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que I'ordre qu'il a commenc›  de se donner ne 
se lie pas si compl/~tement, ne lui soit pas un si 

rigide maitre, qu'il ne puisse le changer el user 

de sa libert› initiale. ~> 
(Paul Val› 

In this mode la  certain sequence of characters is supposed to have a "survival advantage" compared 

to any random sequence. The multiplication happens with errors o fa  fixed probability. By making use of this 
model, lhe evolutionary role of sequence length, life expectancy and mutation rate has  been studied. 

Evolution 

Lifeless objects wear out, they decay, their manifold heads towards complete 
disorder. A population of living beings does not wear out, it is even able to improve 
itself. If one looks for the origin of this qualitative difference, it turns out that the 
essential threshold of life is the ability of self reproduction. In a noisy environment not 
all offsprings of a living being are identical, so there is always a spectrum of genetic 
information present in the population. In the actual environment the allele (the variant) 
with the highest survival value and the highest fecundity multiplies the fastest. Other 
alleles are decimated or eliminated by natural selection, but they are always 
reproduced by the mutations of the fittest allele. If the environment changes, another 
allele of the spectrum will fit the new environment in the best way, and this allele then 
takes over. In this way the population will adjust itelf to new conditions. In this 
information-theoretical sense "life is the undertaking of an information carrier, to 
produce as much copies as possible". This is an updated version of the saying that "the 
hen is an undertaking of an egg to make more eggs". From this point of view three 
layers of natural phenomena can be distinguished: 

* Dr to Prof. I. Tarj• pioneer of exact approach to biology, on his 70th birthday. 
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I. The behaviour of material objects with few degrees of freedom can be described 
by deterministic equations of motion (equations of Newton, Maxwell, Schr6dinger, 
Dirac.. .).  These are symmetric with respect to time reversal, the motions described by 
their solutions are reversible. (E.g a mass point, a mathematical pendulum, a rigid 
body, a lone electron.) 

II. The behaviour of an aggregate of matter with very many degrees of freedom is 
irreversible due to statistics. It is characterized by increasing disorder, by wearing out, 
by dissipating any concentrated energy from a single degree of freedom to many 
degrees of freedom of the aggregate. (Second Law of thermodynamics.) Examples: the 
universe or any piece of real matter. 

III. A population of self reproducing structures is able to improve itselfin a noisy 
environment, to increase the survival chances and multiplication rate of the member 
structures spontaneously. Natural selection eliminates the deficient copies, so the 
population of self reproducing structures does not wear out. In fact just the opposite is 
true: by making use of random mutations, the population is able to adjust itself to a 
changing environment. Its fate is irreversible as well, but now in a positive sense. 
(Darwinian evolution.) In accordance with the Second Law, the necessary condition for 
spreading and developing is a steady flow of free enthalpy to the self reproducing 
structures, so that the increase of entropy in the environment overcompensates the 
increase of organisation and information within the population. 

In this information-theoretical sense the main task of life science is to understand 
the spontaneous origin, spreading and increase of the genetic information. No wonder 
this challenge has attracted the attention not only of biologists, but of chemists, 
physicists, mathematicians and computer scientists as well [1]. 

The first computer model 

Since the discovery of the genetic code, the mechanism for the evolution of 
genetic information has been sought by a number of authors [2]. To understand the 
evolution ofgenetic information, Manfred Eigen and Peter Schuster have introduced a 
very simple, but very illustrative model [3]. Let us start with a random sequence of 
characters. (E.g. BAK GEVLNT GUPIF LESTKKM.) The given environment has 
been supposed to have the highest preference for a "sensible sequence" of these many 
characters (e.g. TAKE ADVANTAGE OF MISTAKE). If the characters of an actual 
sequence agree with the ideal sequence in several places, this actual sequence will have a 
higher multiplication rate than any other random sequence with a lesser degree of 
coincidence. In this way the "sensible sequence" will be selected from the manifold of 
random sequences within a few generations. Evidently, if the copying were 100 percent 
faithful, a population not containing the ideal sentence from the beginning would not 
have a possibility of evolution towards the "most sensible sentence". But the interplay 
of a slight error rate per character with natural selection makes such a spontaneous 
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increase of sensible information possible. A very high mutation ,rate, however, is 
harmful: it may wipe out any achievements of the evolution, before its fixation in the 
population with the help of natural selection. Eigen has worked with sentences of 
definite length, with a fixed preference for a unique "ideal sentence".He used the 
computer model to find the maximum size of inheritable information at a given 
mutation rate and to explore the advantages of a cyclic information structure (like 
TAKE ADVANTAGE OF MISTAKE). 

By generalizing Eigen's model, the present paper explores the influence of 
different internal parameters on the speed of evolution [4]. Such parameters are the 
length ofwords, their mutation rate, their life expectancy, the capability ofchanging the 
information length, etc. In this paper also we shall restrict ourselves to a fixed "target 
word". The case of "changing environment", that of "divergent evolution" with 
different target words, the possibility ofa "symbiosis of information" will be explored in 
a subsequent paper. 

Let us use an alphabet with 16 characters (e.g. the Hawaiian alphabet). A word 
may contain L characters. It will be compared to a previously fixed target word (e.g. 
LIFE). If only R letters are right ones at right places (e.g. in the case of LOTE one has 
L = 4, but only R = 2), the word is less "fit", so it will produce 2 R +1 offsprings per 
generation. The "sensible word" (R = L) has the most offsprings: 2 L§ 1. The parent 
perishes after one generation, after having produced the offspring. 

In general the offspring are copies of the parent word, but there is a chance for a 
"typing error" (mutation) at each copy. With a mutation probability # any character of 
the parent word may be replaced by another, randomly chosen character of the 
alphabet. (E.g. an offspring of LIFE may be LOTE, another may be LIFE. The value of 
R may remain, may decrease or may increase.) 

The number of words in the population will grow very fast from generation to 
generation, at tt/e end like a fast diverging geometrical sequence. In order to control the 
number of digits, we express the composition of the population in percentages. 

lnfluence of the mutation rate 

Let us consider a population ofwords with the fixed length L. The number of the 
words, containing R right characters at right places is given by y(R). These numbers 
make the L + 1 dimensional population vector y. The population vector will change 
from generation to generation due to selective multiplication and due to mutations, lts 
value is YN in the n-th generation. For the next generation, any R-word will be replaced 
by its 2 R + 1 offspring (this is described by the spreading matrix S). Some of the offspring 
are mutants, because any character of the parent word has a chance /~ of being 
miscopied (this is described by the mutation matrix M). So the population vector of the 
next generation can be obtained by a linear transformation from the former generation: 

y. + 1 = MSy~. (1) 
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The multiplication is described by the (L + 1) • (L + 1) sized diagonal spreading 
matrix 

S =  

1 0 0 . . .  0 

0 2 0 . . .  0 

0 0 2 2 . . .  0 

0 0 0 . . . 2 L+I 

(2) 

A single mutat ion may replace either a right character with a wrong one 
( R ~ R - 1 ) 7  with the probability 

R 1 6 - 1  
P~-I .R = /~" 

L 16--1" 

(Mutation rate times the chance of affecting a right character times the chance of 
choosing a wrong character from the alphabet.) Or  the mutation may transform a 
wrong character into another wrong one ( R ~ R ) ,  with a probability 

L - R  1 6 - 2  
PR, g = I,t" 

L 16--1 " 

Or  the mutation may transform any wrong character into the corresponding right one 
(R--~R + 1), with a probability 

L - R  1 
Pg+l .g  = ~ ' - -  

L 1 6 - 1  ' 

Substituting a right character with the right one (at a given place it is the same!) is not 
mutation, it is faithful copying. So the total mutat ion probability of one character is 

PR-1.R + PR,~ + PR+13r = # .  

A single-character mutat ion can be described by the following matrix: 

P = ~  

14 L 151 
0, 0 . . . .  

1 5 L '  1 5 L '  

1 L 1 4 L - 1  152 
0 7  " " " 

1 5 L '  15 L ' 1 5 L '  

1 L - 1  1 4 L - 2  153 

15 L 15 L 1 5 L '  

1 L - 2  1 4 L - 3  
0, 0, - - - - ,  - - - - ,  . . .  

15 L 15 L 
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The expected number of mutations is (N)  = #L in a word of L characters, they may be 
described by a Poisson distribution. So the overall mutation matrix is constructed in 
the following way: 

(#L) N pN 
M =  e-"L N! " (4) 

N=O 

Let us now start with a 10 character word, all characters wrong (R=0). The 
evolution of the population towards the "target word" is shown in Fig. 1 for different 
mutation probabilities (/~). The curve of the population distribution is drawn for each 
fifth generation. (The serial number of the generation is indicated on the corresponding 
curve.) Table I shows the final population distribution. This limit is essentially the 
eigenvector of the product matrix M" S, belonging to the highest eigenvalue. 

For a fixed "target word" (in a fixed "environment') the "best fitting population" 
would consist of only perfect words (R = 10), in this population the multiplieation rate 
would be the highest: 211=2048. This could be realized only with an exact 
reproduction,/~=0, but this would make any evolution, any adjustment to a new 
environment impossible. A similar multiplication rate ( -~ 2000) can be realized by any 
value/~ < 1%, so there is no practical advantage to suppress the mutations below that in 
this specific model. 

If, however, the environment cannot be expected to last longer than 20 
generations, if the target word will be changed at the 20th generation, there is no time 
enough to build up the limiting population by natural selection. Fig. 2 shows that 
within 20 generations the mutation probability /~=1% builds up the highest 
multiplication rate. If the available time is so limited, a more faithful reproduction were 

Table 1 

R 
q 

1 2 3 4 5 6 7 8 9 10 

O .  - . . . . . . . .  100 

0.000 3 . . . . . . . .  1 99  

0.001 . . . . . . . .  2 98 

0.003 . . . . . . . .  6 94  

0.01 . . . . . . .  2 7 92  

0.03 . . . . . .  2 10 34 54 

0.1 . . . .  2 8 19 30 29 12 

0.15 - - l 2 8 17 26 26 15 4 

0.2 - - 2 416 24 25 17 7 1 

0.3 1 4 11 20 25 21 12 5 1 - 
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Fig. 2 

even disadvantageous. In a fast changing world, in the case when the target word will 
change after 10 generations, the highest multiplication rate can be achieved by a larger 
copying error:/~ = 10%. So the moral of this chapter is the following: under strictly 
controlled environmental conditions a small mutation rate is preferred, because this 
results in a narrow population spectrum. (This is the idea behind the hybrid chicken.) In 
a fast changing environment, however, a higher multiplication rate has a definite 
selective advantage. (This is a lesson learned well by the flu virus.) 

Influence of the multiplication advantage 

In this calculation the multiplication advantage per correct characters was taken 
to be 2. Ifone uses a higher multiplication advantage (Eigen used 2.718 and 10 per bit), 
it will make the final spectrum narrower. So a higher multiplication rate may 
compensate a larger mutation probability #. 

Influence of the iongevity 

In our model it has been assumed up to now that the parent word disappears 
immediately after having produced the first generation of her offspring. Let us change 
this condition: the life time of an individual word be 3 generations, i.e. any individuum 
bears three times. This certainly increases the overall population number, but the 
increase becomes negligible if the multiplication rate �87 1. During the fast change of the 
population (R growing from 0 towards L) the surviving parents act as conservative 
elements, slowing down the increase of the average multiplication rate. (Table II gives 
the increase of the average multiplication rate in the first generations, if L =  10, 
# =0.000 3, the life time of a word is 1 or 3 generations. Moral: the longevity of words 
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Table II 

Number of Lifetime 

generations 1 3 

0 2 2 

1 2 2 

2 2 2 

3 2 2 

4 2 2 

4 2.02 2 

6 2.02 2.02 

7 2.134 2.04 

8 2.10 2.08 

9 2.18 2.14 

10 2.40 2.32 

11 2.74 2.56 

12 3.75 3.24 

13 4.76 4.34 

identical 

has a special value mainly for a population of small multiplication rate. (Fig. 3 shows 
the delayed decrease of the number ofcompletely wrong words, R = 0 for a special case.) 

In the following chapters we shall go back to the "one, word - -  one generation" 
assumption. 
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Influence of the length of the genetic information 

Eigen has claimed [3] that in the case of#L < 1 the correct words will dominate 
the final population. This does not seem to be valid in our computer model. The reason 
for this is simple. Let Yl describe an ideal population, consisting exclusively of the 
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correct words with R = L. Now a new generation cannot be better than My=. If the error 
per character is #, then the probability for a copy to be incorrect is = pL. E.g. for/~ 
= 1/15 and L =  10 one gets/~L=2/3, i.e. a good half of any generation will contain 
incorrect characters! Ir is true on the other hand that the new generation will be 
produced mainly by the perfect fraction, because the perfect words have at least twice as 
high multiplication rate as the imperfect ones. 

Fig. 4 depicts the evolution of words with different lengths in time. The mutation 
rate per character is the same for all:/~ = 3~o. The speed of evolution increases with 
growing L. But for longer words, even if they are correct, there is a small chance to 
produce correct copies. Fig. 5 shows that the width of the final population increases by 
growing L. This certainly limits the size of the inheritable genetic information. It is only 
the "selection pressure", not inheritance, which prevents a complete randomization of 
the text. As Eigen has emphasized: fora fixed value of/~ natural selection will optimalize 
the size of the genetic information. This phenomenon will be studied in the next 
Chapter. 

Growth of the informatJon content 

Peter Schuster [5] presented a simple model to show how the mutation 
probability per character limits the size of the genetic information. Here he assumes for 
simplicity that only correct words multiply, any incorrect character is lethal. This 
assumption is useful to get a relation between/~ and Lmax. But to understand the 
increase of the genetic information to its optimum length one has to relax this strict 
condition. That is what we do in our second computer model. 

Let us consider a population of"words" with different lengths. (E.g. we shall put 
L = 2, 3, 4, 5. Lone characters are not considered to be sensible words, but only building 
blocks available in unlimited quantity. The maximum value of Lis limited by the long 
build-up time and by computer capacity. Let us see, if the evolution dynamics makes 
any further restriction.) For each length there is a "target word',  the longer target 
words are obtained from the shorter ones by adding a new character to the end. (E.g. a 
series oftarget words may be AB, ABC, ABCD, ABCDE, or in a more English way: TO, 
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TOO, TOOL, TOOLS. An arbitrary word made of L characters may contain R 
characters identical with those of the target word with the same length. (There ate R 
identical characters on the correc! place). The number ofsuch words will be denoted by 
y(L, R) in the population. Evidently O<_R<_L, as before. The number y(L, N) will 
change in time. 

A longer chain of characters needs more time to be copied, so the time gap 
between two generations is supposed to be proportional to the number L of characters 
in the word. - -  A word carrying a more sophisticated information may have a longer 
life time. ("More enzymes offer a more elaborate defence system against wearing out.') 
In our second computer model the average life time is assumed to be 

T(L, R) = 3nz. 

Ir one has a population of "correct" words of different lengths (R = L) and no error 
copies are allowed, the time dependence of y(L, L) will be described by the differential 
equation 

The optimum value of L, offering the fastest multiplication, can be obtained from the 
algebraic equation 

i.e. from 
L23 - L lg 3 = Z. (5) 

So for any r one can estimate the optimum length of words (see Fig. 6). 
If the word contains also 

suppressed by a factor 
multiplication value 

1 2 R 
S(L, R) = L 

L ~ 2 k, 
R ' = O  

These are the elements of the diagonal spreading matrix S. 

"wrong" characters, its multiplication rate is 
of I/2 per wrong character. So an (L,R) word has the 

(6) 

c'~T 

o ~  
1 2 3 �91 5 

Fig. 6 
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Not  all offspring are true copies. The mutat ion matrix (4) can be approximated 
for a small value of/a by the expression 

M = 1 + t~LP. (7) 

Now the population contains words of different lengths, so both S and M a r e  composite 

matrices containing diagonal submatrices indicated by (6) and (7). 
Let us allow that a random character may stick to the end of any word with a 

probability 7 per unit time. (7 for "growth"). There is a 1/16 chance that the new added 
character is a "right" one (increasing L to L + 1 and increasing R to R + 1). There is a 
15/16 chance that the new added character is a "wrong" one (increasing L to L + 1 but 
leaving R unchanged). This effect can be described by a nondiagonal matrix G. 

G =  

1 

0 

0 

15 

1 

16 

0 0 0 0 0 0 0 . . .  

- 1  0 0 0 0 0 0 . . .  

0 0 0 0 0 0 0 . . .  

0 0 - 1  0 0 0 0 . . .  

15 
1~  o o - 1  o o o . . .  

1 15 
- -  - -  0 0 - 1  0 0 . . .  
16 16 

1 
0 0 - -  0 0 0 - 1  

16 

1 
0 0 - -  0 0 0 - 1  

16 

(8) 

It will be assumed in the new model that a word at the site ofa  wrong character is 
more vulnerable than elsewhere. There is a probabili ty fl for a break of the word at the 
wrong character. The wrong character can stick to the first or to the second fragment 
with equal probability. If both fragments consist of at least two characters, we have got 
two shorter words instead of the original long one. The L - R - 1  other wrong 
characters of the original word distribute in average uniformly between the two 
fragments, so the first fragment (containing the first L 1 characters of the original word) 
will consist of 
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right characters. The right characters of the original word will become wrong certainly 
in the second fragment, but some of the wrong characters of the original word may turn 
out to be right, with a probability 1/16 per character. All these changes can be taken 
into account algebraically with the help of a nondiagonal matrix B. 

The decay of the words can be described with a mean life time 

T(L, R) = 3Rz, 

i.e. with the expression z-1D, where 

D =  

1 0 0 0 = 0  0 0 

0 3 -1 0 0 0 0 0 

0 0 3 -2 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 3 -1 0 0 

0 0 0 0 0 3 -2 0 

0 0 0 0 0 0 3 -3 

�9 ~ 

�9 ~ ~ 

Finally, the differential equation describing the fate of the population reads 

y = [(1 + #LP)S + yG + f l B -  z -  ID]y.  

This takes into account several aspects influencing the information content of the 
words. To s e e a  specific example, the numerical parameters were chosen in the 
foUowing specific way: 

/z=0.10, ~=0.02,  t i=0.02,  z=0 .4 .  

The computation started with a single nonsense word of two characters (L = 2, R = 0, 
like FZ). The emergence of longer and sensible words is shown in Fig. 7. This Figure 
gives a motion picture, how the two character word improved (e.g. from FZ to TO), 
then one experiences a very slow transition to three characters and improving of the 
meaning of the three characters (e.g. making TOO). In the final steady population 
about 3/4 of the population is made of a sensible four-character word (e.g. TOOL), 
coexisting with a few sensible three-character expressions (like TOO) and with a few 
sensible five-character expressions (like TOOLS). Copies with one character error are 
also present. The evolution stops at this stage. There would be no advantage to try to 
build up lengthy words (like TOOLSMITH),  because they need too much time for 
formation and too high a chance to pick up misprints. 
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Evidently the above set of characters has been used only as illustration. The 
computer program works with other parameter values as well, it can be used as a tool 
to model more complex situations concerning the evolution of genetic information. 

The authors are very much i n d e b t e d  to  P ro f .  V i l m o s  C s •  a n d  t o  P r o f .  Peter Schuster for i~spiring 
and critical discussions. 
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