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Methods ate analyzed to find the pulse shape and chirp of the exciting light pulse 
to generate a given vibrationa[ state o f  a molecule during Franck-Condon transitions. An 
example is given for generation of vibrational Schroedinger-cat states. Their remarkab]e 
feature is that they have simultaneously two distinguishable distances of the atoms in a 
diatomic molecule due to quantum mechanical superposition. 

1. I n t r o d u c t l o n  

A wide interest was addressed to wave packet formation and motion during 
Franck-Condon transitions in both theoretical and experimental points of view [1- 
4]. The nonclassical features of the emerging vibrational wave packets predicted in 
[1] have been experimentally found in [5]. 

The wave packet formation of the vibrational state is directly connected to 
the problem of one-dimensional representation [6, 7] of quantum states through the 
quasiclassical (coherent) states. It  was shown [6-11] how the quantum interference 
between the coherent states involved in the superposition leads to the occurrence 
of non-classical features. 

In this paper  we shall discuss the possibilities to plan the shape and phase 
properties of the exciting laser pulse to achieve a given vibrational state after the 
electro-vibrational transition in molecules. As we shall see special states with rather 
peculiar properties can be created by appropriately chirped pulses with compara-  

tively long duration. 
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2. F r a n c k - C o n d o n  t rans l t lon  

Let us consider the problem of a Franck-Condon transition in a diatomic 
molecule inducecl by a short coherent light pulse. The adiabatic rnodel Hamiltonians 
of a two-level one-mode electro-vibrational system we use have the following second 
quantized forros in terms of the annihilation phonon operators b associated with 
the vibrational potential of the excited states (i ande denote the initial and excited 
electronic levels respectively) 

= 2~~~(b l+b) ,  ~ = i v ~ ( b  l - b ) ,  (1) 

Mw2 2 
Hi = ei + - - -~qi  + 

Mo; 1 
+2hw(btb-F bb t) + hwqiV ~ ( b t  q- b), (2) 

H, -- r -t- l hw(btb q- bbt), (3) 

where q and/~ are the coordinate and momentum operators. For the sake of simplie- 
ity it is supposed that due to the electronic transition i ~ e there is only shift (qi) 
in the harmonic vibrational potential and no frequency change. The Hamiltonian 
of the initial state can be diagonalized by the unitary operator 

fik --" e - g ( b t - b ) ,  (4) 

g =  qi 

Here g is the displacement parameter. The vibrational ground state of the initial 
electronic level is 

10)i = AI0)~, (5) 

where 10), is the vibrational ground state of the exeited electronic level. 
The Hamiltonian H~(t) describing the interaetion with the external field has 

the form 

H'(t) = ~ + ~di,E (t)aia,, (6) 1-di,E(t)a~ai 1 * * "  t 

where 
E(t) = e(t) exp(-if~0t), (7) 

al(,) is the annihilation operator of the i(e)-th electron level, die the dipole matrix 
element of the electronic transition, le(t)12 and f~0 are the envelope funetion and the 
central frequency of the exciting pulse. Let li) and le} be the ground and excited 
electronie states of the molecule. Assuming that initially, at t = -oo,  the system is 
in the ground state Ii}i, aster the exciting pulse has passed the electronic-vibrational 

Acta Ph~aiea Hungarica 7~, 199~ 



PLANNING OF NONCLASSICAL VIBRATIONAL STATES 411 

wave function takes the following form according to the first order perturbation 
theory: 

I~, t)  = Ii, t )10 ) , -  q (8) 
lf~l / 

Here I{E(t)})e is unnormalized vibrational wave function of the molecule of the 
excited electronic state in the interaction picture: 

s I{E(t)})~ - drexp(i6r)e(r)Jv~(r))r 
(3O 

(9) 

where �91 is the difference between the zero phonon line and the exciting pulse cen- 
tral frequencies, I~)eoh is a coherent state with respect to the phonon operator 
b(bl~)coh = /31/~)eoh ) and a(v) = ge -i~~. The expression {E(t)} inside the ket- 
vector I{E(t)})c shows that the state depends on E(t) a s a  functional. 

For further considerations it is convenient to rescale the vibrational wave 
function by substituting r = wr  as follows 

s 1 f(r (10) 
I { E ( t ) } ) ~ - I r )  = ~ oo 

The coherent states [re i#) and [re i(r k -- +1, + 2 . . .  are identical, there- 
fore we can rearrange the pulse function f ( r  in the following form 

h(r = ~ f ( r  (11) 
k = - ~  

Shifting the index k is equivalent to shifting the argument with 2~r therefore h(r 
is periodical. It can be readily seen that  this function has the following property 

: f f(r162 = h(r162 (12) 
O0 

The right side of Eq. (12) describes a state that  is superposition of coherent 
states of the same amplitude r. All these coherent states are on the same circle 
on the phase-spece called a-plane. The weight and phase of a given coherent state 
in the superposition is determined by the distribution function h(r These circle 
superpositions f o r m a  whole one-dimensionM representation [6, 7] and for a given 
state one can find the corresponding h(r If we can find ah experimentally easily 
realizable pulse function f ( r  leading to the aimed h(r one can design the quantum 
state itself. 
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The distribution function h(r has the following form, considering that  a 
periodical function is in question: 

oo 

A(r = ~ A~~ '~*. (13) 
k--oo 

It corresponds to the following Fock state expansion 

Ir �9 

k = 0 ~  ~) 
(14) 

The terms hk for k > 0 give no contribution to the state ]r 

oo 

Ir = le[h0]), h0(r = h(r + ~ h k e  'k*, (15) 
k = l  

where h~ ate arbitrary constants. It means that  the distribution functions h0(r 
and h(r lead to the same state. This fact can be used e.g. to eliminate complexity 
from h(r (if h0 is real, then selecting hk = h*_ k for k > 0), or with proper selection 
we can keep Ih(r well over zero. I f the  state Ir is given in form of Fock coefficients, 
we can easily calculate the corresponding function h(r The very question is how 
to design the proper light pulse to induce the required state, i.e. how to find a 
suitable pulse to build up a required vibrational state. 

3. Envelope functton method  

In this Section we define a general and simple unwrapping method to find the 
pulse function f ( r  supposing that the distribution function h(r is given. Let us 
select an arbitrary funetion g(r for that  

/ ~ y(r < ~. (16) 
OQ 

Now we give a formula for I(r that fulfils Eq. (11) 

~ (F +- ) 
/ ( r  = f2~176 g(y)dy \jr g(y)dy h ( r  env(r162 (17) 

The factor containing the integration formula can be considered as a special envelope 
function. It can be easily shown that  this formula is correct. By summing up both 
sides of the equation and considering that  h(r is periodical we obtain 

oo L ' .  g(v)dy 
h(r = ~ I (r  + n2~) - oo .(-T~T~h(~) = h(r (18) 

~=_. f:~ g(v) y 
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From the definition above it becomes clear that several functions g(r result in the 
same env(r Any modifying function ro(y) can be added to g(y) keeping env(r 

invariant if fr Jr m(y )dy  = 0 

f:+_[ g(v)~v + o :+" g(v) + ~(v)dv 
enu(q~) 

f~_~ g(y)dy + 0 - f~_~ g(y) + m(y)dy " 
(19) 

If h(r is smooth itself then it can be unwrapped by a simple function g(y) to get 
a smooth and experimentally easy to realize f(r Let us choose a simple function, 
for example g(y) = e -al~l then 

1 [r { 1 - e -a'~ch(ar 
env(r = P Jr g(y)dy = e_alr ' 

Ce [-'~, 'd, (2o) 
otherwise, 

where we denote f_~176 g(y)dy by p. 
If h(r contains glitches then multiplying by a smooth envelope function the 

unwrapped function will keep the same hard to realize character though a compli- 
cated generating function g(y) can unwrap a glitchy distribution function into a 
smooth pulse function f(r 

As an example we find the generating function that is able to unwrap the 
glitchy distribution function 

C O  

h(r = Z e-Z(r (21) 
k = - e ~  

to the corresponding smooth pulse function from which it was wrapped 

f(r : e -~r (22) 

We start from the basic de¡ of the unwrapping 

/ ( r  _ h(r (23) 

Dividing the equation by h(r and differentiating both sides of the equation by r 
in first order 

g(r +~) - g ( r  ~) 
p h(r 2 

= f(r162 - h(r162 = S(r (24) 

Using Eqs (21-22) we obtain 

co k 4~//(r Ek=-~ f(r + 2k.) 8(r (25) 
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We can assume lim~--.oo g(r = 0 therefore the recursion 

g ( r  _ g ( r  - 2 ~ )  

P P 
+ s ( +  - ~) 

can be continued and finally the term a(r vanishes. So we get P 

g(r = ~ s ( r  - (2k+ 1>) = 
P k=0 

= 4 ~ f l ~ ~ o  f ( r  - (21 + 1)~) ~m~176 kf(r + (2k - 21 - 1)~) 
~ ( r  _ ~ )2  

(26) 

4. U n w r a p p i n g  to  a G a u s s l a n  f u n c t i o n  

In the previous Section we saw that  a whole class of pulse functions can result 
in the same distribution function h(r the unwrapping process is not unambiguous. 
VŸ the former process we can get complex f ( r  functions with simply behaving 
phase (supposing h(r has such one) and inconvenient amplitude properties. In this 
Section we will search for f ( r  in the following form 

I(r162 (2s) 

where C is ah unknown real constant and A(r a h  unknown real function. We 
consider u given. This case corresponds to a Gaussian exciting laser pulse laser 
with complicated chirping behaviour. 

First we analyze in detail what happens on the complex number plane C when 
we execute the wrapping. Function h(r is a periodical complex function, therefore 
we have a closed curve on the plane C. F o r a  given argument of h(r it is built by 
infinite small vectors (the elements of the sum in Eq. (11)). Let us denote the full 
length of the elementary vectors by L0(r 

oo 

L0(,) = ~ e -u(~+2k')~. (29) 
k------oo 

Giving A(r means we describe how to direct the elementary vectors of C, how to 
bend the curve. If we choose C too small then we cannot reach the curve of h(r 
even by a straight superposition, therefore our first condition will be 

CL0(r - Ih ( r  > 0. (30) 

It gives a lower limit for C. We choose C 

(Ih(r (31) c - min L L - - ~ ]  . 
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We denote the angle fulfilling this condition by C0 and we select it in the domain 
[-ir, Ir]. If there are more than one an arbitrary one can be selected of them. For 
C = C0 + 2klr all the vectors have the same direction, 

A(C0) = A(C0 + 2klr) = arg(h(C0)). (32) 

For C # C0 + 2k~r the full length of the elementary vectors is longer than Ih(C0)[. 
For simplicity we broke the curve into two straight segments. Ir means for a given 
C all the elementary vectors use two phase angles 

•Al(C) fo rO<C0 ,  
A(r = A2(r for r > r 

(33) 

where Al(C) and A2(C) ate 2r  periodic functions. First we calculate the lengths of 
the two constituting segments 

{ ~=oo Ce_.(~_2k~)2 
E k = 0  

L~(C) = k=oo Ce_,,(~_2k.)~ 
Ek----1 

{ k=oo Ce_U(~+~k.)~ 
E k = l  

L2(C) = k=oo Ce_U(~+2k.)2 
Ek=O 

for C < C0, 

for C > C0, 

for C < C0, 
(34) 

for C > C0. 

Now the angles Al(C) and A2(C) can be calculated by the sine and cosine theorem 
by introducing two functions 

and 

From here 

(L~(C)  2 + L~(C) 2 - Ih(C)l~~ 
o~1(C) 

/L2(r sin(~,(r ~2(c) = arcsin ~lh---(~ ). 

(35) 

(36) 

(39) 
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I h ( @  > IL1(r - L2(r 

A1 (C) = arg(h(r -4- a2(C) (37) 

and 
A2(C) : Al (C)  - 71" -4- ~1(C) = arg(h(C)) 4- (~1(C) -~- ~2(C)) -- ~- (38) 

This process in some cases cannot be used. If we break the curve into two segments 
then not only maximal distance condition (Eq. (30)) exists but also one for the 
minimal distance because of the cosine theorem 
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Fig. 1. The Wigner function of the vibrational state created by a relatively long, linearly chirped 
light pulse during a Franck-Condon transition. The chirp was chosen to match the pulse duration 
so that a two-peaked distribution function could lead to a vibrational Schroedinger-cat state. The 

fringes in the middle of the picture are originated forro the quantum mechanical interference. 

In this case the curve may  be broken into three or more parts.  A too large parameter  
u can result in one very long segment comparing to the others, and in this case no 
A(r can be found. 

A s a  physical example we consider a vibrational s tate  with two-peaked dis- 
tribution function h(r  which has an unwrapped pulse function f ( r  of forro of 
Eq. (28) with quadrat ic  A(r function. This corresponds to a long linearly chirped 
exciting pulse function e(t). In Fig. 1 we show the final Wigner function of the 
resulting vibrat ional  state. The Wigner function is a function of a complex vari- 
able ~. An integral of the Wigner function by the imaginary axis of the ~-plane 
yields the absolute square of the wave function in q-representation, i.e. I~(q)l 2. 
Due to the quan tum mechanical interference a fringe pat tern appears  between the 
Gaussian-like bells representing the two parts  of the superposition states in the 
Wigner function picture. This fringe pat tern  is t ransformed characteristically when 
the positions or the phase of the involved coherent states ehange. 

In Fig. 2 the t ime evolution of the unnormalized wave function of a state is 
shown during the excitation by such a chirped pulse 

(q l{E( t )} , t ) ,  -- d r e x p  ( i6r)  exp ( -  t 2 + i-~t2)(ql~(r))r (40) 
o o  

with rer pulse duration u = 0.1, chirp w = 0.546w and parameters  g = 3w 
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Fig. 2. The time evolution of the absolute square of the unnormalized vibrational s tate  in 
coordinate~representation during a Franck-Condon transition due to a specially chosen chirped 
exciting pulse a) at  t imes t = + t o T ;  b) at times t = 4-m T + T T '  m ---- 1,2 . . . .  The time is shown 
in the units of the vibrational period T. One can see that  as the pulse passes the state evolves 
into a Schroedinger-cat state with well defined double distance between the atoms s t  the turning 

points of the vibration (Fig. 2a) 

a n d  ~ --  9w.  W e  c a n  see t h a t  by  a c h i r p e d  pu l se  o n e  c a n  ex c i t e  t h e  v i b r a t i o n a l  

s t a t e  d u r i n g  a F r a n c k - C o n d o n  t r a n s i t i o n  i n t o  a r a t h e r  p e c u l i a r  s t a t e  w i t h  t w o  well-  

d i s t i n g u i s h a b l e  d i s t a n c e s  b e t w e e n  t h e  s a m e  a t o m s  o f  t h e  m o l e c u l e  a t  t h e  s a m e  m o -  
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ments  of  t ime. Such state is a complete  analog of the widely discussed optical  
Schroedinger-cat  s tates  [1, 8-11]. Moreover, these two distances may  enable one to 
create chemical Schroedinger-cat  states by some process depending on the distance 
between the a toms  in the molecule [12]. 

5. Conclusion 

In the F r a n c k - C o n d o n  transi t ion in t roduced by a short  light pulse different 
pulses with different electric field s t rengths  E(t)  can lead to the same vibrat ional  
I~/  of  the excited electronic level. We have given two different me thods  making  
possible designing a pulse funct ion E( t )  tha t  excites the desired vibrat ional  state. 
The  first me thod  uses an envelope funct ion tha t  cuts off the periodical  dis t r ibut ion 
function h(r  in =Loo. This  me thod  can be used in any case, and via the possibility 
of  choosing an a rb i t ra ry  generat ing function,  a wide range of  possible E(t)  results. 
The  other me thod  uses a fixed Gaussian envelope function, and the ampl i tude  as 
well as the phase behaviour  of  the complex E( t )  funct ion ate found. In some cases 
this latter procedure m a y  rail, but  usually results in experimental ly  more  easily 
realizable E(t) .  We used the vibrat ional  Schroedinger-cat  state as an example to 
demonst ra te  the opera t ion  of  these techniques. 
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