
Acta Physica Academiae Scientiarum Hunqaricae, 53 (1--2) ,  pp. 255---262 (1982) 

MATHEMATICAL MODELLING OF SEGREGATION 
PROCESSES IN MICROBIAL POPULATIONS 

CONTAINING A SINGLE PLASMID SPECIES* 

G. M• D. NOACK, R. SCHORCnr 

CENTRAL INSTITUTE FOR MICROBIOLOGY AND EXPERIMENTAL THERAPEUTICS, JENA, GDR 

and 

S. G�93193 L. HER• 

INSTITUTE OF BIOPHYSICS. SEMMELWEIS MEDICAL UNIVERSITY, 
BUD~,PEST. HUNGARY 

This paper presents two mathematical models for plasmid segregation processes of bacteria 
containing a single plasmid species with various copies. A Markov chain model allows to study the general 
properties of these processes for stable inheritance of the plasmid and for plasmid loss during continuous 
culture. The other, more specialized model is based upon the following assumptions: (I) random replication 
of the plasmid copies concerning the replicated copy number, (2) equal number partitioning of the copies 
after replication into the daughter cele 

Introduction 

The stability of inheritance of a multi-copy-plasmid in a chemostat culture 
depends on the type ofplasmid, its host cell and the culture conditions (Adams et al [1], 
Godwin and Slater [2], Roth et al [31, Jones et al [4], Noack et al [51). There are two 
possible alternatives: either stable inheritance of the plasmid for a long time of 
cultivation or the loss of the plasmid. The kinetics of plasmid loss in a chemostat and 
the conditions for their stable maintenance were studied in several mathematical 
models (Baumberg [6], Stewart and Levin [7], Levin et al [8-1, Levin and Stewart [91, 
Levin and Rice [10]). These models describe the dynamic behaviour of the whole 
population without consideration of the various mechanisms of the segregation 
process. Other authors discussed the problems of plasmid segregation in relation to 
these mechanisms (Novick et al [11], [12], [13], Uhlin and Nordstr6m [141, Cullum 
and Broda [15], Molin and Nordstr6m [161, Nordstr6m et al [17] I, II, Hashimoto- 
Gotoh and Tirarais [18-1). 

In addition to the experimental studies stochastic models allow a quantitative 
comparison between theoretical and experimental data and their interpretation. 

Such models were based on various assumptions for the basic mechanisms of 
segregation in the process of inheritance of the plasmid copies to the daughter cells at 
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cell division. Mathematical models of the mechanisms of replication (rep), replication 
control (cop) and partitioning (par) of plasmid copies at cell division were discussed 
quantitatively only in connection with problems of plasmid incompatibility (Ishii et al 
[19], Novick and Hoppensteadt [20], Cullum and Broda [15-1, Nordstr6m et al [17] I, 
II). AII discussed mathematical models for plasmid incompatibility have in common 
the dissection of segregation process of two different plasmid types into two processes: 
replication of the plasmid copies and their partitioning into the daughter cells, as well 
as they are common in the assumption of a constant whole copy number of both 
plasmid types in all generations and in each cell after replication. The assumption of a 
N - ~ 2 N ~ N  cycle in the course of replication and partitioning allows to calculate the 
alteration of relative frequencies of mixed plasmid states and the averaged segregation 
probability. Conclusions can be drawn on the mode of replication and partitioning of 
the plasmid. 

In this paper we present two stochastic models describing the loss of a single 
multi-copy-plasmid during continuous culture. In both models we assume a random 
replication of the plasmid copies and a random partitioning, for instance a binomial 
partitioning, or an equal number partitioning, of the replicated plasmid copies. The 
mathematicai description of the plasmid segregation in agreement with genetic results 
is a difticult task, because the average number of plasmid copies per cell of the whole 
population decreases in time in contrast to the mentioned models of plasmid 
incompatibility. We have solved this problem in two ways. In the first model the basic 
properties of the segregation process of a single multi-copy-plasmid are discussed. By 
means of special matrices R and Q for the replication and partition the second 
mathematical model describes in detail the segregation rate of the plasmid and the 
proportion of plasmid-free and plasmid-containing cells in the whole population. 

A general segregation modei 

In the first model we study the basic properties of the segregation process 
described asa  Markov chain. Let z be the number of generations (z = 0, 1, 2, 3, . . . )  and 
�91 a random variable which describes the copy number per celi in the generation z. �91 
has possible values k = 0, 1, 2 . . . .  , N. We call 

p(�91 = k) = p , (k )  

the probability that �91 = k. The rector (po(k)) k = O, l ,  2 . . . .  N is the initial distribution 
vector of the plasmid copy numbers in the population. A Markov chain with discrete 
time is defined by the conditional probability: 

rc(�91 + 1 = kl �91 =Jo, �91 =Jl . . . . .  ~, =J0 = rc(�91 + 1 = kl �91 = rcj~. 

rtlk is the transfer probability of thej-th state to the k-th state after one generation. We 
assume that njk is independent of the number of generations. Therefore, the Markov 
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chain is homogeneous and we have the transfer matrix {rr#k ) j, k =0,  1 . . . . .  N. This is a 
stochastic matrix with the properties: 

and 

N 

ltjk = 1, j = 0 , 1  . . . . .  N 
k=0  

Ÿ > 0 , j , k = 0 ,  1 . . . . .  N .  

Writing p~(k), z =0 ,  1, 2 . . . .  a sa  line vector P~ and (l'Cjk) a s  the square matrix H, 

we have, for example, 

P~ = P,_ 1 . /7 .  (1) 

This recursive formula allows to calculate the distribution vector of plasmids in the 

generation z 

P, = P o " / / ' .  (2) 

/7" is the n-fold matrix product. In our model we consider the segregation process from 
one generation to the next, described by the stochastic matrix H, a s a  result of two 
processes, replication and partition of the plasmid copies. We represent the processes 
with two matrices R and Q which have the form: 

and 

R = 

(2 = 

1 0 0 

0 Rl l  R1N 

0 0 R22 

0 0 RNN 

1 0 0 

Plo Pll 0 

P 2 2  

0 

PNo PNN 
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Then the transfer m a t r i x / / m a y  be written 

1 0 

~10 ~11 

~20 ~21 ~22 

H = R ' Q =  

O 

~IN 

T~2N 

~NO . . . . .  ~NN 

(3) 

a) Non-segregation case 

The case of stable inheritance of the plasmid during continuous culture is 
described by the stochastic matrix 17 with the condition for the first column 

{ 1 ,  i = 0  

/1;i~ 0, i=1 ,2  . . . . .  N 

(no plasmid containing cells change over into the plasmid free state). 
Eq. (2) shows that in this case the first element of the initial distribution vector Po 

does not change during the process ofcultivation. From the matrix/7 we can obtain the 
submatrix/7' without the first column and first line of/7. The properties of H' usually 
satisfy the conditions of the ergodic theorem for Markov chains and therefore there 
exists in each case a stationary limit distribution P'~ independent of the initial 
probability distribution P£ 

lim P£ /7'" = P'~ . 
n~ct3 

b) Segregation case 

The case of continuously decreasing proportion of plasmid containing cells in the 
population is characterized by the special form of matrix H: 

noo = 1 

and n~o > 0 at least for one of i. 

The study of the asymptotic behaviour of these homogeneous Markov chains is 
in direct connection with the existence of eigenvalues of the matrix H'. With the known 
notation we get the matrix equation: 

2P'~ = P'~ H' (4) 
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w~th 2 as an eigenvalue of H' and P'~ a corresponding eigenvector. If 2=  1, the 
corresponding eigenvector Pi* in the equation P'~*=P'~*H' is the stationary limit 
distribution of case a) independent of P£ 

From the standard Perron--Frobenius theory for positive matrices (Canning 
1-21]) and from the detailed classification of the various possibilities of Markov chains 
and their asymptotic behaviour (Bartlett [22], Feller [23]) we can conlude for the 
segregation case that eigenvalues 2 < 1 of the reduced matrix equation (4) will appear. 

From this result and Eq. (1) it can be concluded that the plasmid copy 
distribution functions of the plasmid containing cell population are not changed in the 
course of long term cultivation. For instance the mean value of copies per cell of the 
plasmid containing cell population is constant in the process of segregation. 

Specialized segregation model 

In the first model the processes of replication and partitioning are not specified, 
in the second one, however, explicit calculations will be carried out. We assume a 
random replication process in the following sense (not in the sense of genetic replication 
models) and describe this process With the replication factor x, 0 < x < 1. 

mean value of 

generation copy number copy number 

before replication after replication 

Assumption: after the process of replication the copy number per cell undergoes 
a binomial distribution. Let Pis be the transfer probabilities that k copies result in s 
copies after replication. Then 

(5) 

with k = 1, 2 . . . .  , N and s = k, . . . .  2k. The dependence • = x(k) on the copy number 
makes a more general formulation possible. 

The initial distribution vector Po can be chosen arbitrarily. We could show that 
the asymptotic behaviour of the model parameters are independent of Po. The 
partitioning of the replicated copies is assumed to be equally distributed and is 
illustrated in the following scheme: 
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copy number 
after replication 

n 

/ 
even 

copy number after 
partitioning in the 
two daughter cells 

n 

uneven 
/ 

n + l  

2 

n - 1  

2 

The equal number assortment model is in agreement with the experimental 
results of Hashimoto Gotoh and Sekiguchi [24] for a low copy number plasmid (pSC 
101, with 10---14 copies per cell). Novick et al [ 12] also interpreted expe¡ results 
with a high copy number plasmid (about 32 per cell) as supporting equal number 
partitioning. In contrast to these cases a lack of partitioning (par-) leads to a random 
distribution of the plasmid molecules between the daughter cells at all divisions 
(binomial distribution of plasmid copy number in the process of assortment, 
Nordstr6m et al [17] Part I). 

With these assumptions we can calculate the series of distribution vectors of the 
copy numbers in each generation 

{ P , } , = , . ~  . . . .  

Further it is possible to calculate the segregation rate 6, for each generation as 
the transfer probability of cells to the plasmid free state: 

1-~(1) 
6, = ,- 1 �9 B,. (6) 

2 - ( I -x (1 ) )  ~ B, 
i = 0  

The terms Bi, i=0, 1 , . . . , z  are multiple sums, dependent on the initial 
distribution Po, the replication factors x(n), n = 1, 2 . . . .  and the transfer probabilities 
Pks. The experimental measurable proportion of plasmid free and plasmid containing 
cells can be determined as follows: 

P(z,=0) = 1--x(l______~) ~ Bi ,  (7) 
2 i = !  

P(z,  > O) = 1 - P(z,  = 0) ,  (z, < N ) .  
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The segregation process can be described with the replication factor 0 < • < 1. 
The limiting value of segregation rate has been calculated. Ifthe number of generations 

1 -u(1)  
z~oo, then the segregation rate ~~ ~ ~ .  The function t~~ depends on z, the 

replication factor x and the maximum copy number N. Our calculations have shown 
1 -x(1)  

that 6~ rapidly converges to the limit 2 

Discussion 

A favourable assumption previously made in the mathematical descriptions of 
segregation processes concerning plasmid incompatibility was the constant whole 
number of plasmid copies per cell after replication. These models described the change 
in relative frequencies of mixed plasmid states and studied in detail the kinetics of the 
segregation process. With the aid of the first mathematical model proposed in this 
paper we analysed the more general properties of the structure of models for the 
segregation of a single plasmid type if in the segregation case the whole copy number 
decreases. The two important results are that in the non-segregation case the 
segregation models must have the property that the plasmid copy number has a limit 
distribution which is independent of the initial distribution and that the proportion of 
plasmid free cells is constant during cultivation. These results are in agreement with 
experimental results and are not trivial. 

On the other hand, theoretical results of the real segregation process show that 
the proportion of plasmid containing cells decreases within the population during 
cultivation, but the plasmid distribution functions of this part of population remain 
unchanged. 

We considered these general conditions of segregation models in the detailed 
calculations of the specialized segregation model in the second part of the paper. We 
have chosen special mechanisms for replication and partitioning, but the dependence of 
the replication factor x on the appropriate copy number in the cell gives much more 
possibilities for use. If one assumes a decreasing function • as the copy number 
increases it is possible to describe the loss of the plasmid during continuous culture as 
well as to replace the failing assumption of a constant copy number used in models for 
incompatibility. 
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