands for the vibrational state 
with n quanta. These will have mixing interaction of Renner-Teller Effect [23, 24]. 
It will be perturbed by a simply shown operator of Pople and Longuet-Higgins [25] 

H' = Ÿ  ~~(!'-*')  + e - ~ ~ ( ! ' - * ' ) ) / 2  = Ir2 cos 2(r - r (2a) 

which we will rewrite as 

H' 1 02 H 1 0 2 H  2 
- 20Q~---I~ &- '  + 2-0-~~ Q' (2b) 

for degenerate perturbation mixing matrix element 

<~~xl(Q-1)]~ ~ Q 2 ~  - 1  r r (3) 
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& ~  ~ - A  A~ 

:,,, QA"- -Ÿ Q.s 

"=-Qo 
electronic vibratior~l 

.t•_ A 

Q ~!_ - -  Q-A 

":'- Qo 
electronic vibrational 

l~,~(12)x'(Q.,~ degenerate with ~-~(12)x'(Q,~ 

Fig. la. The vibronic state O,~(12)xI(Q_A) with one vibrational quantum (1) and with overall 
zero pseudo-angular momentum A - A -- 0 is degener~te with ~e_A(12)xt(QA). They will have 
'first-order'degenerate vibronic perturbation by Renner-TeUer effect. The perturbation operator 

is 1/2(OIH/OQ~A)q~A 

"~k(1)#t k(2)i non-degene~te with "#,,q(1 )fltk-qC2)i 
electron kinetics electron kinetics 

Fig. lb. The Cooper pair with kinetic energy of momentttm k, Ok(1) T ~b_k(2) ~ is not degenerate 
with ~k+q(1) ~ O_k_q(2) ~ with phonon energy and will have electron-phonon interaction of 

second-order perturbation energy 

The  mix ing  in te ras  of  BCS theo ry  of  Cooper  pa i rs  m a y  be wr i t t en  in 
d e t a i l a s  follows (see Fig .  1). 

I 0 2 )  = F_,"~*~ T ,i_~ i 
k 
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= (2!)-I/2{ak[~k(l)@-k(2) + k~k(2)@_k(l)] + ak+q[@k+q(l)k~_k_q(2) (4) 

+~I/k+q(2)~I/-k-q(1)] + . . .  } ((~1~2 -- ~1~2) 
v~ 

The mixing coefficient is related to phonon (q) addition and subtraction from elec- 
tronic momentum and the Ck and Ck+q states are not degenerate and will result in 
second-order perturbation energy in the Hamiltonian with creation C + and annihi- 
lation C one-electron operators: (where k' = - k  for zero total momentum) 

= 2 E c+_.c~,c~.c~ qkk' +" -" (Ek -- Ek-q -- Wq) (EK, - Ek,+, + wq) ' (5) 

which is related to the second-order vibronic interaction I < (OH/Oq)q > [2/AE. 
The Herzberg-Teller expansion for first-order vibronic interaction (OH/Oq)q is re- 
lated to the BCS theory offirst-order perturbation operator H' = iEqDqC++qCk(aq - 
a+q) which deals with non-degenerate electronic states, k ~ k + q. 

But, because we choose two-electron molecular geminal orbitals (Fig. 1) in- 
stead of one-electron molecular orbitals we will have r193 which is 
degenerate with r237 2)xI(QA). This yields degenerate perturbation matrix ele- 
ment similar to Renner-Teller effect with double-well potential 

E = E ~ -4- H~:^.,+^.. (6) 

This is beyond the second-order interaction of the BCS theory as well as Bipolaron 
theory (see below). Because of the infinite crystal with cyclic boundary condition, 
there wi]l be much more vibrational pseudo-angular momenta A = 0, 1, 2, 3 . . . ,  
beyond the limited A = 0, v(E +) and A = 1, ~(~r) (= Q,  = Q+i) vibrations of a 
linear molecule. 

The simple Hamiltonian we use is the Herzberg-Teller expansion of vibronic 
interaction 

Q ~ + - ~ Z Z \ O Q - 7 ~ ~ ,  Q~Q~,+ . . . .  (7) H =  Ho(r~Q ~ + Z~ ~ o ~ ~, 

We emphasize the use of such vibronic interaction for Renner-Teller splitting (and 
Jahn-Teller splitting) of degenerate states similar to first-order perturbation and 
with double-well potential. 

To compare the bipolaron treatment [9] with ours, we will visualize the smaH 
bipolaron treatment as follows: 

A 

+ Z Z  7A+26ACOS--�9 fl k , ~ ]  (aA+a+)b+b^' (8) 
A A 
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where b + and b• are creation and annihilation operators for the electronic wave- 
functions 

1 N-~ 
gl^ = v f  �9 Z exp (2r iAn /N)r  (9) 

n----0 

where r may be the linear combination of two ions that  at tract  two electrons 
(bipolarons). Therefore for pairs of electrons b + = C +(~+ ,~~ and b = C~C~ where C + 
and C are creation and annihilation for one electron only. Also 

e, = (r176162 3 = (r162176162 (10) 

a + and a~ are the creation and annihilation of vibrational wavefunction x~(Q~) 
with v number of quanta  for the normal mode vibration Qx. The vibration related 
terms ate approximated 

OH 

1/2 ( 2 - ~ ~ )  = (x~ = (x'(Q~)IQ~[x~ (11) 

where Q~ is defined in Eq. (1). Here the matr ix element between Cn+l and en 
is the interaction between displaced neighboring ions. Our first-order Jahn-Teller  
vibronic interaction may also be extended to the interaction between two degenerate 
displaced oscillators and ~x(h/2rnw~) 1/2 is related to the Dq of BCS theory H '  = 
i~kqDqC++qCk(aq - a+_q) which, however, deals with electronic momentum k and 
vibrational momentum q. The bipolaron theory deals, however, with local sites n 
and nearest neighbor ions n 4- 1. Such bipolaron although treats pseudo-angular 
momentum A related to momentum k, yet it does not emphasize zero momentum we 
choose r 2) and mixtures with zero momentum to satisfy the London equation. 
In general this kind of bipolaron physical t reatment we can simplify to 

H= EAb+b  ̂+ Z hw~a+a~ + Z D~b+bA(a~ + a+). (12) 

The usual diagonalization by canonical transformation, we will consider as 

D~ ta + s = b~bA ~ ~ ~  ~ - o~), 
)t 

(13a) 

that yields 

__ b+b^D 2 _ H o _ H(2). (~3b) 
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This shows only the "second-order" vibronic interaction (AEx = hwx) 

2 

~ Qx (13c) 
x-" (~x~ on [~,xl(Qx)) 

H (2) 
Z.., AEx A 

However, in our treatment we want to emphasize the possibility of  degenerate first- 
order Renner-Teller and Jahn-Teller vibronic interactions that lead to double-well 
potential. This is because of the degeneracy of ~+A electronic states mix with 
degenerate Q~:A vibrational states to agree with A = 0 state with zero momentum 
to satisfy the London equation. 

2. The proposed  mode l  of  l inear combination of  geminals  
to  forro molecular geminals  (LCG-MG) and the  

proposed mode l  o f  "Covalons" 

To show the linear combination of (bonding) geminals we consider the 2N + 2 
hypothetical bonds between 2N + 3 "atoms" with a total of 2N + 2 higher energy 
mobile electrons from the conjugate double, triple or quadruple [26] (7r and/or  �91 
bonds or antibonds. These ate the electrons besides the lower energy non-moving 
a-bonding electrons. The consideration of higher energy electrons is still different 
from the BCS theory of top Fermi level electrons. Our Bloch sum running wave 
with linear combination of geminals to form molecular geminals (LCG-MG) is as 
follows: 

i 2 N + l  

~A(1, 2) -- ~/2N + 2 E e27riAn/(2N+2)r 2) 
rl----0 

_ _  i k n a  1 ~ ~  r 2) = ~~(1, 2). 04a) 

This is different from the usual one-electron Bloch sum of nearly free electron waves. 
Our bonding (or antibonding) geminal is 

r 2) = 1[r162 + r162 - fila2) (14b) 

and A(= 0, 1, 2 , . . . ,  2N + 1 = 0, :kl, + 2 , . . . ,  +N,  N + 1) is the pseudo-angular mo- 
mentum for cyclic boundary condition (of circumference 27rR = (2N + 2)a) related 
to momentum p(= hk) as follows: 

kh - 2rAh 2rAh _ 2~r(R x P)z _- __RP = p. (14c) 
(2N + 2)a 2~'R 2~'R R 
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434 YING-NAN CHIU 

The (antiparallel) spin pairing of two electrons in a bond (or antibonding) in 
r 2) may be replaced by the two paired antibonding electrons (or antibond- 
ing holes) of the unit cell of four (CuO2). In such a unit cell two Cu +2 (3d 9) will give 
two antibonding 3d~2-~2 electrons and two Cu+3(3d s) will give zero antibonding 
electrons of two antibonding holes. The energy of such a LCG-MG of a given A is 

Eh = Ek = a + 2/~cos - -  
27rA 

- ~ + 2/~cos(ka), (15a) 
2 N + 2  

where a is the Coulomb energy and /3 is the resonance integral between nearest 
neighbor geminals (neglecting next nearest neighbor and beyond) 

3 =<  Cn,n+l(1, 2)lHlCn+l.,+2(1,2) > .  (15b) 

Taking r 2) with A = 0 as the basis, the quasi-particle for the ground state 
containing vibronic interaction [27] with LCG-MG of A r 0 is called a vibronic 
geminal as follows [28]: 

qgr(1,2) ---- ~0(1,2) + E ( [~OH ] ~\~IA(I '2)xI(Q-A)'~176 

A Eo -- EA -- E_QA 

+ *A(1, 2)xi(Q-A). (16) 

In addition, at high A r 0, there are also vibronic geminals which are degenerate 

<~o(1,2) a--~AQA[ ~A(1,2)xl(Q-A)> 
~+A*(1, 2) = O/A(1, 2)xI(Q_A) + r 2) 

EA + EA Q - Eo 
O~H + E <~A'(I '2)xI(Q-A')  ~ Q A ' Q A  @A(I,2)xl(Q-A)> 

EQ , ~A,(1, 2)xi(Q-A,), 
A' EA + E_QA -- EA, -- -A 

@_A.(1,2) = q -A(1 ,2)x l (QA)+ <~0(1,2) a--~_AQ-A[ q_A(1,2)xI(QA)> ~0(1,2) 
E-A + E Q - E0 

8~H + E (q-A'(I'2)xI(Qh')]~ 

This kind of vibronic degeneracy is responsible for Renner-Teller effect with matrix 
element similar to Eq. (6) 

1 a 2 H  2 .+M.:<~+~.(1,~~~~~_~+ ..1o_~.(1,~, I (17b) 
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The vibronic interaction is comparable to the electron-phonon interaction. The 
vibrational running wave (Q) is taken to be the Bloch sum of the vJbratJon of 
local bonds (~n+l - ~n) instead of the motion of individual atom (~n) so as to be 
comparable with the electronic running wave of bonds in LCG-MG 

2N+1 
1 21riAn 

QA-- 2V~�9 Z e x p ( ~ ) q . , . + l ;  q n , . + l - - ~ . + 1 - ~ . .  (lS) 
n----0 

Such local bond vibration may be the unit eell vibrations of quadrupole (CuO~) 
structures. Such vibrational shortening of lengthening of bonds ate related to the 
bonding/antibonding due to the presence of absence of electrons of holes. Because 
the vibronically mixed LCG-MG quasi-particle (vibronic geminal) is a Boson state, 
it can accommodate any number of paired electrons. The total wavefunction for 
2N + 2 electrons will be as follows 

~(1, 2, 3 , . . . ,  2N + 2) = A~(1, 2)~(3, 4 ) . . .  ~(2N + 1, 2N + 2), (19a) 

where the normalization constant and antisymmetrizer is 

A_= [(2,)(2N-l-2)/2 (2N~2),(2N..]_2),] -1/2(2N'i'2)' 
-- ~ ~vP~. (195) 

The choice of zero total angular momentum and linear crystal momentum C A - A = 
0, hk = 0) is comparable to the choice of +k and - k  for each of the two electrons 
respectively in the Cooper pair. It leads to the London equation that requires 
momentum P - 0 

--~ V n.e2 A _ c 

c V e ~_~ x V B = - - Ÿ  - - V x A ;  V 2 B =  B, (20b) 
4~r 41r 4~r)3 

where A is the penetration depth to reach the Meissner effect of perfect diamag- 
netism. The energy of the quasi-particle of LCG-MG (Eq. (16)) is in general as 
follows 

Ear = Eo + Z EA + . . . .  (2la) 
A 

In addition there will be the second-order Jahn-Teller effect [30, 31] interaction 
energy 

~~~,_ I(~q-^/~ 
AE 

= _ [(~A(1, 2)xi(Q-^)[ ~Ÿ Q-A [~0(1, 2)x~ 2 
EA + E_QA - E0 

(21b) 
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As an extension and speciM molecular structures we could also consider first-order 
Jahn-Teller splitting of the degenerate ~+A(1, 2) states by degenerate Q+2A vibra- 
tions 

E (2) _ _ (~:t:^(1,2)xl(Q+2a)[ a_.~_~~A~.~OH ,~ 2A [@~A(1,2)x0(Q• ~ (21c) 

hW2A 

This may be compared with the tunneling interaction of displaced oscillators with 
equal electronii energy and potential. Aside from the Jahn-Teller effect due to 
the first-order Herzberg-Teller expansion (aH/OQ)Q, there should also be a first- 
order energy due to the second-order Herzberg-Teller expansion for the special 
case of doubly degenerate -t-)~ vibrations and non-zero A :t: ~ total pseudo angular 
momentum. 

E(1)=I~IIA(I'2)xI(Q)')x~ I OQ~ffQ_:, ~2H r191162191 I ~ A ( l ' ~  ~ 2)x~ (Q-~))  " 

(21d) 
This is different form the London equation requirement of zero (= A - A) total 
pseudo angular momentum with operator 1/2(02H/OQ~A)Q~A in Renner-Teller 
effect (Eqs (6) and (17)). The linear combination of the degenerate complex +A and 
- A  states cah yield states with bonding/antibonding electron geminals at conjugate 
resonant positions of at left versus right positions. Instead of the simple splitting 
of degeneracy by vibration as in Peierls distortion, we shall consider the detailed 
lowering of, for example, the 'right' position e.g. C -  C = C state by the positive 
antisymmetric vibration ~-- C C --+~--- C (and the simultaneous raising of the left 
state C = C - C). Similarly the equal level of lowering of the 'l› position state 
C =- C - C by the negative anti-symmetric vibration C --,~--- C C --, (and the 
simultaneous raising of the right state e.g. C - C  = C). This is similar to the Jahn- 
Teller effect [27, 30, 31]. It results in a double-well potential with two equal minima: 
one at the positive equilibrium (vibrational) position (+Q0) and one at the negative 
(vibrational) equilibrium position (-Q0).  This will be illustrated in Section 3 and 
Fig. 2. Such a double-well potential resembles intervalent charge transfer [32]. We 
believe such a double-well potential will always exist. For example, whenever a pair 
of bonding electrons moves into a core ~r bond it will tend to shorten the bond to 
one of the double potential minimum positions. There will be a cooperative action 
when the speed of the tunneling movement matches the velocity of vibration [33, 34]. 
When the zero point vibration of the ground state is raised up to vibrational level at 
the top of the double-well potential barrier the antisymmetric vibration coordinate 
becomes zero. The difference between left and right bonding length disappears and 
there will be complete delocalization of the bonding electrons. Asa result the quasi- 
particle of (antiparallel) spin-paired two electron geminals may disintegrate. This 
is because there will no longer be any localization of bonding/antibonding electron 
pairs. An illustration of this vibronic geminal model is given in Section 3 and Fig. 2 
that also shows the gap. 

The above LCG-MG treatment is an alternative to the LCAO-MO. Next we 
shall consider the extension of valence bond theory. We shall propose a Covalon 
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00 

z-boncls 

Fig. 2a. Linear combination of four (Ir) bonding geminals and linear combination of vibrations of 
four bonds (Q) in Co - C1 - C2 - Ca - C4 in the extension from a simple cyclic case to a linear 
case. Both + and - signs of the coeflicients indicate the (Ir) bonding amplitude phases. Only 
when the two neighboring lr-bonds have opposite phases (+ versus - )  a n d a  node, there wiU be 

anti(~r-)bonding between the two bonds. No + or - sign means no coeflicient or no bonding 

(• i =-bonds : (~  

�9 "" ~ - - .  ~ - - - < ~ Z : ~ ~ ~ 2 ~ ~ ~ -  �9 �9 
~o 

x y 

�9 /�9 
Fi$. 2b. When the above linear combinations of bonding geminals, CA, ate extended from a small 

cyclic case to ah intinite cyclic boundary condition of in¡ linear chains, there will be degener- 
acy of +A r 0. For example, the de8eneracy of eL and r  is similar to the linear combination 
of (++)  at  k = 2~rA/(Na) = =/a with A = NI2  resulting in ( + + ) ( - - ) ( + + ) ( - - ) .  The split- 
ting of electronic CŸ and Ct y (which come from the linear combination of the degenerate states 
of Fi8. 2a) is based on the first-order Jahn-Teller effect. It results in a douhle-well potential. 
Similatly, the Renner-Teller splitting of vibronic states Ct X l (Q-1 )  and r  1 (Ql)  by opera. 
tor 1/2(02H/OQ~I)Q~t  is shown by the real vibronic states ~=X 1 (Q=) and ~byxl(Qy) by real 

vibrations because Q~:I ~" (x 4- iy)2 ~ (x2 - lff) 4- 2i(=y) is related to Qz~-y2 
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model [33, 34] that  involves the dumping of (antiparallel) spin-paired electrons to 
crowd around conjugate valence bonds (e.g. the hypothetical C=C*=C-C=C of 
C5H7 in the illustration of Section 4) and to push the bonds away in cooperation 
with vibration. The crowded bonds at position s, r ate taken to be the basis of the 
Covalon. Their movement as a running wave is similar to the movement of Excitons 
[35, 36]. Again we consider the hypothetical case of 2N + 2 "bonds" between 2N + 3 
"atoms" with a total of two more r electrons than the 2N + 2 'mobile' ~r electrons 
in the previous LCG-MG treatment. This means the mobile 2N + 4 ir electrons 
occupy totally N + 2 (alternating) conjugate resonance bonds. The Bloch sum of 
the linear combination of the different localized crowded bonds is as follows [28]: 

1 2N+2 f 27riAs 
@ ^ ( 1 , 2 , . . . , 2 N + 3 , 2 N + 4 ) = A  2x/~ � 9  E e x P \ 2 - � 9  @~ 

s----0 

= A 2Nv,~" ~ 1  E exp(iksa')@: 

where the normalization constant and antisymmetrizer is 

1 (2N+4)! 

A= /4!(2!)N(2N+4) ! E euPu 
# = 1  

and 
s - 3  2N+I 

S=odd . ,  

~: = r II  ,.,~ II  
n=0,2.., rn=s+2,$+4... 

s - - 3  2 N + 2  
S----even . 

~: = *. II  *o,o+1 II  
n = l , 3 . . ,  r n = s + 2 , $ + 4 . . .  

The two crowded bonds with four electrons (1,2,3,4) are 

4~ 

r = - - ~  ESuPur162162162 
2V/-~.I = 1 

(22~) 

(22b) 

r (22c) 

r (22d) 

• (~1~2OL3~4 "~- ~I~2]~30~4 -- 0t1~2/~3~ 4 -- ~ 1 ~ 2 ~ 3 ~ 4 )  

(23a) 

and the (resonant or conjugate) bond with two (i and j)  of the higher energy mobile 
e lectrons  is 

r = l [ r162  + r162 - flq (23b) 

The general energy for such a Covalon state is 

EA Ek a + 2  ~ ' 'c  " 21rA = = p os z 2N +---~ - a + 2ff '  cos 2ka', (23c) 
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where ti" is the resonance integral between two alternating resonant crowded bonds 
(A = A* = A) that  have their "atomic" centers (A*) different by two atomic units. 
T h i s i s s i m i l a r t o A = A * = A - A = A v e r s u s A = A - A = A * = A  

~" = (~,;IHl~;+=). (23d) 

The resonant integral between crowded bonds that differ by one 'atomic'  unit wi]l 
involve too many differently placed conjugate bonds and will be smaller and is 
neglected. This means A = A* = A - A = A - A versus A - A = A* = A - A = A 

~" = (~ , * IH I ,~ ;~~)  ,-, 0. (23e) 

The so-called 'bonds'  can be replaced by the paired bonding/antibonding elec- 
trons/holes of a given unit cell. The so-called neighboring 'atoms' similarly can 
be replaced by the neighboring unit cells. 

0,5 

O ~ 0' 5 12~3 4 ~/* :--"O* 3 eP~ 

Fig. 3a. The illustration of Covalons using a hypothetical example similar to cyclic CsH~" with 

six ~-electrons. It is translated into a corresponding linear case similar to C6H~" also with cyclic 
boundary condition 

To include vibronic interaction, we use again the same running-wave vibration 
of b o n d s  (Eq. 18) to match with our t reatment  of 'bonds'. To satisfy the London 
equation, again we choose A = 0 as the basis to mix with other A ~ 0 states through 
vibronic interaction by Q-A: 

@ ( 1 , 2 , . . . , 2 N +  3 ,2N + 4) = @ 0 ( 1 , 2 , . . . , 2 N  + 3 ,2N + 4 )  (24) 
/ 

+ Z ~ ~ ^ x l ( Q - A )  ~Ÿ Q - ^  ~ ~ 1 7 6  ~ A ( 1 , 2 , . . . , 2 N  + 3 ,2N + 4)xI (Q_^) .  
A E o  - E A  -- EQ_A 
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.~. ',a2, 

Fig. 3b. The movement  of paired electrons in a Covalon model in cooperation with the anti- 
symmetric vibration. The degeneracy of left and  right side of Covalon s tate  before and  after pair 
electron transfer. The spl i t t ing of degeneracy results in double-well potential.  The spli t t ing AE0 
of neighboring equal vibrat ions at  zero quan ta  is smaller than  AEn of n quanta.  The raise to the 
top of the potent ia l  barr ier  A E  with delocalization and  disintegration of the local Boson pairs is 

related to the gala 

In addition, at high A # 0, there will also be Covalon states that are degenerate 
and will yield Renner-Teller effect. In addition, there will also be the second- 
order Jahn-Teller vibronic interaction energy and first-order Jahn-Teller splitting 
by antisymmetric vibration of the degeneracy of the two conjugate resonant Cov- 
alon bonding states of +A and -A.  We will consider for example, the left-handed 
vibrational contraction (say +Q~) that will lower the energy of the left bonding 
state (and raise the right bonding state). Similarly, we will also consider the op- 
posite (say - Q ~ )  right-handed vibrational contraction that will lower the right 
bonding state (and raise the left bonding state). For example the positive vibration 

A A A --~ A *-- A favors A = A - A = A = A and the negative vibration 
A ~ A ~ A A A --~ favors A = A = A - A = A. Asa  result there will be an equal 
minimum double-well potential state, which we will consider as the ground state 
with zero-point vibration. There will also be a cooperative effect if the movement of 
Covalon bonds coincides with the frequeney of the anti-symmetric vibration. When 
this zero-point vibration is raised to the top of the double-well potential barrier at 
Q = 0, the differenee between left-versus right conjugate bonding will disappear 
and the Covalon quasi-particle state is disintegrated. This difference between the 
potential minimum and the barrier top is considered to be the energy gap. An 
illustrative example of the Covalon model is shown in Section 4 and Fig. 3. 
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3. I l lustrative example  o f  vibronic interaction and 
double-wel l  potent ial  for l inear combinat ion of  gemlnals  

to  forro molecular  geminals  (LCG-MG)  

To illustrate the vibronic interaction and double-well potential for LCG-MG, 
consider the hypothetical case of C5H + (or linear C5H +) with cyclic boundary con- 
ditions and four ~r bonding (higher energy) electrons besides the "core" a bonding 
electrons. For simplicity, first consider the reduction to a linear case where there 
are only 4 bonds. The four possible linear combinations of these four bonds and the 
linear combinations of the vibrations of these four 7r bonds in Co - C1 - C2 - C3 - C4 
(Fig. 2a) are as follows (see Eqs (14) and (18)) (cyclic boundary condition assumed) 

3 
1 ~ 2x i An /4~  [1 ~^(1,2) = ~ 2. .  e ~.,.+~~., 2), (25a) 

n----0 

3 

Q,~ = ~ ~ e2'a '̂~/4q,,,~+l. (25b) 
v~Z=_-0 

Ber the LCG-MG can be extended to infinity and the cyclic boundary condition 
is applied, there will be +A and - A  double degeneracy for all of the molecular 
geminals of A ~ 0 (Fig. 2b). We shall name the two degenerate geminals as CA L (1, 2) 
and CAR(I, 2) instead of the sine function versus cosine function from the linear 
combination of r 2) and r  

�9 l(cosine) = [~1(1, 2) -{- ~_1(1,  2)] = ~ [ r 1 6 2  = @ Ÿ  (26a) 

�9 l(sine) = ~-v~[~i(1,2) - @-x(l,2)] = [~bi,2(I,2)- r -- ~~, (26b) 

~L = [' '  "+ r  r  r 2) -- r 2) + . . . ] ,  (26c) 

�9 ~ = [ . . . .  r  r  r  r  . . . ] .  (26d) 

The vibronic interaction due to Q_h  that gives rise to a paired two-electron quasi- 
particle ~(1 ,2)  is as follows: 

2 

A=l E0 - EA - E_Q^ 

• ,~~'Rxl(Q_^), (27) 

where the r and ~b_AXI(QA) are the degenerate vibronic states that  will 
have 'first-order' degenerate Renner-Teller interaction energy by operator 
1/2(02H/OQ~:A)Q~:A. The combination of A = =t=1 7r-electronic state with A = -4-1 
lr-vibrational state will give four states with two sets of degeneracies E, E and A+, 
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A or ~+, Ÿ and A+, A-. Figure 2 illustrates the real (not complex) vibronic 
states in terms of x and y products. Because it is a Boson state, we can put all 
other pairs of electrons into this quasi-particle to yield the state of the whole system 

4~ 

@(1234) = [(2!)~2!4!] -1/9 ~ 6~P~@(1, 2)@(3, 4) 

= 3-1/~[@(1, 2)@(3, 4) - @(1, 3)@(2, 4) - @(1,4)@(3, 2)]. 

(28) 

The splitting of the two degenerate (L & R) electronic-geminal states by QIA 
vibration is similar to Peierls distortion. As an extension of Peierls distortion, we 
consider not only the raising of @L (and lowering of @R) by a positive vibration 
but also the raising of @R (and lowering of @L) by a negative vibration (Fig. 2). 
We also consider the interaction of @L and @R of the whole system resulting in two 
equal-minimum double-well potentials. The figures ate just qualitative illustrations, 
the detailed numerical vibronic perturbation will be based on detailed and real 
vibrational coordinates of the similar symmetry. 

So lar we have considercd only four electrons. If we dump in more electrons 
to �91 up to six electrons in, for example, the cyclic CsH~ (or linear CsH~-), 
the conjugate bonding style will be different and there will be more crowding of 
bonds (and more excitation to different atomic orbitals to satisfy Pauli's exclusion 
principle). But the total state based on the occupation of Boson quasi-particle is 
similar to Eq. (28) (for a definitive D state) 

6~ 
@0(123456) = [(2!)33!6!] -1/2 E ~. Pv@D (1, 2)@0(3, 4)@0(5, 6) (29) 

= 15-1/2{[@o(1, 2)@0(3, 4) -- @o(1, 3)@0(2, 4) @o(1,4)@D(3, 2)]@0(5, 6) 
-- [@D(1, 2)@D(3, 5) -- @O(1, 3)@0(2, 5) -- @O(1, 5)@D(3, 2)]@D(4, 6) 
-- [@9(1, 2)@0(5, 4) -- @O(1, 5)@0(2, 4) -- @O(1,4)@0(5, 2)]@9(3, 6) 
-- [@D(1, 5)@0(3, 4) -- @O(1, 3)@0(5, 4) -- @O(1, 4)@D(3, 5)]@0(2, 6) 
-- [@0(5, 2)@D(3, 4) -- @0(5, 3)@0(2, 4) -- @0(5, 4)@0(3, 2)]@O(1, 6)}. 

4. I l l u s t r a t i v e  ex_Ample o f  t h e  " C o v a l o n "  m o d e l  for t h e  
ef fect  o n  t h e  m o v e m e n t  o f  c o v a l e n t  e l e c t r o n  pairs  

Consider the hypothetical special case of cyclic CsH~- with six ~r electrons. It 
can be translated into a linear case similar to CsH~" but also with cyclic boundary 
condition to imitate the infinite linear crystal chain (Fig. 3a). The 'Covalon' [33, 
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34] running wave consists of Bloch sums as follows (see the general case of Eq. 22) 

1 2~' iA0r162 27riA. 1 . 
�9 ~,(123456) = A ~ { e x p  - - ~  o ~,3 + exp  --'----~~(I:}1r 4 

2 z i A  �9 3 r 1 6 2  2~riA �9 4 r 1 6 2  . 
2 z i A ' 2 ~ ] r  3 o , l + e x p - - - - ~ - -  4 1,2) + exp 5 

_5~ ~~i~.~o. = A exp 5 " (30a) 

where the normalization constant and antisymmetrizer ate 

A = [4!2!6[] -1/2 ~ �91 
v = l  

(30b) 

and for example 

4~ 
1 

r ---- ~[4!] -1/2 ~ ]  ~~P~r (1)r162162 
Y----1 

(3la) 

1 
(1~4, 0 = 2[r162 ) + ~4(6)~0(5)](O~5~ 6 -- ~50~6); ~~ = (]~~(I~4, 0. (31b) 

This does not yet contain any vibronic interaction. But qualitatively, the antisym- 
metric vibration will help the dumped-in extra pair ofelectrons to push the other 
(double z-bonding) electrons to move along the chain. The structures at left and 
right before and after the movement ate doubly degenerate and can be split to 
produce a double-well potential by this antisymmetric vibration (Fig. 3b). 

To be more quantitative we shall derive the five Covalon states with A -- 0, 
-t-1, 4-2. Instead of complex wavefunctions with complex exponential coeflicients, we 
take linear combinations to get sine and cosine as coefficients. In order to visualize 
the positional change of 'bond'  movements we further take the linear combination of 
the sine and cosine wavefunctions to get degenerate (4-A) left versus right bonding 
states (similar to Eq. (26)). 

Because these Covalon states involve bonds, we will again consider the vi- 
bronic mixing with vibrations of bonds (Eq. (18)). We shall take the ground state 
running wave with A -- 0 to be the basic state to combine with Covalons with A ~ 0 
through vibronic mixing: 

�9 (123456) -- ~o(123456) (32) 

2 

A=I Eo -- EA -- E_qA " ~A' (123456)x'(Q-A).  
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5. D l s e u s s l o n  

The above treatments deal mainly with the principles of the proposed models. 
The actual application to (copper-oxide) high Te superconductors and numerical 
calculations remain to be done. For example in LCG-MG, the two-electron geminal, 
instead of being a Heitler-London type valence bond, ma}, involve two electrons in 
the antibonding molecular orbital of the copper oxide superconductor, e.g. 6Ag* of 
the quadrupole CuO2. A s a  result Eq. (14b) may become 

C - C C ~ C = C  ." ~ C -~ C__~_C ~ 

Z 

Fig. 4. Comparison of the cooperative charge transfer in a linear conjugate carbon chain anda 
linear Cu-O chain. The antisymmetric breathing vibration of CuO4 will cooperate with the trans- 
fer of two antibonding electrons from Cu + to Cu 3+ . The expanding vibration favors the entrance 
of the antibonding electrons of Cu-O. In the case of the carbon chain the contracting vibration 

favors the entrance of the bonding lr-electrons 

1 
O,,n+l( l ,  2) = 726Ag*(1)6Ag*(2)(a1~~. - ~la2).  (33) 

Similarly, while we have taken the linear combination of the vibration of bonds 
(Eq. (18)), for application to copper-oxide superconductors, we ma}, translate the 
local bond vibration into the CuO2 vibration in a unit cell of the lattice (Fig. 4). 
This vibration is related to the movement of the antibonding electrons, similar to 
the movement of 7r electrons in resonant conjugate ~r bonds (Fig. 4). The ctysta/ 
vibrations for the movement from local bonds to neighbors ate different from the 
local structure Jahn-Teller  effects considered by Johnson et al [37, 38]. Their  work 
involves the splitting of the local degeneracy electronic e s state of D4h symmetry 
of CuO2 unit cell by v(b29) and v(bag) local vibrations. While we have emphasized 
in Covalon theory the movement of crowded bond to nearest neighbors in regular 
conjugate ~r-bonding structures, different anti-symmetric vibrations and different 
resonance structures ma}" favor different lengths of movement. The probabi]ity 
of coherence length for movement to Ionger distance wil[ of course depend on the 
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resonant integral between the structures with different 7r-bond positions. Such pair- 
wise electron/hole transfer has some similarity with the intervalent charge transfer 
[39-42] between two molecules, but has many differences such as long range order, 
vibronic interaction with infinite crystals, and electron-correlation of many body 
system, etc. The latter are considered in our proposed LCG-MG and Covalon mod- 
els. The tunneling of two-electron pair quasi-particles through the double potential 
barrier reaching other potential wells at different lengths may also be related to the 
Josephson effect [29]. 

Fig. 5. The conduction plane of the crystal with quadruple unit cell with two holes on one of 
the quadruple CuO~ and no hole in the neighboring quadruple Cu02. Such alternating on and 
off of double holes is similar to the (alternating) conjugate resonance of double bonds with two 

lr-electrons 

The review [16] of the doped structure in cuprate superconductors shows that 
high Tc occurs at about 0.2 holes per CuO2 unit. This means one hole per five 
copper atoms. For the sake of symmetry in periodic structures of solids, we shall 
consider the case of one hole per four copper atoms. To have two holes to simulate 
the Cooper Pairs (of two electrons), we propose ah idealized quadruple cluster cell 
structure (Fig. 5). For example ir we start with a basic quadruple perovskite-like 
structure (La4Cu2Os)4, after doping, in order to satisfy electrical neutrality, we may 
have the atomic charges arranged as follows: (La+3)ls(Sr+2)(Ca+2)s(O-2)31(O-)l 
This amounts to non-stoichiometric fractions Lal.sr CuO4 which is not incon- 
sistent with the experimental superconductor La2_~SrxCuO4 (x = 0.006-0.2). The 
O-  ion is a symbolic designation of �91 hole within the CuO2 layer. In the quadruple 
cell with 32 oxygens, if we place the holes on the top of bottom CuO2 layer, then 
it will be the conducting layer with alternating zero hole and two holes per four 
copper atoms (Fig. 5). We shall use this structure for the application of our prin- 
ciples to high Tc superconductors. It is perhaps n o t a  simple coincidence that such 
a quadruple cluster cell [43] with the right number of conducting holes/electrons 
can also be postulated for the hole superconductor, 123 compound (YBa2Cu306.75)4 
and the electron superconductor [44] (Nd+3)ls(Ce+4)(Cu+2)6(Cu+l)2(O-~)31.5 
which amounts to Ndl.azsCe0.1~sCuO3.ga75, (comparable to the experimentally pro- 
ven superconductor Ndl.ssCe0.15CuO3.93). In all of these cases, the quadruple cells 
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help to resolve the fractional atomic ratios of non-stoichiometry to produce paired 
holes and electrons [43], and to yield a periodic series of quadruple cells with alter- 
nating short versus long bonds that will produce double-well potentials similar to 
those of intervalent (double) charge transfers. 

Because each of the 3d 9 configuration of Cu +2 has one 3dx2-~2 electron, in 
principle [45] four Cu +~ with four spins can have a total spin angular momentum of 
S -- 2, 1 and 0. One must also consider the magneton property and Meissner Effect. 
In the switch from ferromagnetic to antiferromagnetic spin waves, the artificial 
change of parallel to antiparallel spins (of change of signs from J to - J )  in the same 
artificial approximate Hamiltonian H = - 2 J  ~ ,  S ,  �9 S~+1 does not necessarily 
speak for the true dynamics and does not imply any basic mechanism. This is 
because the change from parallel spin S = 2 (or S = 1) to antiparallel spin S = 0 
may require a second-rank tensor operator of small spin-spin magnetic (dipole- 
dipole) interaction (or small first-order spin-orbit  operator for A S  = 1) [3, 46] 
which is totally symmetric in a given point group. From the viewpoint of chemical 
structure, we ask what point group symmetry  of the superconducting lattice will 
let the S = 2 (or S = 1) and S - 0 structures have the same symmetry [47] and 
will be connected by these small interaction operators. 

The quadruple CuO2 lattice with four Cu ++ atoms can in principle have 
D4¡ tetragonal symmetry.  But, because the superconductor is of orthorhombic 
symmetry (for example the l, 2, 3 cuprate [48]) and because of the presence of 
holes the quadruple CuO2 lattice may descend into the subgroup D2h symmetry. Ir 
there is a Q(Blg)  vibration which correlates to the Ag symmetry of C2h subgroup, 
then it will involve the descent from the higher symmetry D2¡ structure to the C2h 
structure for the quadruple CuO2. In the latter, both the S = 2 and S = 1, can 
have the same Ag symmetry  as S = 0. This is illustrated in Table I [30, 47]. 

"rabie I 

S = 2  S = I  S = 0  
D2h 2Ag + Blg + B2g + Bag B19 + B29 + Bag Ag 
C2h 3Ag + 2Bg Ag + 2Bg Ag 

We shall consider the (antisymmetric) linear combination of such a Q(Blg)  type 
vibration for its coupling with LCG-MG and with Covalons. The investigation of 
such details and variations in actual application and the comparison with newest 
developments [49] are now in progress. 
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