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In gases which are good electric conductors (ionized gases) local magnetic fields canrise
spontaneously by turbulence. These fields may be produced by the diffusion of electrons due
to fluctuating temperature. Batchelor’s stability criteria show that highly ionized gases are
instable to magnetic disturbances at temperatures above 10 000° C. Based on the analogy
between vorticity and magnetic field we may estimate the effects produced in perfect conducting
gases, by making use of the vorticity transport hypothesis. We may infer that the specific
conductivity of the gas decreases by some orders of magnitude and the magnetic permeability
increases. This agrees with the investigations of Sweet, who has similarly come to this conclusion.
A necessary condition is given by this theory for the origin of the permanent magnetic field
of the stars derived from the high ionization and turbulence.

By introducing new functions the equations of the electromagnetic hydrodynamics may
be written in symmetrical form analogous to the equations of motions in the classical hydro-
dynamics. The equations also 1emain analogous in the case of homogeneous isotropic turbulence.

Introduction

The spectra of many stars show particularly high turbulence in their
atmosphere[l].To explain the physical state of such stars the results of the
turbulence theory — obtained in the laboratory — could not be applied directly.
Namely the gases in the interior of the stars as well as in their atmosphere are
very highly ionized and therefore perfect conductors. The different charges,
electrons and ions, are easily displacing each other and thus local magnetic fields
can rise instantaneously.

In the presence of external fields the generating of such fields is
evident. The external magnetic field exerts forces upon the electrons and
ions in a different way, hence the original neutral distribution may undergo
a change.

The temperature of a gas in thermodynamical instability may essentially
differ in some points from that of the surroundings. But simultaneously with
the temperature the rate of ionization changes as well, resulting in the diffusion
of electrons in order to equalise the density difference of the free electrons.
Therefore, the number of electrons would surpass that of the ions at places
of lower temperature, preventing thereby a further diffusion. Lack or preva-



236 I. K. CSADA

lence of the electrons would generate local electric fields and in the case of
mechanical motions (i. e. eddy motions) magnetic fields as well.

Hence, the condition for producing local magnetic fields instantaneously
is given in the thermodynamical and mechanical instability of the gas. The
increase or decrease of such an electromagnetic field depends upon the relation
between the diffusion of the mechanic and magnetic energy. Batchelor exami-
ned the stability of the conductive liquids to instantaneous magnetic distur-
bances. The condition of stability of a liquid in turbulence according to him
is as follows :

s stable
ii 46— indifferent (1)
0> 2mpno instable

where ¢/p is the kinematic viscosity, i the magnetic permeability, o the specific
conductivity (in E.S. U.). In stability the energy of the disturbance will diminish
and after a certain time the field disappears. Again in the case of instability the
energy would increase exponentially at the beginning. (The increase of the energy
may be attributed to the influence of Alfvén’s magnetic depression. With the
appearence of a disturbing field, the pressure, temperature and rate of ionization di-
minish, intensifying thereby the diffusion of electrons as well as the electromagnetic
field itself.} A limit for the intensifying of a disturbing field is set up by the
equilibrium between mechanical and thermodynamical effects on the one
hand and the electromagnetic field originated by the shift of the charges, on
the other hand.

According to the above stability criteria the Sun’s photosphere is stable
to magnetic disturbances. The kinematic viscosity coefficient on the solar
surface is about 1078.The magnetic permeability slighty differs from the unit,
while the specific conductivity is of the order 10712, that is, the damping of
the magnetic energy will be greater than 1077.

In considering stars showing instability we find, of course, a completely dif-
ferent situation. Undera constant density the kinematic viscosity coefficient
increases with the temperature, while the right-hand side of (1) decreases with it.
The viscosity and density of stars of type B and A hardly differ from those of the
Sun but their temperature is essentially higher. According to the above statement
there must be instability in these stars. The spectra of many stars belonging
to these types show the presence of a strong magnetic field, the reason of which
may be found in the instability[2].

It is another question, of course, how the turbulence will be influenced
by a disturbing magnetic field (to which it shows instability). It would be
difficult to answer this considering that we do not possess adequate experimen-
tal bases for it. Similarly, in accordance with the turbulence theory we may
describe the motion there, so that the lines of force would be dissolved as the
streamlines, that is to say, they would transform themselves into strongly
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winding curves constantly altering in form. At a certain point the strength
and direction of the magnetic field fluctuates constantly.

As shown by Batchelor, under certain acceptable neglections, there is
an analogy, between vorticity and magnetic field. The equations governing
the magnetic field-vector are identical in form with the equations governing
the vorticity in an incompressible fluid in the absence of an electromagnetic
field. We may derive the fluctuations of the magnetic field from the oscillations
of the vorticity by this analogy.

We may refer to the oscillation of the vorticity from the mixing length
hypothesis, although it has no physical reality, it can be employed to develop
the turbulent viscosity in homogeneous isotropic turbulence.

Hence :

rot p'=—(I, grad) rot ® ()

where p is the turbulent velocity, b is the mean value of velocity, and [ the
mixing length. If we accept this hypothesis as a rough approximation of the
turbulent velocity, we get for the fluctuation of the magnetic field, by the
analogy between vorticity and magnetic field, the formula:

9 =—(L grad) § (3)

where ' is the fluctuation of the magnetic field and § the mean value.

A more exact elaboration of this problem could be reached by introducing
the spectral funtion[3]. The present paper should be considered as a preliminary
one dealing with the effects observed in turbulent ionized gases. For a further
elaboration we have to introduce the spectral function of the fluctuating mag-
netic field, and the correlations. In the following we shall start from the
hydrodynamical equations and from the equations of the electro-magnetic
field, and develop the equations for the magneto-hydrodynamics and for the
disturbances of the magnetic field.

Fundamental equations

Let us begin with the equation of hydrodynamics completed with Lorentz’s
law of force and with Maxwell’s equations for the electromagnetic field :

v _ L Py L
A grad V o ¢ co [i, 9] — . grad p +vAb 4

‘Z—i.ﬂ divo=0 (5)

8¢ .
—e—= 6
crot 9 ary +1 (6)
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el

crot €= ——,u—aT (M
ediv €=, (8)
div =0 9)

where p is the velocity, V the gravitational potential, p the pressure, ¢ the
density, i the intensity of the electric currents, € the electric and § the magnetic
strength, & the dielectric constant, y the magnetic permeability (assuming
that £ and p have the same values at all points), g, the charge density. Let us
complete the above equations by adding Ohm’s law for a conductive medium
moving in a magnetic field :

i=0G -+ v, 91, (10)

where o is the specific conductivity.

Equations of magneto-hydrodynamics

a) Laminar motions. From the equations (4)—(10) we may deduce the
equations of the conservation of all momenta which may be understood as a
more general form of the hydrodynamical equation of motion.

If £ and y are constants we may write Lorentz’s law of force with the aid
of Maxwell’s tensions in the form :

e G+ L (1, §] = — grad —( €+ uY)+
+Div ({6, €} +u{9, B})—L

where Div means tensor divergence and {@, @’;}, {@, éﬁ)} denote the following
tensorsl :

5(G, 9]
~a D

16, =66, {9, 9= 9 D
Let us insert (11) in (4):

%(QD —}—f—cﬁ e, .‘@]) + Div ({e, D}—e{@, @}——,u{&i), .i)}) =

=g grad V— grad(p —{—é—(s@z +u .‘@2)) +vo Ab

where
{ov, bhix = 0 9; by

1 More generally the tensorial product of A and B may be written;

T = {QI, 58} or Tik =9U; By
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The so- called Poynting vector on the left-hand side —l—[@, 9] gives the

momentum of the electromagnetic field, which, compared with the mechanical
momentum, may generally be neglected (if the magnetic and electric fields
are not too strong). In the second member of the right-hand side ¢ €2 4 u $2
is the energy of the electromagnetic field which, being a correction of pressure,
becomes more important in so far as the electromagnetic field fluctuates.

From Maxwell’s equations and Ohm’s law a very important equation
concerning the magnetic field can be derived. Let us insert (10) into (6) and
take the rotation (curl) of both sides:

—cAD=¢ %(rot €) 4+ o rot € + fcﬁ“ rot [b, 9].
Making use of (7):
e B%H  ou 89

o
CA®:_|__;,_5;2_+__——7—C~ rot [b, D).

If the magnetic field has no high frequency oscillations, 829/0:2 may be
neglected and we obtain:

89 c?
—5 —rot[v, §]= ou A9 (12)
or
4 bk, o} Divdn, 0} = #49 a2

where x = ¢%/ou.

Batchelor has shown that this equation is analogous to the equation
governing the vorticity[4].

We may neglect the terms containig the electric field-vector in equation
(10) and so we obtain as the two fundamental equations of the magneto-hydro-
dynamics :

aaizb + Div{ov, v} —Div{n 9, 9} =0 grad V—grad P +vo A (13)
% 4 Div{D, v} —Div{n, §} =~ 49 (14)
Bt e R

where

P=p +—(e€ +pud?).
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We may write both equations in a more symmetrical form, by intro-

ducing new functions. Let us multiply (13) by 1/o and (14) by (¢/o)” and add
them together

8 e
wlo(el )
. { ’ RE Il s
+Div (\{n, v —%{gg, o} + (%) {9, v} — (%’J {v, S;v}) .
= grad V—-—% grad P + A(l’b = (%)lébJ .
If ¢ is constant we have:

3% . ~x I 2w -
_a_t‘_}_Dlv{i’ 3 }:grad V—? grad P+ A(TU"F Z‘O—) S;)) (13)

where
. o ESIR
T=0+ —0‘) O (16)
lu B
3F—p —(—) $. (17)

We obtain a similar equation by subtracting (14} from (13), only & and
T* must be interchanged :

Bg * e o 1 JTA%E
B —}—DIV{Q,*, L} = grad ¥V — 3 grad P 4+ A(v p—x (—Q—) Sg) . (18)
We may also derive this equation from (17) by interchanging ¥ and T*.

According to Batchelor in the case of indifferent equilibrium of the hydro-
dynamical and electrodynamical procedures » is equal to %, and then we may
write for (17) and (18):

; 1
% -+ Div{i,i*}z grad V——Q—gradP+ v AS
19
N @ (19)
—8t——|—D1v{i ,T=grad V— grad P+ v AT*.

The solutions of these equations seem to be easier than those of (13)
and (14). But the solutions of (19) according to the equation of hydrodynamical
continuity (9) have to fulfill certain conditions whichm ay be written in the
following form :

div® =0

20
div &* = 0. (20)

b) Turbulent motion. Based on the hypothesis mentioned in the introdue-
tion we may easily pass from the equations of the laminar motion, over
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to those of the turbulent state. Let us assume that besides the oscillation
of velocity, of pressure, etc. the turbulence would be characterized by the
fluctuation of the magnetic field. However, .in the absence of an external
magnetic field the mean value does not necessarily differ from zero. But if
the disturbing fields are slightly adjusted (having approximately the same
directions) the mean value will not equal zero. In the following we assume
that the mean value of the fluctuating field is not zero.

Let us take 0 and  for the mean values of the velocity and of the magnetic
field-vector, their turbulent perturbations should be denoted by v’ and £’
we may write:

b=o4+0 D=9+
Insertig these expression into (12)

%? + —E%&;}—rot [0, 9] —rot[v,H]— 0t[v/,H]— ot[v,H]=

=% AD + % AD'.

We take mean values (supposing that v’ = 0 and § = 0):

7

Inserting (3) into the last member of the right-hand side:

' A 7 o a'sz)‘ 8@[
[b", ©]=—[0", (L, grad) 9] = Alk“é‘x;— A B,
where ;. denotes the following tensor:
A=Y, (22)
which formally corresponds to the exchange-tensor of the turbulent motion.

Assuming again that, in the case of isotropic turbulence only the diagonal
terms of A, are not equal to zero, that is

(A i=k
0, i £k

then the equation becomes essentially simplified :

[b', '] =— Arot H.

Inserting it into (21) if A is conmstant:

A= o[ 1]

ik

%{—rot[n,@]z(w/l)ﬁ@-
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The role of A is, therefore, analogous to that of #. Its expression resembles
that of the turbulent viscosity coefficient. If we assume that [ is identical with
the mixing length, then /4 will be identical with the coefficient of the turbulent
viscosity. In this case besides /A we may also neglect % which is of the same order
of magnitude as the molecular viscosity. The equation (22) would correspond
to the condition of equilibrium in (1). The mean distance of velocity-distur-
bances (eddies) would correspond to that of the disturbances of the magnetic
field (dipoles) ; this may be understood as the coincidence of the eddies and of
the disturbing magnetic field. As mentioned in the introduction the develop-
ment of such a system could only be explained if the temperature in the centre
of an eddy were lower than that of its neighbourhood.

The turbulent conductivity and magnetic permeability

As I have mentioned, the mean value of the magnetic-disturbances will
differ from zero, if they tend to arrange themselves. We may accept criterion
(1) for the increase of this field. In this so called macroscopic field the macros-
copic motion of the medium would correspond to the molecular phenomena.
The turbulent viscosity corresponds to the molecular viscosity, the damping
of the magnetic energy due to the turbulence corresponds to the Joule heat
loss. We have expressed the diffusion of the magnetic field due to the molecular
phenomena by means of the specific conductivity and the magnetic permeability.
The question arises here as to whether the macroscopic damping in turbulence
could not be solved by introducing similar quantities. Such supposed quantities
would be the turbulent conductivity and the turbulent magnetic permeability.

After this we may write .1 in the following form:

c2

T MS

/

(23)

where M is the turbulent magnetic permeability and S the turbulent conductivity.
If the former theory is correct, then A willbe equal to the turbulent viscosity
coefficient. The value of which, as is well known, may also be about 108 times
higher than the corresponding molecular quantity. Consequently the product
MS has to differ from po by the same order. Based upon certain electromagnetic
peculiarities of the turbulent elements I have referred earlier to such a change.
(Supposing the turbulent elements to possess charges as well as magnetic mo-
menta, further charge transports can be possible only by means of macroscopic
motion of the turbulent elements. The electrons only diffuse towards the tur-
bulent elements and their motions towards the external field may be neglected.)
But I did not succeed in an exact elaboration.

In the meantime appeared Sweet’s paper[5] dealing with a similar problem.
It was shown by him that conductivity is diminished by several orders of magni-



MAGNETIC EFFECTS OF TURBULENCE 243

tude due to the rapid fluctuation of the turbulent motion and magnetic field.
According to his approximation the specific conductivity in the convective
layer of the Sun is diminished by at least 106 as a result of turbulence. Therefore,
if conductivity was originally 1012 it would diminish to 10% in turbulence.

This value, although only a rough estimate, suited my investigations.
If we take the electric charges of the sunspots equal to 10 coulombs, as necessary
to build up their magnetic fields, we obtain a change of the same order of
magnitude in accordance with the former inexact theory.

If conductivity based on (23) is known we may calculate the changed
value of the magnetic permeability as well. According to (23):

2
MS=-—=10%
Afe
(A/e being the turbulent viscosity coefficient) from which taking for the value
of the conductivity 10% we get:

M=11102~102

This result, though it still needs proving, appears to be remarkable from
two points of view. Permeability being higher than the unit, it.is independent
of the motion of the medium (ions). Namely if the magnetic field is built up by
the motion of the ions simultaneously with the magnetic momenta then momenta
of momentum would occur, lending to the field thereby a diamagnetic peculia-
rity[6]. On the other hand, only ferromagnetic media possess such a high permea-
bility as is well known, where in the case of specially arranged elementary
magnetic dipoles, a permanent external field built up. Such an arrangement
is not at all trivial in turbulence, but the mean value of the disturbing field
would differ from zero only then when the fields within a suitable large volume
element do not destroy each other. In the following we have assumed the pre-
sence of such a special arrangement, but the correctness of this assumption has
not been proved. Perhaps we may hope to prove it by means of a more exact
elaboration of the turbulence theory. For the moment the correctness of this
hypothesis could most probably be examined by means of experiments. Unfor-
tunately it would be very difficult to compile such an experiment because the
turbulence of gases of very high temperature must be examined. These highly
ionized gases show an excessive tendency to chemical reaction in consequence
of their high temperature (some thousand degrees) and could therefore attack
the substance of the equipment producing the stream.

Thus in the following we have to accept the arrangement of the magnetic
disturbances as the most important hypothesis of the present theory.

Accepting this hyopthesis it would de conceivable at once that the magne-
tic field of the stars results from high ionization and turbulence.In any case
this inference is not inconsistent with the observations as the strongest magnetic
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fields have been measured in stars of types B and A which showed also the
highest Doppler shift resulting from the turbulence. The magnetic field of the
Sun and its turbulent state compared to those of the above stars is small in
accordance with the hypothesis. The magnetic field of the Earth may also be
similar. We may infer the turbulence from the very high viscosity of the
interior of the Earth|7].

Based on this hypothesis, we may also draw conclusions directly, as to
the above high value of magnetic permeability. The energy of an externmal
field, as is well known, will be changed by the permeability of the medium, if we
take 2 for the energy per unit volume in vacuo, then in a medium with permeabi-
lity p it will change to yu 2. Therefore the energy of the field will increase, if the
permeability is higher than the unit, and it will decrease if lower. Similarly
permeability may also be understood in the turbulence. If the energy of the
magnetic field increases after turbulence has come into operation, the medium
will show paramagnetic pecularities, and diamagnetic ones if the energy
decreases.

Let us assume that the permeability of a gas in absence of turbulence
is equal to the unit. The strength of the field in turbulence would be constantly
fluctuating in consequence of the magaetic disturbances. Therefore we may
write :

D=9+

where §, is the mean value composed of the external field and the mean strength
of disturbances. The energy of the field will be:

9 =9+29.9 + 9™

Let us assume that ' = 0. If we consider 9 as a vector of magnetic induc-
tion we may write :
L=MH,
from which:
V2

M=1+ (2) i
Do
The mean value of the disturbances being essentially lower than the
external field, 92 contains only the energy of the external field. It follows from
the above formula that M will always be larger than the unit, proving that
the turbulent state becomes paramagnetic.

Considering the phenomena of the solar surface it seems to be probable
that sunspots produce the magnetic field of the Sun for an external field so:

@’/@2N 10

M =14 10% ~ 102

from which

which agrees with the foregoing calculations referring to order of magnitude.
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Magneto-hydrodynamic equations in turbulence

We have examined above the quantitative changes of the conductivity
and permeability in turbulence. Let us develop in the following, and change
the fundamental equation (19) by using the hypothesis (2} and (3). In order
to amplify the calculations we take instead (2) the formula

b =—(I, grad) v, (25)

which in case of isotropic homogeneous turbulence would also be correct.
The equations concerning the mean values will be :
3% 1
o —Div{Z,1*}=grad V=_grad P—Div{T, 1"}
s . (26)
o T Div {Z*, T } = grad V— —grad P—Div{T*, E}
e

(taking the molecular viscosity zero and conductivity infinite). Making use of
the equation (3) and (25) standing for ¥ and T*:
T=—(,grad) ¥
T* = (I, grad) T*.
Utilising these formulae {3’, z*’} may be transformed as follows!:
{2,3*}=—{(,grad) T,3* } — —{grad, T} {T*,(}.

Or denoting it in a tensorial form

~ = 8y
{i*',“ik:‘iz‘[k and {gradal}ik:*—b
50 { } i
. R T 83,
o~ x7 — o i —_ j_____l__ ‘II'__';.
DIV{L ? i } axk 8xk axj zk 7 axj 3xk

Inserting it into (26) we obtain the equation for magneto-hydrodynamics
in turbulent motion :

1
%%—FDiv{fI,i*}:grad V——-{;gradP—|— A*AT. (28)
In the case of homogenous isoptropic turbulence only the diagonal ele-

ments of the tensor {3*'71} are not zero and these will also be constant,
that is

g = ATk
10 i+k
and so
Div{¥ ,T* }= — 4* AT. 27

! The dot here signifies the tensorial (transformation) product of two tensors.
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a- *
w%——i—Div{i* Ty =grud V—-(l;gradPJr 44T (29)

where

'L Yo

A== T IT+ (5 19711

A*= [T 1| =]v]] I—(%)%lsb’l |1].

The equations under (20) remain unaltered.

The solution of equations (28) and (29) for a rotating star seem to be very
difficult. We have to calculate the gravitational potential from Poisson’s equation
and the pressure from the equation of state. Hereafter there are still six unknowns,
the components of £ and T*. We may eliminate three of them by transforming
the system into a system of fourth order. One of the systems of the unknowns
is contained linearly in (28) the other in (29). We may calculate them simply
algebraically and inserting the results into the other system of equations, we
obtain a system of differential equations of the fourth order.
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Do se s

MATHHUTHBIA 3®PEKT TYPBYJEHTHOIO COCTOSIHHUSA
B MOHHU3HWPOBAHHBIX FA3AX

H. K. Yaga

Pe3iome

B rasax ¢ Xopoeif 3J1eKTPONPOBOAHOCTEI0 (HOHM3HPOBAHHAEIX) BCJIEACTBHE TYPOYJIEHT~
HOro COCTOSIHHS BOSHHKAIOT MrHOBEHHHIE JIOKAJIbHBIE MArHUTHAHIE 1017, ITH NOJIA BHSHBAIOTC 51
Anddysnell 371eKTPOHOB, BO3HHKAIOMEH BeseacTBHe KosneGaHus TemnepatypH. M3 kpurepus
crabunbHOCTH Beuesopa MO>KHO ONpeAesHTb, UTO JerKOHOHH3UPYIONIHeCsT Tashl IIPH TeMIepa-
Type okeJio 10.000° ] siB/IslI0TCS HeCTaGHALHBLIME 1O OTHOIEHHIO K MarHHTHHM noMexam. Ha
OCHOBE€ aHAaJIOTHH HHTEHCHBHOCTH TYpOYyJEHUHH M HAMNPSI>KEHHOCTH MAarHMTHOrO mojsi ¢ mo-
MOIILI0 TEOPMH BHXPEBOro TPAHCIOPTA MO)KEM OUCHHTbL T€¢ 3ddeKTs, KOTOphe BC3HHKAWT B
rase, 6GJaflal0leM XOpomMMH MIPOBOASIIUMHU cBoficTRaMu. MojkeM cjiesnaTh BHIBOJ, UTO YAe/b-
Hasl IPOBOAMMOCTb rasa JoJHKHA NMajaTh ¢ HEKOTOPHIMH MOPAAKAMH B TO BPEMS KOrJa MarHuT-
Hasl IPOHHUIAEMOCTb A0JDKHA Bo3pacTaTh. Teopusi laeT HeoOXo/JMoe YCIOBHE TOTO, UTO Mar-
HHTHOE TI0]Ie 3Be3J, IPOUCXOAUT OT HOHH3AUUH H OT TYPGYJIEHTHOTO COCTOSHHSA.

VYpasHeHUs 3NEKTPOMATHUTHON THAPOAUHAMHKY ¢ BREJleHHeM HOBHMX (yHKIuH Moryr
OHTH 3aNKCaHH B CHMMETPHUHOH (opMe, 4TO MBJIRETCSH aHAJOTHMYHHM YPaBHEHHAM JBHIKEHHS
KJIACCHUECKOM I'MAPOAHHAMHKK. YPABHEeHHS OCTAIOTCH aHAaJOTHYHBIMH B CIyHae rOMOreHHOH
H30TOMNHOH TYpOYyJIeHIMH.



