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In gases which are good electric eonduetors (ionized gases) local magnetic fields eanrise 
spontaneously by turbulence. These fields may be produeed by the diffusion of eleetrons due 
to fluetuating temperat•re. Batchelor's stability criteria show th~at highly ionized gases ate 
instable to magnetic disturbanees at temperatures above 10 000 ~ C. Based on the analogy 
between vorticity and magnetic field we may estimate the effects produced in perfect conducting 
gases, by making use of the vorticity transport hypothesis. We may infer that the specific 
conduetivity of the gas decreases by some orders of magnitude and the magnetic permeability 
increases. This agrees with the investigations of Sweet. who has similarly come to this conclusion. 
A necessary condition is given by this theory for the origin of the permanent magnetic field 
of the stars derived from the high ionization and turbulence. 

By introducing new funetions the equations of the electromagnetic hydrodynamics may 
be written in symmetrical form analogous to the equations of motions in the classical hydro- 
dynamics. The equations also iemain analogous in the case ofhomogeneous isotropic turbulence. 

Introduction 

The spectra of many  stars show part icularly high turbulence in their 
a tmosphere[1] .To explain the physical state of such stars the resuhs of the 

turbulence theory obtained in the laboratory - -  could not  be applied directly. 
Namely the gases in the interior of the stars as well as in their atmosphere ate 

very highly ionized and therefore perfect conductors.  The different charges, 

electrons and ions, are easily displacing each other and thus local magnetic fields 

can rise instantaneously.  

In  the presence of external fields the generating of such fields is 

evident. The external magnetic field exerts forces upon the electrons and 
ions in a different way,  hence the original neutral  distribution may  undergo 

a change. 

The temperature  of a gas in thermodynamica l  instabil i ty may  essentially 

differ in some points from tha t  of the surroundings. But  simultaneously with 
the temperature  the ta te  of ionization changes as weU, resulting in the diffusion 

of electrons in order to equalise the density difference of the free electrons. 
Therefore, the number  of electrons would surpass tha t  of the ions at  places 

of lower temperature,  preventing thereby a further diffusion. Lack or preva- 
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lence of the electrons would generate local electric fields and in the case of 
mechanical  motions (i. e. eddy  motions) magnetic fields as well. 

Hence,  the condition for producing local magnetic fields instantaneously 
is given in the thermodynamical  and mechanical instabil i ty of the gas. The 
increase or decrease of such an electromagnetic field depends upon the relation 
between the diffusion of the mechanic and magnetic energy. Batchelor exami- 
ned the stabil i ty of the conductive liquids to instantaneous magnetic distur- 
bances. The condition of stabil i ty of a liquid in turbulence according to him 
is as follows : 

e < c 2 stable 
indifferent (1) 

> 4 ~ f~ ~ instable 

where e/~ is the kinematic viscosi ty, /~ the magnetic permeabil i ty,  o" the specific 
conduct iv i ty  (in E. S. U.). In stabil i ty the energy of the disturbance will diminish 
and after  a eertain t ime the field disappears. Again in the case of instabil i ty the 
energy would increase exponential ly at the beginning. (The increase of the energy 
may  be a t t r ibu ted  to the influence of ~�91233 magnetic  depression. With  the 
appearence of a disturbing field, the pressure, t empera ture  and rate ofionizat ion di- 
minish, intensif~ing thereby the diffusion of electrons as well as the electromagnetic 
field itself.) A limit for the intensifying of a disturbing field is set up by  the 
equilibrium between mechanical  and thermodynamica l  effects on the one 
hand and the electromagnetic field originated by  the shift of the charges, on 
the other  hand. 

According to the above stabil i ty criteria the Sun's photosphere is stable 
to magnetic  disturbances. The kinematic viscosity coefficient on the solar 
surface is about  10 -s .  The magnetic permeabil i ty  sl ighty differs from the uni t ,  
while the specific conduct iv i ty  is of the order 10 -13, tha t  is, the damping of 
the magnetic energy will be greater  than 10 -7. 

In considering stars showing instabili ty we find, of course, a completely dif- 
fe rent  situation. Under a constant  density the kinematic  viscosity coefficient 
increases with the temperature ,  while the r ight-hand side of (1) decreases with it. 
The viscosity and density of stars of type B and A hardly  differ from those of the 
Sun bu t  their  tempera ture  is essentially higher. According to the above s ta tement  
there mus t  be instabili ty in these stars. The spectra of many  stars belonging 
to these types show the presence of a strong magnetic field, the reason of which 
ma y  be found in the instabili ty[2].  

I t  is anotherques t ion ,  of course, how the turbulence will be influenced 
by  a disturbing magnetic field (to which it  shows instability).  I t  would be 
difficult  to answer this considering tha t  we do not  possess adequate  experimen- 
tal bases for it. Similarly, in accordance with the turbulence theory  we m ay  
describe the motion there,  so tha t  the lines of force would be dissolved as the 
streamlines, tha t  is to say, they  would t ransform themselves into strongly 
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winding eurves constantly altering in form. At a eertain point the strength 
and direetion of the magnetie field fluetuates eonstantly. 

As shown by Batchelor, under eertain aeeeptable negleetions, there is 
an analogy, between vortieity and magnetie field. The equations governing 
the magnetie field-veetor are identieal in forro with the equations governing 
the vorticity in ah ineompressible fluid in the absenee of ah eleetromagnetie 
field. We may derive the fluetuations of the magnetic field from the oseillations 
of the vortieity by this analogy. 

We may refer to the oseillation of the vorticity from the mixing length 
hypothesis, although it has no physical reality, it can be employed to develop 
the turbulent viscosity in homogeneous isotropic turbulence. 

Hence : 

rot ~ ' = - - ( [ ,  grad) tot ~ (2) 

where ~ is the turbulent velocity, ~-is the mean value of velocity, and l the 
mixing length. If  we accept this hypothesis a s a  rough approximation of the 
turbulent velocity, we get for the fluctuation of the magnetic field, by the 
analogy between vorticity and magnetic field, the formula: 

,~~' = - -  (~, grad) ~ (3) 

where ~'  is the fluetuation of the magnetic field and ~ the mean value. 

A more exaet elaboration of this problem eould be reaehed by introdueing 
the speetral funtion [3]. The present paper should be considered as a preliminary 
one dealing with the effeets observed in turbulent ionized gases. For a further 
etaboration we have to introduce the spectral funetion of the fluetuating mag- 
netie field, and the eorrelations. In the following we shall start from the 
hydrodynamieal equations and from the equations of the eleetro-magnetie 
field, and develop the equations for the magneto-hydrodynamies and for the 
disturbanees of the magnetie field. 

Fundamental equations 

Let us begin with the equation of hydrodynamics completed with Lorentz's 
law of force and with Maxwell's equations for the electromagnetic field : 

dD _ g r a d V _ _  9 e ~ _ _ ~ [ i ,  ~ ] - -  1 dt e ce ~- gradp  ~-vAV (4) 

d_~9 �91 e div ~ = 0 (5) 
dt 

c ro t  ~ ) = e - - q - i  (6) 
St 
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�9 ot r = - ~  0 ~  (7) 
S t  

div ~ = ee (8) 

div ~ = 0 (9) 

where 1~ is the velocity, V the gravitational potential, p the pressure, ~ the 
density, i the intensity of the electric currents, ~ the electric and ~) the magnetic 
strength, e the dielectric constant, /x the magnetic permeability (assuming 
that ~ and /x have the same values at all points), Qe the charge density. Let us 
complete the above equations by adding Ohm's law for a conductive medium 
moving in a magnetic field: 

i =  ~~ +~. [~, ~ ] ,  rio) r 

where ~ is the specific conductivity. 

Equations of magneto-hydrodynamics 

a) Laminar motions. From the equations (4)--(10) we may deduce the 
equations of the conservation of all momenta which may be understood as a 
more general forro of the hydrodynamical equation of motion. 

If  ~ and # are constants we may write Lorentz's law of force with the aid 
of Maxwell's tensions in the form: 

1 ~2 eer +~~2)+ 

c St 

where Div means tensor divergence and {~, ~}, {~, ~} denote the fotlowing 
tensors 1 : 

Let us insert (11) in (4): 

+ T  [r s)])+ Div  ( { e , ,  0 } - , .  {~. ~} )=  

-----~ grad V - -  grad(p q - l ( e @ 2  q-# ~~))q-vQ 

~r 

{e ' ,  '}~k = e ' ,  'k. 

Ab 

1 More generally the tensorial product of 9~ and ~ may be written; 

T = { 9 I , ~ }  o~ Tik=9.I i~k. 
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The so- called Poynting rector on the left-hand side I [6, ~] gives the 
C 

momentum of the electromagnetic field, which, compared with the mechanical 
momentum, may generally be neglected (ir the magnetic and electric fields 
are not too strong). In the second member of the right-hand side e ~2 + # ~2 
is the energy of the electromagnetic field which, being a correction of pressure, 
becomes more important in so lar as the electromagnetic field fhctuates .  

From Maxwell's equations and Ohm's law a very important equation 
concerning the magnetic field can be derived. Let us insert (10) into (6) and 
take the rotation (curl) of both sides : 

_ _ c A ~ = e ~ t  _0 (rot @) -j- a rot ~ + ~c ~-St rot [t~, @]. 

Making use of (7) : 

- - - -  ~ o t  [,, ~].  c A ~ = +  c 0t 2 + c 0t c 

If  the magnetic field has no high frequency oscillations, 02~/Ot ~ may be 
neglected and we obtain:  

o r  

_ _ _ _  C2 
O~ _ _ r o t  ID, ~ ]  = - -  A ~  (12)  
0t a # 

3t +Div{~2, , } - -D i r  ~ } =  zA~ (12 a) 

wherc ~ = c2/~rtt. 

Batchelor has shown that this equation is analogous to the equation 
governing the vorticity[4]. 

We may neglect the terms containig the electric field-vector in equation 
(10) and so we obtain as the two fundamental equations of the magneto-hydro- 
dynamics : 

0t +Div{~D,  ~, = grad V - - g r a d P + v o A b  (13) 

w h e ~ r e  

oO~~_+ Di~ {~, ~} - -  Div {~, 0}  =~,  @ (14) 

p = p + + ( e  ~2 + #@2). 
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We may write both equations in a more symmetrical form, by intro- 
ducingnewfunctions. Letus  multiply (13) by 1/e and (14) by (q and add 
them together 

13+ ~ + 

+Divl(13,tt t3}--~-{Y~,  " " . ~ 'i, I!~]""113 = 
t.o) < '  

----grad V - -  1 g r a d P +  A ~'D+~ ~~ . 
Q , 

I f  ~ is eonstant we have : 

s~ +Div{3;, ~*} = grad V - - I -  grad P +  A ~'13 + z (15) 
0t  e . 

w here 

2 =  13 -{- / '~(~ ~ (16) 

~ * =  13- (" i"  ~~ (17) 
t~o)  

We obtain a similar equation by subtracting (14) from (13), only ~ and 
~* must be interchanged : 

0~* + D i v { ' ~ * , ~ } = g r a d V - - - 1 g r a d P + A ( v 1 3 - - ~ ( ~ )  ) '/:~ . (18) 
St Q. 

We may also derive this equation from (17) by interchanging ~ and ~*. 

According to Batchelor in the case of indifferent equilibrium of the hydro- 
dynamical and electrodynamical procedures l, is equal to ~, and then we may 
write for (17) and (18): 

S,~ Div{~  .~*}-  1 St § , - - g r a d V - - - - g r a d P + v  A~. 
Q (19) 

S%* 
St + Div {~*,  ~} = grad V - -  grad P + v A~ *. 

The solutions of these equations seem to be easier than those of (13) 
and (14). But  the solutions of (19) according to the equation of hydrodynamical 
continuity (9) have to fulfill certain conditions whichm ay be written in the 
following forro : 

div .~ = 0 (20) 
div ~* = 0. 

b) Turbulent motion. Based on the hypothesis mentioned in the introduc- 
tion we may easily pass from the equations of the laminar motion, over 
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to those of the turbulent  state. Let  us assume tha t  besides the oscillation 
of velocity, of pressure, etc. the turbulence would be characterized by the 
Ÿ of the magnetic field. However, i n  the absence of ah external 
magnetic field the mean value does not  necessarily differ from zero. But  ir 
the disturbing fields ate slightly adjusted (having approximately the same 
directions) the mean value will not equal zero. In the following we assume 
tha t  the mean value of the f luctuat ing field is not zero. 

Let us take $ and ~ for the mean values of the velocity and of the magnetic 
field-vector, their turbulent  perturbations should be denoted by  t)' and ~ '  
we may wri te:  

Insertig these expression into (12) 

~0 aO' 
St q- -0t - - r ~  [13, ~ . ] - - r o t  [iJ, ' O ' ] - - : o f  [~' ,5)] - -  ot [D', ,~'] = 

= ~. a , w  ~. AO'. 

We take mean values (supposing tha t  ~-' = 0 and g~-'= 0): 

9~'  , 75 O~---rot  [t~, gO] = ~ Zl,O q-~ot [ ~ - , ~  ]. (21) 

Inserting (3) into the last member of the r ight-hand side: 

[t)' gO'] --=- - -  [I)' (I, grad) ,~1 = A,k 8�90 Ai k 0~, 
, ,. Ox k ~x k 

where Aik denotes the following tensor :  

Aik = I)i ik (22) 

which formally corresponds to the exchange-tensor of the turbulent  motion. 
Assuming again tha t ,  in the case of isotropic turbulence only the diagonal 
terms of Aik are not  equal to zero, tha t  is 

l~~,i=k ~=1~'t f~f 
A'k=  [0, i - ~ k  

, hen  the equation beeomes essentially simplified: 

[13 ' ,  g0 ' ]  --=- - -  A r o t  g0" 

Inserting it into (21) if A is eonstant : 

a~  - - r o t  [I), g~] = (y. @ A)/Ig).  
Ot 
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The role of A is, therefore, analogous to that  of ~. lts expression resembles 
that  of the turbulent viscosity coefficient. If  we assume that  I i s  identical with 
the mixing length, then A will be identical with the coefficient of the turbulent 
viscosity. In this case besides A we may also neglect x which is of the same order 
of magnitude as the molecular viscosity. The equation (22) would correspond 
to the condition of equilibrium in (1). The mean distance of velocity-distur- 
bances (eddies) would correspond to that  of the disturbances of the magnetic 
field (dipoles) ; this may be understood as the coincidence of the eddies and of 
the disturbing magnetic field. As mentioned in the introduction the develop- 
ment of such a system could only be explained if the temperature in the centre 
of ah eddy were lower than that  of its neighbourhood. 

The turbulent conductivity and magnetic permeability 

As I have mentioned, the mean value of the magnetic-disturbances will 
differ from zero, if they tend to arrange themselves. We may accept criterion 
(1) for the increase of this field. In this so called macroscopic field the macros- 
copic motion of the medium would correspond to the molecular phenomena. 
The turbulent viscosity corresponds to the molecular viscosity, the damping 
of the magnetic energy due to the turbulenee corresponds to the Joule heat 
loss. We have expressed the diffusion of the magnetic field due to the molecular 
phenomena by means of the specific conductivity and the magnetic permeability. 
The question arises here as to whether the macroscopie damping in turbulence 
could not be solved by introducing similar quantities. Such supposedquantities 
would be the turbulent conductivity and the turbulent magnetic permeability. 

After this we may write A in the following forro: 

C2 
A - -  ( 2 3 )  

M S  

where Mis  the turbulent magnetic permeability and S the tu rbulent conductivity. 
I f  the former theory is correct, then A will be equal to the turbulent viscosity 
coefficient. The value of which, as is weU known, may also be about 106 times 
higher than the corresponding molecular quantity. Consequently the product 
MS has to differ from #a by the same order. Based upon certain electromagnetic 
peculiarities of the turbulent elements I have referred earlier to such a change. 
(Supposing the turbulent elements to possess charges as well as magnetic mo- 
menta, further charge transports can be possible only by means of macroscopic 
motion of the turbulent elements. The electrons only diffuse towards the tur- 
bulent elements and their motions towards the external field may be neglected.) 
But I did not succeed in ah exact elaboration. 

In the meantime appeared Sweet's paper[5] dealing with a similar problem. 
It  was shown by him that  conductivity is diminished by several orders of magni- 
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tude due to the rapid fluctuation of the turbulent motion and magnetic field. 
According to his approximation the specific conductivity in the convective 
layer of the Sun is diminished by at least 10 eas a result of turbulence. Therefore, 
if conductivity was originally 1012 ir would diminish to 106 in turbulence. 

This value, ahhough only a rough estimate, suited my investigations. 
I f  we take the electric charges of the sunspotsequal to 10 coulombs, as necessary 
to build up their magnetic fields, we obtain a change of the same order of 
magnitude in accordance with the former inexact theory. 

If  conductivity based on (23) is known we may calculate the changed 
value of the magnetic permeability as well. According to (23): 

c 2 
M S  - -  - -  lO s 

(A/0 being the turbulent viscosity coefficient) from which taking for the value 
of the conductivity 108 we get : 

M =  1 + 102"~ 102 . 

This result, though ir still needs proving, appears to be remarkable from 
two points of view. Permeability being higher than the unir, i t  is independent 
of the motion of the medium (ions). Namely if the magnetic field is built up by 
the motion of the ions simultaneously with the m'agnetic momenta then momenta 
of momentum would occur, lending to the field thereby a diamagnetic peculia- 
rity [6]. On the other hand, only ferromagnetic media possess such a high permea- 
bility as is well known, where in the case of specially arranged elementary 
magnetic dipoles, a permanent external field built up. Such an arrangement 
is not at all trivial in turbulence, but the mean value of the disturbing field 
would differ from zero only then when the fields within a suitable large volume 
e]ement do not destroy each other. In the following we have assumed the pre- 
sence of such a special arrangement; but the correctness of this assumption has 
not been proved. Perhaps we may hope to prove it by means of a more exact 
elaboration of the turbulence theory. For the moment the correctness of this 
hypothesis could most probably be examined by means of experiments. Unfor- 
tunately it would be very difficult to compile such an experiment because the 
turbulence of gases of very high temperature must be examined. These highly 
ionized gases show an excessive tendency to chemical reaction in consequence 
of their high temperature (some thousand degrees) and could therefore attack 
the substance of the equipment producing the stream. 

Thus in the following we have to accept the arrangement of the magnetic 
disturbances as the most important hypothesis of the present theory. 

Accepting this hy0pthesis it would de conceivable at once that  the magne- 
tic field of the stars results from high ionization and turbulence. In any case 
this inference is not inconsistent with the observations as the strongest magnetic 
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fields have been measured in stars of types B and A which showed also the 
highest Doppler shift resulting from the turbulence. The magnetic field of the 
Sun and its turbulent state compared to those of the above stars is small in 
accordance with the hypothesis. The magnetic field of the Earth may also be 
similar. We may infer the turbulence from the very high viscosity of the 
interior of the Earth[7]. 

Based on this hypothesis, we may also draw conclusions directly, as to 
the abo,r high value of magnetic permeability. The energy of an external 
field, as is well known, will be changed by the permeability of the medium, if we 
take 9 2 for the energy per unit volume in vacuo, then in a medium with permeabi- 
lity q ir will change to/z 9 3. Therefore the energy of the field will increase, if the 
permeability is higher than the unit, and ir will decrease if lower. Similarly 
permeability may atso be understood in the turbulence. If  the energy of the 
magnetic field increases after turbulence has come into operation, the medium 
will show paramagnetic pecularities, and diamagnetic ones if the energy 
decreases. 

Let us assume that the permeability of a gas in absence of turbulence 
is equal to the unit. The strength of the field in turbulence would be constantly 
fluctuating in consequence of the magnetic disturbances. Therefore we may 
write : 

where 9o is the mean value composed of the external field and the mean strength 
of disturbances. The energy of the field wiU be :  

9~ ~_ 9-~o § 2 9o 9 '  -~ 9 ''~ . 

If  we consider 9 as a rector  of magnetic induc- Let us assume that 9 ' =  0. 
tion we may write : 

from which : 
9 = M 9 o  

M =  1 +  [9o]" 

The mean value of the disturbances being essentially lower than the 
external field, 9 2 contains only the energy of the external field. I t  follows from 
the above formula that  M wfll always be larger than the unit, proving that  
the turbulent state becomes paramagnetic. 

Considering the  phenomena of the solar surface ir seems to be probable 
that  sunspots produce the magnetic field of the Sun for ah external field so : 

from which 
M ~ -  1~- 10 2 N 1 0  3 

which agrees with the foregoing calculations referring to order of magnitude. 
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Magneto-hydrodynamic equations in turbulence 

We have examined above the quantitative changes of the conductivitv 
and permeability in turbulence. Let us develop in the following, and change 
the fundamental equation (19) by using the hypothesis (2) and (3). In order 
to amplify the calculations we take instead (2) the formula 

. . . .  ([, grad) ~, (25) 

which in case of isotropic homogeneous turbulence would also be correct. 
The equations concerning the mean values will be :  

8/~ Div{~_. ~:*}-- grad V - - l g r a d P - - D i v { ~ , . T  *' } 
St ' 

(26) 
8~* 1 
Ot- f -  Div {~*,  ~ } = grad V - - - -  g r a d P - -  Div { ~* , % } 

P 

(taking the molecular viscosity zero and conductivity infinite). Making use of 
the equation (3) and (25) standing for ~ and ~*: 

: - -  (~, grad) 

"s = - -  (1, grad) ~*. 

Utilising these formulae {~ ' ,  ~*'} may be transformed as followsl: 

S O  

{ ~ ' ,  :~*' } = - - {  (l, grad) ~ ,  ~*'  } 

Or denoting it in a tensorial form 

-- - - {  g r a d , ~ } ' {  ~* ' ,  ~}. 

{ grad , ~  } i k -  8:~k 
Ox i 

Div { .~', ~* '  } :-  O{ .,~" ~*' }ik - _ _  8~* '  ly. 8,~ i 
8xk Oxk Ox i 

8z ~i 
. . . .  Z~' li 8x i Oxk " 

Inserting it into (26) we obtain the equation for magneto-hydrodynamics 
in turbulent motion : 

8~ i 
Div{ ~ ,  Z* + } = grad V - -  - -  grad P -4- A*A ~ .  (28) -0i 

In the case of homogenous isoptropic turbulence only the diagonal ele- 
of the tensor {~* ' ,  1} are not zero and these will also be ments constant, 

that  is 

I A*  i = k  ~Ÿ lk 
i 0 i 4 = k 

and so 
Div{ ~ ' ,  ~*'  } = - - A *  AZ.  (27) 

1 The dot here signifies the tensorial (transformation) product of two tensors. 
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where 

0~* Div{,~* ~}=gr::dV---~l gradP+AA~* (29) 
~t § ' ,o 

(Ir  t~/, 

A*=I~*'I I l l - ]o ' ]  ]ti-- I~'1 Ill. 

The equations under  (20) remain unaltered. 

The solution of equations (28) and (29) f o r a  r0tat ing star sš to be very  
difficult. We have to ealeulate the gravitational potent ial  from Poisson's equat ion 

and the pressure from the equation of state. Hereafter  there are still six unknowns,  

the eomponents of ~ and ~*. We may  eliminate three of them by  transforming 
the system into a system of four th  order. One of the systems of  the unknowns 

is eontained linearly in (28) the other in (29). We may  ealeulate them simply 

algebraieally and inserting the results into the other system of equations, we 

obtain a system of differential equations of the four th  order. 
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MAFHHTHbI~I 3O(PEKT TYPBYJIEHTHOFO COCTOItHHI;I 
B HOHH3HPOBAHHblX FA3AX 

H. R. qa~a 

P e 3 l o ~ e  

B ra3ax c xopomeit 31IeKTpoIIpOBO~HOCTblO (HOHH3HpOBaHHHX) BcY[e~cTBHe TypSyJleH~- 
HOFO COCTOHHHH BO3HHKalOT MFHOBeHHHe JlOKaJIbHHe MarHHTHble II03]H. �91 HOJIH Bbl3HBalOTC B 
RH0Oy3Heit 3~eKTpOHOB, BO3HHKaIoHeit Bc~eRCTB~e ;r TeMnepaTypu. H3 KpHTepH~ 
CTa6HJIbHOCTH BeqeAopa ~o~Ho oIIpeReYIHTb, qTO .rlerKOHOHH3HpylOHHeCH ra3H IlpH Te~nepa- 
Type OKOAO 10.0O0 ~ I~ ~IBJIHIOTCH Hes HO OTHOIlleHHIO K IviaFHHTHHM noMexa~. Ha 
OCHOBe aHaJIOFHH HHTeHCHIIHOCTH Typ6y~eH~ttm H HaHpHM<eHHOCTH MarHHTHOFO HOJIg C HO- 
MOHblO TeOpHH BHxpeBorO TpaHcHopTa MO~I~eM OReHHTb Te 30p~el<Tl~, I<oTopMe BO3HHI~alOT B 
ra3e, o6AaRa|oHeM XOpOmHMH HpOBO~~IHHblH CB0•CTBaMH. ]~oM<eM. cRe~aTh BHBOR, ~TO y R e ~ b -  
Ha~l HpOBORHMOCTb Fa3a ~OJDKHa IlaRaTl, c HeKoTopHMH IIopflRKaMH B TO BpeM~ KorRa MarHHT- 
Haff HpOHHRaeMOCTb ROnCHa Bo3paCTaTb. TeopHH RaeT loeo6xoRHMoe yc~onHe Toro, qTo Mar- 
HHTHOe II02Ie 3Be3R IIpoHs OT HOHH3aRHH H OT Typ6yAeHTHOrO r162 

Yp&BHeHHH 3Y~eKTpo~arHHTHOIŸ rI�91 C BBe~eHHe~ HOBHX ~yHI~KHIŸ ~toFyT 
61,ITb 3alIHCaHbl B s237 ~op~e, r flBAHeTc~I aHaAOrHtIH~I~ ypflBHeHHHM RBHM<eHHH 
~~accHqecI~ofl rH~pORHHaMMKH. ~paBHeHHH OCTaIOTCfl aHaAOFHqHbI~H B cAyqae rOMOFeHHOfi 
H3OTOIIHO~Ÿ Typ6yAeHRHH. 


