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Expressions are developed for the magnet ic  dipole line s t rengths  of rotat ional  transi- 
tions in the A-band (0-0 band)  of the atmospheric oxygen (b 1E + - X a E~" ) system. The line 
s t rengths  so derived incorporate effects of spin-uncoupling and  orb i t - ro ta t ion  interaction 
besides, of course, spin-orbi t  pe r tu rba t ion  and  ate absolute in the sense tha t  the  domi- 
nan t  t ransi t ion moment  and  intensity parameter  which enter  the formulae are explicitly 
expressed in terms of the mutua l  per turbat ions  characterizing the b and  X states. Since 
S-branch t ransi t ions  (necessarily) of electric quadrupole chaxacter, have also been detected 
in the  A-band (Braul t  [11]), we have included a general discussion of b ranch  line s t rengths  
for the electric quadrupole intercombinat ion t ransi t ion 1E + - a ~ - .  

1. I n t r o d u c t i o n  

The ground electron configuration . . .  (a92p)2(~ru2p)4(Irg2p) 2 of 02 gives rise 
to the normal state X3E~ and the two (metastable) 'singlet oxygen' states alA~ 
and blE +, in the ascending order of their energies. Since all these states carry the 
same vibronic parity label ('g' in this case), transitions among them are rigorously 
forbidden by the electric dipole selection rules but do occur through the much 
weaker, magnetic dipole (M1) and/or electric quadrupole (E2) mechanisms [1-3]. 
In particular, the intercombination transition blE + - X 3 E ~  giving rise to the well- 
known atmospheric oxygen bands [4] is predominantly of M1 character and owes its 
occurrence to spin-orbit mixing between the blE + and X3~~0 states. Incidentally, 
this mixing also results in a second order contribution to the spin-splitting parameter 

of X3]C~. Thanks to accurate ab initio calculations [5,6], the b : X perturbation 
is well characterized. The b - X transition thus affords a happy instance wherein 
one is in a position to make reliable prediction of absolute intensities of some of the 
bands. 

On the experimental side, the observation of the b - X transition in the 
solar (absorption) spectrum and in nightglow and auroral (emission) spectra [2], 
prompted Miller, Boese and Giver to measure systematically the absorption in_ 
tensities of lines in the 0-0, 1-0 and 2-0 bands [7-9]. While seeking a fit of the 
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measured intensities of lines in the A-band (0-0 band) to theory, Miller et al [7] 
noticed that  for N"  > 11, the observed intensities of PP and PQ lines tended to be 
systematically larger than the values computed on the basis of the rigorous HSnl- 
London factors published by Watson [10]. This suggested that  it might prove useful 
to include the effect of rotational perturbations in the line strength theory for the 
blE + -X3~]~ transition and explore possible generalizations. This forms the major 
theme of the present paper. In the wake of detection by Brault [11], of a few pure 
E2 lines belonging to the TS branch in the A-band, we have thought it worthwhile 
to present a derivation of the line strength formulae for a general intercombination 
E2 transition of the kind 1)-]+ - -  3 ~ - 2 - - .  

With great reverence and admiration we dedicate the present work to Profes- 
sor Istv• Kov• a s a  token tribute. His masterly elucidation of multiplet structure 
and line intensity in the theory of the rotating diatomic molecule has been a constant 
source of inspiration for subsequent researchers in the field. 

2. T h e o r y  

2.1. Perturbed rotational eigenfunctions 

In the absence of perturbations, the M1 operator cannot connect states dif- 
fering in their spin multiplicities. The present discussion is limited to treating the 
interaction between the b and X states. Further generalizations will be explored 
in due course. In the non-rotating molecule, the electronic states blE + and X3~~ 
(f~ = 0) are already mixed by spin-orbit perturbation (H,o). Accordingly we may 
write 

Ib l~g + >0----- cosOIbl~ + > +sin01X3Z~0 >, (la) 

IXaE~-0 >o = cos01X3~~0 > -s in01blE + > .  (lb) 

In the above equations the left hand side kets carry the subscript 0 in anticipation of 
the fact that  these are to form the zeroth order basis functions for the subsequent 
calculations. Also, we have chosen to express the mixing coeflicients in terms of 
trigonometric functions and 8 is defined by 

sin2O = 2 < bXr+lH, o]X3r-~o >/AT(b ,  X),  (2) 

where AT(b, X)  = Tb -- Tx is the term value difference between the b and X 
(strictly the f~ = 0 component) states. In the absence of rotation, the states bl~ + 
and X3~~ (f~ = +1) cannot mix since H,o can cause only 'homogeneous' (Af$= 0) 
perturbations [12]. To calculate the branch intensities for the b - X transition, 
we actually need the rovibronic wave functions which ate eigenfunctions of the 
rovibronic Hamiltonian [13] 

H = He~ + (2,~/3)(3S~ - S 2) + B(J  - S) 2 + 7(J  - S) .  S (3a) 

= Ho - (B - 7/2)(J+S- + J_S+). (3b) 
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The vibronic part Hev in (3a) includes the spin-orbit term H,o. All the 'diagonal' 
terms in (3a) ate lumped in the part H0 of (35). Whenever necessary eentrifugal 
corrections [13] may be added to (3a) of (35). As outlined in [13], in effecting the 
diagonalization of (3) it is useful to work with the following rotation-electronie basis 
functions having well-defined rovibronic inversion parities [14-16]. 

IbiE+JMe >0= [cosOlblE + > +sin01X3E~0 >]IOJM >, (4a) 

IX3E~IJMe >= 2-112[IX3E~IJM > +]X3E~_IJM >], (45) 

IX3E~IJMf >= 2-tl2[[X3E~IJM > -IXaE-~_~JM >], (4c) 

IX3EoJMe >o = [cos0]X3E~o > -s ina lb lE + >]IOJM > .  (4d) 

In what follows, we shall suppress the M label, for the sake of brevity. Note the 
functions (4a) to (4d), supplemented by the appropriate vibrational parts, are eigen- 
solutions of H0. The spin-uneoupling part - (B - 7/2)(J+S- + J_S+) in (35) has 
matrix elements conneeting (4a) and (4b) eaused by the presenee of IX3~-~oJe > in 
(4a) a s a  contaminant. To allow for this (in the ¡ order), we 'transform' to the 
(first order) 'perturbed' basis functions (written with subseript p) 

IblE+je >p= IblE+gJe >o-~x/J(J + 1)sinOIX3E~lJe >, (5a) 

IX3E-~IJe >p= IX3E-gtJe > +~V/J'(J + 1)sin O[bl~+je >o, (5b) 

with 
r = 2(Bx - 7/2)/AT(b, X). (6) 

The rovibronic eigenfunction of the state b and the intermediate coupling eigen- 
functions corresponding to the three rotational term series of X ate now given by 

IblE+j'e,v ' >p-Ibt~3+J'e >p Ibv' >, (7) 

IX, Ft(J)e,v" >= [sJIX3Z~xJe >p +ejIX3~2~oJe >0]lXv" >, (8a) 

IX, F2(J)y, v" >=  IX~E~xJy > IXv" >, (85) 

IX, Fa(J)e,v" >= [e$1X3•;1Je >p -s~lX3E-~oJe > 0 ] l X v "  > �9 (8e)  

The eoeflieients si  and ej are defined in [13], in terms of the speetroseopie param- 
eters of the X state. 

2.2. Magnetic dipole line strengths 

The general ideas underlying the caleulation of electric dipole line strengths 
as expounded by Kov• [12], Hougen [14] and Whiting and Nicholls [17] may be 
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readily adapted to the magnetic dipole case. The M1 operator is given by [18], 
M = pB(L  + 2S) and the line strength by 

S ( f J ' ,  i J )  = 3 E l  < f J ' M [ M z ] i J M  > 12, 
M 

(9) 

involving the matrix elements of anyone space-fixed component, say Mg = PB (Lz  + 
2Sz), between the initial and final states. PB is, ofcourse, the Bohr magneton. The 
use of Hund's case (a) basis functions requires that  we first express M z  in terms of 
the molecule-fixed components Mr and the direction cosines a R r a s  [17] 

M z  = M,  a z ,  + 2-1/2(M~: + iM~) �9 2-i/2(trz~ - i a z y ) +  

2-1/2(Mx - iMy) .  2-1/2(crzx + iazy) .  (10) 

In the context of the b - X transition we may achieve further simplification by 
exploiting the fact that  the perturbed eigenfunctions (7) and (8) are linear combi- 
nations of the perturbed basis functions (4c), (4d), (5a) and (55). This suggests 
that  we first arrive at the effective 'perturbed' amplitudes A(bO+e - X f~e / f ,  J)  
corresponding to each subtransition IblE+J'e, v' >p---* [X3E~nJe/ f ,  v" >p. Here 
.4 stands f o r a  generic branch symbol like P, Q of R. Since M i s  an axial rector 
operator (inversion parity +), we have the obvious selection rules A J  = 0, -4-1 with 
no change of inversion parity. For the b - X system, this implies that  the A J  = 0 
(Q-branch) transitions should correspond to the combination e - e while those hav- 
ing AJ  = 4-1 (R of P-branch) should go with e - f .  Additionally, in the b and 
X states of 02, only 'positive' rotational levels can occur [1]. Since the operator 
M is made up of L and S, even the vibronic part of the matrix elements of the 
molecule-fixed components of M in (10) can be explicitly evaluated except for the 
vibrational overlap factor. The procedure described in [17] leads to the following 
perturbed subamplitudes (neglecting terms in e s) 

Q(bO+e - XO+e, J)  = - ( K ~  cos 0)[J(J  + 1)(2J + 1)]1/2, (1 la) 

Q(bO+e - X l e ,  J)  = K ( 2 J  + 1)1/2(1 - ~), (115) 

P(bO+e - X l f ,  J)  = - K ( J  + 1)1/211 + e(J - 1)], (1 le) 

R(bO+e - X l f ,  J)  = K J1~2[1 - ~(J + 2)]. ( l ld )  

Here 
K = 2pB(sin 0) < bv'lXv" > .  (12) 

Note that sin 0 of cos 0 is already fixed by (2) and r by (6). Note also that  K includes 
the vibrational overlap factor. From the relations (1 l b)-(1 ld) in conjunction with 
(12) we observe, with Klotz et al [6], that  the b - X transition is essentially made 
up of the 'spin-flips' XaE~0 - X3E~+I . 

The large spin-orbit matrix element of 175.6 cm-x between the X and b states 
[6] and their relative promixity are factors which dictate that the b : X interaction 
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' r a b i e  I 
Perturbed amplitudes for the magnetic dipole subtransitions 

bt E+o J 'e  - Xar2nJ(e or l )  

Transition? Amplitude l 

R ( b O + e  - X1], J) KJZD[1 - ? - ((J + 2)] 
P(bO+e- X l t ,  J) - K ( J  + 1)tD[1 - .  + r  1)] 
Q(bO+e - Xle ,  J) K ( 2 J +  1)1/2(1 - ti - ~:) 
Q(bO+r - XO+e, J) -Kx[J(J  + 1)(2J + 1)]i/2 

I For the notation see text .  
K = 2pB(sinO) < bv'[Xv" > with ~B = eh/4~mc (Bohr magneton) 
ti = 8- t /2[atcot0 < bz~+[L-Itl-lg > +az < X3E~-IL-ISIIg > 

+~£ < 3rlglL+ IX3r~ - >] 
r = [2(Br - "//2)/~T(b, X)] + �91 ', 1II)- 2 - t D o t c Ÿ  *eot8 

with 6(ZHI,1H) = 1 when tl'I I - tl-I and = 0 otherwise. 
X -- (cos 0){2(Bx - 7/2)/AT(b, X) + 2 -1 [oŸ <1 II;q [b t Z + > 

z + t , -dŸ  s I I g l L+ IXaE~  > ] }  - c t  < XaE~'IL-laFIg > +di < b E a IL-[ Hg > < 

T a b l e  I I  
I.ntermediate coupling magnetic dipole line 

strengths for the atmospheric oxygen 
(b lEg  + - X a ~ . ~ )  s y s t e m  

Branch Line strength I 

RR2(J) 
PP2(J) 
RQt(J) 
PQs(J) 

K2 J[1 - ti - C( J + 2)] 2 
K2(J + 1)[1 - r /+ r  - 1)]2 
K2(2J + 1)[(1 - ti - ()sj  - X c j V J ( J  + 1)]2 

K2(2J + 1)[(1 - ti - ~)CJ "~" X S J ~  1)12 

t K, ~, C and X are defined in the footnote to Table I 

should d o m i n a t e  the  p e r t u r b a t i o n  process.  In a more  r igorous  approach ,  s p i n - o r b i t  
and  o r b i t - r o t a t i o n  p e r t u r b a t i o n s  caused by fa r ther - ly ing  s t a tes  m a y  have to  be 
incorpora ted  in the  in tens i ty  theory.  T h e  necessary genera l i za t ion  a long these lines 
is t r ea ted  in the  A p p e n d i x .  The  p e r t u r b e d  s u b a m p l i t u d e s  inc lud ing  these a dd i t i ona l  
in te rac t ing  s t a t e s  a te  given in Table  I. T h e  general ized i n t e r m e d i a t e  coupl ing  line 
s t r eng ths  for the  four branches  PP,  PQ, RR  and  RQ t h a t  f inal ly  resul t ,  a t e  given 
in Table  II. 

g.3. Electric quadrupole line strengths for l E +  _ 3 lE-  transitions 

In the i n t r o d u c t o r y  Sect ion we had  d rawn  a t t en t i on  to  the  ident i f ica t ion  by 
Braul t  [11], of  T S  b ranch  t r ans i t i ons  in the  A-ba nd .  These  t r ans i t i ons  have A J  = 2 
and necessar i ly  o r ig ina t e  in the  E2 mechan i sm.  An e legant  d iscuss ion of E2 t rans i -  
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tions as applied to diatomic molecules has been given by Chiu [19]. Balasubrama- 
nian et al [20] extended Chiu's results for singlet transitions to the case of multiplet 
transitions and obtained the E2 line strength formula 

* I I I I I - S( fJ ' ,  i J) = [2(2J + 1)/311 ~ aiaala, < n A S }3 ,v IQ=x[nAS}3, v > 
Nf~'X 

x C(S2J'; f'�91 2. (13) 

In the above relation, unprimed quantum numbers refer to the lower state and 
the initial and final vibronic state functions ate supposedly expressed as linear 
combinations of Hund's case (a) basis functions with linear coefficients ala. The 
operator (~2~(A = -2 ,  -1 ,  0, 1, 2) is a molecule-fixed spherical component of th i  E2 
operator and C is a Clebsch-Gordon coefficient. As Q2x is a purely orbital operator, 
its matrix elements between Hund's case (a) substates vanish unless S ~ = S and 
}3~ = }3. Thus, as before, we need to invoke perturbations in dealing with the 
intercombination E2 transition 1}3+ a }3-. A slight (homogeneous) contamination 
of the 3S o component by a IE+ state (not necessarily the upper state, here under 
discussion) and the 3~~1 by a xII state (both through spin-orbit perturbation) is 
all that we need to make the (vibronic) matrix elements 

Q2o =< ~E +, v'lQ2ola}3ff, v >, (14a) 
Q2:[:l ~-'< 1}3"1-, ,0'1(~2:F:113}3~1, V )> (14b) 

non-vanishing. These are indeed the transition moments needed in the present 
intensity problem. It is clear that in dealing with intercombination E2 transitions, 
it may be instructive to replace the matrix element in (13) by < n'f~', v'[{~~x[nf~, v > 
appropriate for Hund's case (c) vibronic states. The use of case (c) notation at once 
makes it obvious that  for the lE + - 3~-  line strength problem, in the absence of 
orbit-rotation perturbations, no transition moments other than the ones defined by 
(14a) and (14b) will be needed. 

We now demonstrate that the moments Q20 and Q2+1 ate real and that 
Q2-1 = Q21. First of all, we observe that  the phases of the quadrupole operator 
components {~~~ may be so chosen that  they transform exactly like the spherical 
harmonics Y2x (referred to the molecular frame) under the (molecule-fixed) refler 
tion operation a=~ and of time reversal ,7. For the vibronic functions we adopt the 
standard phase choice suggested by Hougen [14]. 

Thus we have 

~.,0~~ = (-)~02-~, 

JO2~ = (-)~Q~-:,, 
o',:z Ir~ > = +Ir, • >, 

o-,.Isr. > = (-)s-~Is - r~ >, 

J[r~ • > = +[r~ • >, 

JISr~ > = ( - )~ lS  - r~ > (integral S and E). 

(15a) 

(15b) 

(t~a) 

(16b) 
(t6r 

(16d~ 
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"rabie I I I  
Intermediate coupling electric quadrupole line s t rengths  for 

E + - ~ ~ -  t ransi t ion 

Branch Line s t rength  ? 

T&(j) : 

RSs(,J) : 

RR2 (J)  : 

RQ~ (j) : 

PQ3(J) : 
PP2(J) : 

POI(J )  : 

NOs(J) : 

[(J + 2)/(2J-}-3)] {Q2_lsj(4J/3) 1/2 % Q2ocj(J + 1)1/2} 2 

[(J + 2)/(2J + 3)] {Q2_~cj(4J/3) 1/2 - Q2osj(J + 1)1/2 }2 
2Q]_I ( J "t" 2)/3 

[2(2J+ 1)/(2J- 1)(2JT 3)] {Q2- ls j  - Q2ocj[J(J+ 1)/311/~} 2 

[2(2J + 1)/(2J- 1)(2J + 3)] {Q~_~r + Q2o,J[J(J + 1)/3] ~/2}2 
2Q22_1 ( J -  1)/3 

[ ( J -  1)/(2J- 1)] {Q2-1sj[4(J q-1)/3] 1/2 - - Q 2 o c j J  1/2 }~ 
[(J - 1)/(2J- 1)] {Q2-1cj[4(J+ 1)/3] 1/2 -t- Q2osj j l /2}  2 

' Q2-~ =< b ' rJIQ2- , lX~r. ; ,  >, Q~0 =< b~r.$1dh01x~r.;0 > 

A general transition moment relevant to the present problem is given by 

Q2~ = <  i r .+,  v'[Q2~13r~5=_~, v > 

Applying a~~ to both sides, we obtain 

1 lE + v'  r f fxzQ2A = Q2A : (--)A " ( - - ) l%l {A  < , [~2-AI3)-]~A,V > =  nt-Q2-A. 

Application of J to both sides in the above equation, gives 

JQ2A = Q~A = (_ ) -A .  (_)A < I~§ > =  Q2A. 

Thus we have proved that  Q2~ is real and that  Q~~ = Q2-~ for A = 1. Consequently, 
for a 1~+ - 3~-  transition, the quadrupole line strengths ate governed by the two 
real transition moments Q20 and Q21 = Q2-1. We may mention that the same 
results will hold for a 1~- - 3~+ transition (with the reflection parities of the 
states reversed). On the other hand, had we considered the transition 1~+ - 3~+ 
(between ~ states of same parity), the moment Q20 would have vanished due to 
symmetry and one would have had to include only the moment [Q~-I[ = [Q21[ in 
the intensity theory. 

It now remains to formally complete the line strength derivation. Applica- 
tion of the E2 selection rules A J  = 0,4-2 (e - e) and A J  = 4-1 (e - f )  to the 
1 ~ +  _ a ~ -  transition leads to 8 rotational branches. The intermediate coupling 
eigenfunctions of the three rotational term series Fi(J)  (with i = 1, 2, 3) of 3~-  ate 
given by relations analogous to (8a)-(8c). Explicit formulae for the Clebsch-Gordon 
coefficients have been tabulated by Condon and Shortley [18]. Use of these in con- 
junetion with the transition moments (143) and (14b) finally leads to the desired 
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expressions which are listed in Table III. For ready recognition, the lower state term 
series index has been added to the branch symbol a s a  subscript. When the ratio 
A / B  (of the spin-splitting parameter to the rotational constant) in the 3~-  state is 
small, the state will switch to Hund's case (b) rather rapidly. The case (b) limits 
for the line strengths may be realized by the substitution, cj  = [ J / (2J  + 1)]1/2, 
s j  = [(J + 1)/(2J + 1)]1/~ in the expressions in Table III. 

3. Dlsr  

Let us now apply the magnetic dipole line strengths derived in Section 2.2 to 
the A-band ( 0 -  0 band) of the 02 b -  X system. In order to make quantitative com- 
parison with experimental results, we need the values of the parameters contained 
in the expressions in Table II. The parameters 7, ~ and X ate relatively insignificant 
and may be ignored, initially. The value of the principal moment K given by rela- 
tion (12) is arrived at as follows. First of all, the use in (2) of the spin-orbit matrix 
element < b[H,o[X > =  175.6 cm - t  from [6] and uo = 13121 cm -1 (A-band origin) 
from [2], gives sin 0 = 1.3384 • 10 -2. The vibrational overlap factor calculated an- 
atytically using harmonic oscillator functions [21], is < bv j = OtXv" = 0 >= 0.9666 
so that K becomes (2.5873 • 10-2)pB. We use this to compute the net spontaneous 
emission transition rate from the level b l~+(v  ' = O, J ' )  to all possible J "  levels of 
X3F~- i (v"= 0). Accordingly [1], 

64~r4 Z [ u ( j ,  ' J" )]3S(J ' ,  J " ) ,  
A(bv '  = O, J ' )  -- 3h(2J'  + 1) J,, (17) 

where S is the line strength factor and v i s  the line wave number. If we replace v by 
u0 (ignoring the small line to line variation) and use the sum rule ~-~~~,, S (J ' ,  J "  = 
2K2(2J ' + 1), which trivially follows from the formulae in Table II, we get 

64z'4 3t .  ~r2~ 
A(bv'  = 0, J '  ~ X v "  = O) ,~ A ~ = - - -~UotZ~t  ) = 0.0816 s -1. 

This is strikingly close to the experimental value A0 ~ = 0.077 • 0.003 s -1 deduced 
by Miller et al from their painstaking (absorption) measurements on the A-band 
[7]. This agreement between theory and experiment should leave no doubt that  
the b - X intercombination (MI) transition is indeed dominated by 'spin-flips' and 
that contributions from more remote perturbers axe lar less significant. A previous 
calculation by Klotz et al [6] did not take into account the vibrational overlap factor 
(necessarily less than unity) and thus gave the larger value A ~ = 0.087 s -1. 

Miller et al [7] have drawn attention to the fact that  for N"  > 11, the mea- 
sured intensities of lines belonging to the P P  and PQ branches were generally larger 
than their computed values, despite the use of Watson's rigorous HSnl-London (H- 
L) factors [10] in the computation. This discrepancy cannot be due to non-inclusion 
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"rabie IV  
HSnl-London (H-L) factors and absorption intensities 

(in c m - 1 / k m  a t m a t  293 K) for rotational transitions in the A-band 
of the b 1 ~+ - X3~.~ transition of 02 

N"  
H-L factor In t ens i ty  H-L factor Intensity 

CMC a C~IC b Ca~C a C�91 b o b $  c c a l c  a c a l c  b csdc  a cMc  b ob8  c 

Pp PQ 
1 2.00 2.00 6.89 6.89 6.5 
3 4.00 4.01 12.84 12.86 13.1 2.69 2.69 8.73 8.74 8.9 
5 6.00 6.01 16.96 17.00 16.8 4,69 4.70 13.39 13.42 13.0 
7 8.00 8.02 18.82 18.88 18.4 6.69 6.71 15.89 15.93 15.3 
9 10.00 10.04 18.50 18.57 18.3 8.69 8.72 16.23 16.29 15.9 

11 12.00 12.06 16.50 16.58 16.3 10.69 10.74 14.84 14.91 14.4 
13 14.00 14.08 13.53 13.61 13.8 12.69 12.76 12.44 12.51 12.4 
15 16.00 16.11 10.27 10.34 10.8 14.69 14.78 9.55 9.61 9.6 
17 18.00 18.13 7.25 7 .30  7.7 16.69 16.81 6.81 6.86 7.2 
19 20.00 20.17 4.78 4.82 5.0 18.69 18.84 4.52 4.56 4.9 
21 22.00 22.20 2.94 2.97 3.4 20.69 20.88 2.80 2.82 3.2 
23 24.00 24.24 1.70 1.72 2.2 22.69 22.91 1.63 1.65 2.1 
25 26.00 26.29 0.92 0.93 -- 24.69 24.96 0.89 0.90 -- 
27 28.00 28.33 0.47 0.48 0.4 26.69 27.00 0.45 0.46 0.4 
29 30.00 30.38 0.23 0.23 0.2 28.69 29.04 0.22 0.22 0.2 
31 32.00 32.44 0.10 0.10 0.1 30.69 31.10 0.I0 0.10 0.1 

a R RQ 
1 1.00 0.99 3.44 3.41 3.5 2.31 2.31 8.02 8.01 8.2 
3 3.00 2.99 9.63 9.61 9.5 4.31 4.30 13.97 13.94 13.4 
5 5.00 4.99 14.13 14.09 13.8 6.31 6.29 18.02 17.97 17.1 
7 7.00 6.98 16.46 16.40 16.1 8.31 8.28 19.74 19.66 18.6 
9 9.00 8.96 16.65 16.58 16.1 10.31 10.26 19.26 19.17 18.6 

11 11.00 10.94 15.13 15.05 14.6 12.31 12.24 17.11 17.01 16.5 
13 13.00 12.92 12.56 12.48 12.0 

a From Ref. [7] based on the line strengths of Watson [10] 
b Based on the present line strength expressions given in Table II 

From Ref. [7] 

o f  c e n t r i f u g a l  c o r r e c t i o n s  t o  t h e  cj a n d  s j  coef f ic ien ts ,  s ince  t h e  H - L  f a c t o r s  for  P e  
a n d  R R  d o  n o t  e v e n  invo lve  t h e s e  c o e f ¡  T h e  H - L  f a c t o r s  d e r i v e d  he re  ( t h a t  

is, t h e  l ine  s t r e n g t h  f o r m u l a e  l i s t ed  in  T a b l e  II,  w i t h o u t  t h e  K 2 f a c t o r ) ,  w h i c h  incor -  

p o r a t e  r o t a t i o n - i n d u c e d  c o r r e c t i o n s ,  s e e m  t o  p r o v i d e  a t  l ea s t  a p a r t i a l  e x p l a n a t i o n .  

R e f e r r i n g  to  t h e  f o o t n o t e s  in T a b l e  I, i f  we i gno re  t h e  effects  o f  r e m o t e  p e r t u r b e r s ,  

we w o u l d  h a v e  ~ / =  0, ~ = X = 2(Bx - 7/2)/AT(b, X )  = 2.2 x 10 - 4 .  S ince  t h i s  pa -  

r a m e t e r  is p o s i t i v e ,  i t  c o n t r i b u t e s  t o  a J - d e p e n d e n t  m u l t i p l i c a t i v e  c o r r e c t i o n ,  l a rge r  

t h a n  un i ty ,  t o  t h e  H - L  f a c t o r s  o f  PP a n d  PQ. I t  m a y  be  r eca l l ed  t h a t  t h e s e  cor rec -  

t i o n s  o r i g i n a t e  in  t h e  s p i n - u n c o u p l i n g  p r o c e s s  w h i c h  t e n d s  to  m i x  t h e  Ibl~+je >o 
a n d  IX3~~lJe > v i a  [X3~.~oJe >0 ,  [see r e l a t i o n s  (4a) ,  (5a)  � 9 1  (5b)] .  In  T a b l e  IV,  
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the H-L factors of Watson [10] (corrected for centrifugal effects on the c j ,  sj coeffi- 
cients) and the present H-L factors ate compared. (The former were multiplied by 
the factor 2 to make them conform to our normalization). The resulting intensities 
are also compared in the Table. The intensities of PP and PQ, computed using the 
present H-L factors do change in the right direction although the improvement may 
seem marginal. In the generalized version of the theory presented in the Appendix, 
the condition ~ = X wilI have to be relaxed, (see footnotes to Table I). Therefore, 
one might be tempted to seek better agreement between experiment and theory by 
treating these as two independent, adjustable parameters. However, in the case of 
the b - X  system such an approach would be hard to justify, given the fact that prac- 
tically the whole of the transition intensity is determined by the b : X interaction. 
Perhaps a more justifiable step in the computation is the inclusion of the systematic 
change in the energy denominator AT(b, X) due to rotation of the molecule. One 
recalls that strictly, AT(b, X) which enters the main transition moment K through 
sinO, [see relations (12) and (2)] should represent AT(bv = O,J;XO+,v = O, J). 
This change should amount to a slow decrease in AT a n d a  corresponding increase 
in the intensities of MI the branches. But given the level of the experimental un- 
certainties [7], these refinements, perhaps, are merely ornamental. We may also 
remark that admittedly, a more rigorous approach to the b - X, M1 line strengths 
is to start with a direct numerical diagonalization of the 3 • 3 matrix, say in the 
'unperturbed' basis Ibl~+Je v' >, IX3~-~oJe v > and IX3E-~IJe v >. We have 
largely obviated the need for this by rigorously incorporating the dominant spin- 
orbit part of the perturbation right at the start and using the spin-orbit-perturbed 
zeroth order basis so obtained for the subsequent stage. This hybrid procedure has 
the ~lvantage that treating effects of a farther-lying perturbers (as outlined in the 
Appendix), is more readily accomplished. 

As for the application of the electric quadrupole line strengths derived in 
Section 2.3, we have nothing much to offer. The difficulties ate twofold. On the 
experimental side, the available intensity data are too scanty; only 8 lines of the TS 
branch have been measured [11]. On the theoretical side, no reliable ab initio values 
for the two transition moments Q20 and Q2-1 (defined in Table III) ate available. 
Brault's measurements [11] show that quadrupolar contribution to the A-band in_ 
tensity is smaller by the factor 10 -5 compared to the MI contribution. An earlier 
attempt made by Klotz et al [6] to estimate the quadrupolar contribution to the 
A-band intensity is incomplete as it ignored the moment Q2-1- In principle it must 
be possible to determine the two moments from the experimental data. Transi- 
tions with AJ  = -4-2 should offer the best prospect as their intensities cannot have 
magnetic dipole axtmixtures. Any determination based on scanty data relating to a 
single branch like the TS as available for the A-band, is bound to prove unreliable 
because of the correlated manner in which the two moments enter the line strength 
formulae (see Table III). 

Before closing, we state the sum rules obeyed by the quadrupolar line strengths. 
Direct summation of the appropriate expressions in Table III gives the line strength 

2 2 J  1 2 2 sum ~( + )(Q2--1 "~Q20) for all transitions sharing fixed J" = J of the FI(J) and 
F3(J) term series. For the two branches PP2(J) and RR2(J) terminating on F2(J), 
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we obtain the sum 32-(2J + I)Q~-I. One may construct similar sums for transitions 

involving fixed J~. 
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Appendix 

We outline how the M1 transition line strengths derived in Sections 2.1 and 
2.2 may be generalized to include more remote perturbers. The starting zeroth order 
basis functions ate relations (4a)-(4d) of Section 2.1. In addition to H,o, we need 
the orbit-rotation perturbation (or 'L-uncoupling') term which has the forro [12], 
Hor = - B ( L + J _  + L_J+).  A s  before, Hougen's [14] standard phase convention 
[relations (16a)-(16d) of Section 2.3] supplemented by axzl A > =  ( - ) ^ [ -  A >, 
J ] A  > =  ( - - ) h i -  A > for non-E electronic states, is adopted. The perturbed basis 
functions, to first order, ate given by 

[blZ+Je >p = [blZ + Je >o -21/2a ' sin O[3IIoJe > -xx/2[E sin 0IXaE~ - Je > 

- 21/2c ' cos O[lII'Je > -21/2d ' sin O[aII1Je >], (Al) 

[Xa~~xJŸ >p : [Xa~~J~ > -ax[3IIiJ.~ > -o~ll'H,S~ > 

+ xx/2[6(e,Ÿ )" esinO[baZ+Je >o "+eo(Ÿ >] 

+ (x - 2)l/%21alI2JŸ >, (A2) 

[X~E-9o Je  >v = ]X3Eo Je >o -21/2aocosO[3IIoJ e > 

+ (2x)1/2[c 1 cos 0[31"[1Je > - d l  sinO[XII'Je >]. (A3) 

Here x = J ( J  + 1) and 6(e ,Ÿ in (A2) stands for 6(e,e) = 1, �91 = 0. The 
additional spin-orbit  mixing coefficients are denoted by a, a,  etc. and the orbit-  
rotation perturbation coefficients by c, d, etc. Primed quantities refer to the 
upper state. Typically we have a' =< 3IIo[Hso[blE + > /AT(3IIo,bl]~+), d = 
< llI 'IBL+]blE + > / A T ( b l ~  +, 1II'), etc. Note that the different ~-substates of 
3II, including the 0 • components of 3II0, ate treated as independent states. It is to 
be understood that all the perturbing states have 'g' vibronic symmetry although 
we have chosen to suppress this index in (A1)-(A3), on the right hand side. If 
more perturbing states are involved, appropriate sums over these states will have 
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to be used. The parameter ~ appearing in (Al) and (A2) has been defined already 
[Eq. (6)]. These perturbed basis functions now take the place of the corresponding 
functions on the right of relations (7) and (8a)-(8c) of Section 2.1. 

To gain clarity in the subsequent calculation, we first work out the perturbed 
subtransition amplitudes A(b0+e- X f l J  e or f).  The standard procedure described 
in [17] yields the subamplitudes listed in Table I (only terms up to the order war- 
ranted by the limit of accuracy of the perturbed wave functions have been retained). 
One interesting feature to note is that the part pvL of the MI operator also con- 
tributes to the transition moment. In the previous calculation (Section 2.2) only 
the #B(2S) part was of consequence. We might draw attention to the fact that the 
phase convention adopted here leads to the somewhat peculiar result that all the 
singlet-singlet and singlet-triplet perturbation matrix elements ate real while the 
triplet-triplet matrix elements ate pure imaginary. Nevertheless, the same phase 
choice ensures that all the transition moments come out real. Referring to Table I, 
we see that the generalized amplitudes contain in all four intensity parameters, 
namely, K, 7, ~ and X, instead of the two (K and ( = X) that arose in the limited 
treatment presented in Section 2. The parameter r I represents a 'remote perturber 
spin-orbit' correction to the vibronic moment K. Likewise ~ and ?�91 (or rather, K(  
and KX), are both in the nature of rovibronic moments containing orbit-rotation 
corrections due to the distant perturbers. Notice that in ~ this correction term 
is non-zero only if the bl~+(Je)  and X3E;• are perturbed by one and the same 
l II(Je) state. In the case of the A-band, the very favourable vibrational overlap fac- 
tor < bC = O[Xv" = 0 >= 0.97 and, of course, the promixity of the b and X states 
strong]y suggest that the equality ~ = X should hold to a good approximation. For 
the 1 - 0(B-)  and 2 - 0(7-) bands, however, this equality may be expected to 
break down progressively. 
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