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ON THE KINETICS OF GROWTH OF CONDUCTIVITY 
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The kinetics is studied of electron avalanche in insulating crystals under the influence of intense light 
beams. To obtain solutions of kinetic equations, the method of successive approximations is developed. The 
multistagr character of optical damage in insulators is discussed. 

1. Introduction 

It is well known that the electronic structure of dielectric crystals is such that 
there are no electrons in the conduction band, which is detached from a completely 
filled valence band by an energy gap 3E. Let us suppose that such a crystal is 
illuminated by a beam of light with frequency o~ < 3 E/I•, where bis Planck's constant. If 
the problem of interaction between the beam of light and the crystal is treated in linear 
approximation in respr of the intensity of light, then the pure dielectric crystal must 
not absorb light at all. At the same time there is experimental evidence that laser 
radiation can give rise to a damage of a transparent insulator if the intensity of light is 
high enough [li .  

One of the possible mechanisms of the optical damage of dielectric crystals is a 
development of conductivity electron avalanche [1--6]. This process can be imagined 
as follows. Asa consequence of a multiphoton absorption of thermal fluctuations a few 
electrons appr in the conduction band. Absorbing photons from the incident 
radiation these primary electrons can gain an amount of energy greater than the 
minimum energy I which is necessary for impact ionization. The concentration of 
conductivity electrons increases asa consr162 of their multiplication and after all 
that results in crystal damagr 

In theoretical papers dedicated to the avalanche development the concentration 
of the conductivity electrons n(t) is usually represented as no dt  and the avalanche 
development tate ~, is actually calculated with small values of n(t). Asa consequence, 
nonlinear in n(t) effects remain in the background. 

In the present paper the kinetics of the electron avalanche is studied in the case of 
intensity of incident light close to the damage threshold with due regard to the above 

* Dedicated to Prof. I. Tarj• on his 70th birthday. 
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mentioned nonlinear effects. The frequency of light is supposed to belong to the visual 
range. The following physical effects which are nonlinear in concentration of 
conductivity electrons are taken into account. Firstly, the excitation of vibratory 
modes of the crystal by conductivity electrons and holes should be taken into 
consideration if only this process can cause melting of some portion of the crystal. In its 
turn, this melting is ah important intermediate stage of the damage process asa whole. 

Secondly, at definite values of n(t) (~ 1015 cm-3) electron--electron collisions 
become essential [7]. Such coUisions result in a redistribution of energy between 
electrons and, in consequence, an electron distribution function approximates the 
Boltzmann one. 

Finally, the recombination processes should be taken into account, They reduce 
the concentrations of electrons and holes. In absence of recombination processes the 
optical damage of transparent pure crystals has actually no intensity threshold 
provided that the pulse duration of the incident light is unlimited. 

The direct radiative electron--hole recombination cannot apparently be an 
effective mechanism of reduction of the charge carrier concentration because the 
cross-section of this transition is too small (~  10-19 cm2). The latter can be found from 
the experimental data on light absorption in crystals making use of the relation of 
van Roosbroek and Shockley [8]. But recombination transitions can also occur 
through intermediate states (excitons in the present case). The appropriate elementary 
proeess is binding of ah electron anda hole in ah exciton I-9--11]. It has a rather large 
cross-sr a~x" 10-13 cm 2. The exciton loses energy when scattering on phonons 
and at length transforms into a photon [11, 12] that leaves the crystal. This process 
proves to be ah effective mechanism of decrease of charge carrier concentration in spite 
of the competition of a reverse process. This is exciton dissociation to an electron anda 
hole due to its interaction with a phonon [9]. 

In Seetion 2 we present the approximate method of solution of kinetic equations 
for electron and phonon subsystems of the crystal. That is the method of successive 
approximations. In Section 3 we shall briefly discuss the multistage character of optical 
damage of dielectric crystals. 

2. Approximate solution of kinetic equations 

Let us consider a dielectric crystal in which conduction and valence bands are the 
standard parabolic bands. We assume also that me'~ mh, where m e and mh are effective 
masses of a conductivity electron and a hole, respectively. Suppose that the crystal is 
irradiated by the light beam, starting from the time moment t--- O. We shall describe the 
plane light wave propagating in the crystal by the vector potential 

A = Aoa cos(qr-  tot), 

where A o is the amplitude of the potential, a is the unit polarization vector, 
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dA 
E = - -~-. Coupling of this wave with conduction electrons can be characterized by the 

dimensionless parameter y = (hcome)- le2A£ e is the electron charge. We shall consider 
such intensities of light when y,~ 1. 

As far as absorption and emission of visible-light photon by a conductivity 
electron have quantum nature we shall use quantum theory, proceeding from the 
Hamiltonian H =  Ho +Hint. Here H o is the Hamiltonian of noninteracting quasi- 
particles (electrons, holes, phonons and photons), and Hin t describes the Coulomb 
interaction between charge car¡ coupling ofelectrons with photons and phonons, 
and anharmonic phonon--phonon interaction. 

Kinetic equations for occupation numbers of electrons, holes, and phonons, 
averaged with crystal density matrix # such as nk(t) = Tr (#(t) ¡ (master equations) can 
be obtained within the framework of nonequilibrium quantum statistical mechanics 
with the aid of Kadanoff--Baym equations and summing up the secular terms in 
perturbation theory series [ 13, 14]. Here Tr denotes the trace operation. The problem 
under consideration is rather specific: there are some small parameters and, besides, 
absorption and emission ofa photon by a conductivity electron must be accompanied 
by absorption or emission of a phonon to obey the conservation laws of energy and 
quasi-momentum. 

In the course of avalanche development the Fermi gas of conductivity electrons 
remains nondegenerate. In this case the master equation for electron occupation 
probabilifies has the form 

dfe(P, t) _ (gph + S, + ~, + g~~ + Sc)f~(P, t). (1) 
c~t 

where fe(P, t) is the conduction electron distribution function and S are transition 
probabilities, p i s  electron quasi-momentum. Distribution function of holes in the 
valence band fh(P, t) satisfies the analogous equation. The terms S f  have the following 
common structure. Each of them is the sum of products of the normalizing factor, 
modulus of the matrix element squared, deltafunction standing for energy conservation 
law in the elementary process, electron and hole distribution functions in the initial 
states, and factor Nk(t) or Nk(t ) + 1 in the case of absorption or emission of phonon. It is 
too cumbersome to write down the explicit expressions here and we shall refer the 
readers to the relevant literature. It is essential that in the case of nonpolar crystals the 
interaction of electrons with acoustic and optical phonons (scattering on the acoustic 
and optical deformation potentials) is taken into consideration in Hint. If the crystal has 
polar optical vibratory modes, we suppose that their interaction with conductivity 
electrons is weak. It is also taken into account in Hin t. 

The term Sphfe describes phonon absorption and emission by conductivity 
electrons [7, 15]. Absorption of photons from the light beam by electron and photon 
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emission in the same mode with simultaneous scattering on phonons is presented by 
S, fe [15]. Due to y,~ 1 we restrict ourselves to one photon processes. The term ~ife 
describes the impact ionization ofelectron and hole both with [3] and without photon 
absorption [16, 17]. The term Sex fe eorresponds to the binding of electrons and holes 
in excitons [9] and ~efe takes into consideration electron---r and electron-- 
hole collisions in Born approximation [14]. 

St¡ speaking, Eq. (1) should be supplemented by the kinetic equation for 
excitons in which the following processes are taken into account: exciton dissociation, 
exciton--phonon scattering and luminescence of excitons (polaritons) [11, 12]. We 
sha!l consider these processes in a phenomenological way multiplying %x by a 
coefticient A<I .  Aecordingly, Eq. (1) contains an effective probability of the 
disappearance of electron and hole as a final result of the binding process. 

Kinetic equations for the average numbers of phonons Nk~(t) of the mode j with 
quasi-momentum k can be written as 

ONkj(t) = (s + s " (2) 
Ot 

Here ~Nkj(t) represents the variation of Nkj(t) with time a s a  result of phonon-- 
phonon interaction, and ~Nk~(t) describes the phonon absorption and emission in the 
course of the above electronic transitions [7, 15]. 

A kinetic equation such as (1) was considered in [3] with some difference: the last 
two terms on the r.h.s, of Eq. (1) were omitted and, accordingly, the above mentioned 
nonlinear effects were not considered. For the approximate solution of the ]r 
equation the method of slowly varying amplitudes was useful in [3]. It had been 
worked out earlier in the paper [ 18] where the problem of gas breakdown by laser 
radiation was studied. In [3] the function f,(p, t) was presented as exp (~t)f(p). In 
doing so the impact ionization was considered asa slow proeess in contrast to the quick 
establishment of energy distribution in the electron system. 

We intend to solve the system of equations (1), (2) at light intensity values cl�91 to 
the threshold of optical damage. These equations ate nonlinear: operators ~ depend on 
Nkj(O, Le contains fe,h(P, t) and, besides, the last two terms on the r.h.s, of (1) are the 
bilinear expressions in respect of fe.h. Keeping in mind the arguments given in the 
Introduction we shall generalize the method of slowly varying amplitudes and look for 
an approximate solution of (1) in the forro n(t)f'e(p, n(t)). Here n(t) is the concentration 
of conductivity electrons at the time t and the function f-e(P, n(t)) satisfies 

Then Eq. (1) reduces to 

(,~,~ +,~,+ gM'~(p,,,(t)) =o. (3) 

dn(t) 
dt = a(t) n ( t ) -  b(t) n2(t), (4) 
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where a(t) and b(t)n(t) are the probabilities of impact ionization and electron--hole 
binding in an exciton averaged with f~(p, n(t)) and the respective function for holes 
f~(p, n(t)). 

The system ofequations (2}---(4) is still too complicated to be solved exactly. As it 
was shown in [14], the conservation laws should be taken into consideration when 
looking for approximate solutions of kinetic equations, i.e. the approximate solutions 
must satisfy them. When solving (2}---{4) we propose to use the method of successive 
approximations. We obtain the first approximation f~th) (p, t), ifwe put in (3)----(4) Nkj(t) 
to be equal to their values at t = 0. The latter are determined by Planck's formula for the 
initial temperature To of the crystal. Then we put the solutions of the resulting 
equations into Eq. (2) and find the time dependent average occupation numbers of 
phonons N[~)(t). Now we can w¡ down equations for j,,hwr(2)1"~, t ~1 by substituting N~~)(t) 
in (3), (4) for N~j(t) and so on. It is obvious how to continue the iteration proc~dure. 

If this procr is quickly convergent, we shall have a rather precise solution 
after a few steps already. In any case, even N[~~(t) reveals crystal lattice heat-up 
producr by condur electrons and holes. And in f~2~(p, t) the reverse influenc~ of 
this heat-up on the distribution functions of charge carriers is duly taken into 
consideration. 

The main obstacle to the solution of Eq. (3) consists in the quantum nature of 
absorption and emission of light by elr a s a  result of these transitions the 
electron energy e(p) changes by a quantity ~ ~e;'which is commensurable with the 
impact ionization threshold I. Making use of the transition probabilities averaged on 
polarization directions of the incident light we shall look for the solution of Eq. (3) 
holding thatf~(p, n(t)) depr on lp[ only. Then this solution can be expanded in terms 

oftho oomp~oto ort~ono~al ~t of fuoo~on~ ~.,~,~~~,~,oxp/ ~ ) a s  fo.ows 

/q ~ f~'(p, n(t)) = ~ cn(t)~p.(x ), x = (5) 
n=O 

Here L.(x) ate Laguerre polynomials, and k is the Boltzmann constant. The adyantage 
of sueh an expansion consists in the fact that ~po(x)=exp[-tp]a/2mekTe]. At 
n(t) > no ,�91 10 ls cm-a collisions between electrons will result in the redist¡ of 
energy and all c,(t), besides co(t), will become zero. Also the expansion (5) contains a 
free parameter, that is the electronic tcmperature Te. Its value can be determined in 
such a way that the energy conservation law is fulfilled for the approximate solutions. 

Let us find out an approximate dist¡ function ofconductivity electrons by 
putting in (5) all cn(t), besides co(t), to be equal to zero for all time values. Note that we 
can look for corrections to suela an approximation also with the aid of the ex- 
pansion (5). 

In the course of the iteration proeess we shall determine a value of Te(t) from the 

energy balance condition: the energy n(t) ( -  -~)lost in unit of volume by conductivity 
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electrons per unit time must be equal to the energy S K  obtained by them in light 
absorption and emission processes. Here S in the intensity ofincident light and K is the 
light absorption coefficient. In the case of nonpolar crystals this oondition is 

- d-t - - ~  a = ¡ 1 7 6 1 7 6  

Here the quantities averaged with the function tpo appear and 

(6) 

(~'/, ~~~2-''~ ( ~ )  
= ~l" 'e  (kT,)3/2 1 _  

Here T(t)  and p are the temperature and the density of the crystal, respeetively, El is the 
deformation potential constant [7]. Also 

( delo ma~/2D2 hx/~ox//-~ K ' ( 2 z )  
-- - ~  d = rca/2B2p sh(z) s h [ ( 1 - 2 ) z ] ,  

hco o 
where coo is the maximum frequency ofoptical phonon, ), = T/T~,  z = 2---k-T' and D is the 

o ptical deformation potential constant [15]. From now on Kn(x) is the modified Bessel 
function, n = 0, 1, 2. The contribution to the right hand side of Eq. (6) from the above 
mentioned radiative transitions accompanied by absorption or emission of an 
acoustical phonon is given by 

n(t---) S K ~  = A£ 1/2 sh K 2 , 

where C = e2EŸ161 - 1 and ue is the sound velocity in the crystal [15]. This is 
absorbed radiation energy att¡ to one electron. The same quantity in the case 
when an optical phonon is emitted or absorbed is [15] 

S Kod = A£ co - 1 B(2k  Te) 3/2 sh(z + - z)z2+ K e (z . )  + sh(z _ + z)z 2_ K 2 ([ Z _ [) 

n(t) sh(z) ' 

where 
2 2 1/2 B = e D m e hco+hco o 

6n3/2 i p  pcoo , z+ = 2k T~ 

Eq. (6) defines Te as a function of A£ and T. 
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Let us turn our attention to polar insulating crystals. If the dimensionless polar 
constant dp <~ 1, then Te can be found from the energy balance condition 

- ~ - \ d T / o , - \ ~ / o ,  = ~ S(K. + Ko, + Ko,). (7) 

Here [15] 

/ delo 23/2dp(hco0)2x//~zz sh[(1-2)z']Ko(2Z) 
- -di ~ = n t / 2 ¡  sh(z) 

1 2 dpeZ(bwo) 312 
n~) SK~ A~ ~ (kT~)ll2[sh(z)]- I x 

x [sh(z+ -z)z+ Kl(z+)+sh(z_ +z)lz-IKl(Iz_ I)]. 

The analogous equations determine a temperature of holes (we remind that me'~ mh). 
The first approximation of the iteration method can be obtained if we put T = T O 

in Eqs. (6), (7). It is obvious that quantities T(~ ) and TI lI determined in such a way ate 
time-independent. Now we can evaluate the coefficients a and b in Eq. (4). In doing so 
we shall average the probabilities of impact ionization wo(t) and Wl(S) (without the 
participation of photons [16, 17] and with the absorption of one photon [3], 
respectively) and the quantity J ve-vhlaex with functionsf~l~(t) (ve and vh are velocities 
of electron and hole, respectively) 

a=<wo(e)+w,(t)>, b =  <lv,--vhlae.~A. 

The solution of Eq. (4) is (no = n(0)) 

no a exp (at) (8) 
ni (t) = a -  nob + nob exp (at)" 

The asymptotic behaviour of(8) is nt(O--*a/b, when t~oo. Turning to Eq. (2) we shall 
bear in mind that as a result of the anharmonic interaction the energy received by a 
phonon subsystem from conductivity electrons and holes tends to be quickly 
redistributed between the vibratory modes. Accordingly, Nhj(t ) will be given by 
Planck's formula with time-dependent temperature T(t), which in turn satisfies 

"~~'~: "~'J I-_/d"~ \_/~"~~1 
dt % L \dt / \ ~ / J '  (9) 

_/~~~\ 
where c o is the specific heat of solid, T(0) = To and the magnitude \ dt / is given by 
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the lefl hand side of Eq. (6) of Eq. (7). Let us substitute n I (t) given by Eq. (8) for n(t) in 
Eq. (9) and integrate. The result is 

T(t)= To+(cvb) -11n [ b  n o ( e " -  1) + l l l -  (-~-~~ - �91 (10) 
\ dt / /3"  La _ l L \ t l ~ /  

The second approximation for fe(P, t) can be obtained by substitution of Eq. (10) for 
T in (6), (7). By solving the equations we find the time-dependent quantity T,(t). Also 
the coefficients a and b in (4) will be time-dependent. Due to inequality 

d F, /.o~<t)~l [ ~ ] l , ~ a ( t )  the approximate formula can be obtained which describes the ~L la 
\ - ' , - /  / . . d  

time-dependence of conductivity electron concentration with due regard to crystal 

lattice heat-up ( i  ) 
a(t) exp a(z) dz 

n2(t) = n o . (11) 

a(t)-nob(t) + nob(t) exp ( i  a(z) dz ) 

Note that n(t) can also be given by (11) in such a case when light intensity depends 
on time. 

Now we shall give some numerical estimates making use of the parameter values 
which are characteristic of dielectrics with wide forbidden band: me,-~10-27g, 

ue~7" 10 scm, /kOo~0,1 eV, I ~ 6 e V ,  E I ~ l l  eV (these values refer to sapphire), 
S 

D = 5 - 1 0  seV . At T = 3 0 0  K we final from Eq. (6) that kT,,-~0.5 eV corresponds to 
c m  

vacuum electrical field strength in the incident beam of order 10 s __V_V. We shall assume 
c m  

that at e>l Wo(e) linearly depends on their difference [16] as r(e-1). In this case 

2r 1/2 ~Wo(~))~ ---~(kTj) exp(-lq Ifr ,~0.5.  1014eV-1 s -1 then a,-; 1010 s -1 And 

st Aa,~~ 10 -14 cm 2 we obtain n(oo)~ 1016 cm -3. 
At the initial stage of avalanche development in alkali halide crystals our 

treatment cannot be used directly because the polar constant ~p> 1. It can be 
considered only a s a  qualitative one. But at high values of n(t) the electron--phonon 
interaction is screened, i.e. ~p=otp(n) [19]. Owing to this, we can use our treatment 
starting from such values of n(t) when ~p(n(t)) < 1. Also we must assign initial conditions 
n(to) = n o at some moment to > 0. However, some modificattons are necessary. The first 
approximation for n(t) is given by a formula like (11) where now a(t) and b(t) must ~oe 
determined in the self-consistent way. And T(t) takes approximately the form of 

t 

Eq. (10) with the substitution ofe  st by exp (~ a(z) dz). Note that the same formula with 
lO 

to = 0 d e s c r i b e s  T(t) in the case of time-varying light intensity. 
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3. Multistage character of optical damage process 

In experiments on optical damage only some part of the crystal is usually under 
the influence of intensive light. Ir use is made of the focussed light beams, then ir is the 
caustic region. In such a case the results of Section 2 should be referred to such a small 
region only. 

Here we want to lay emphasis on the fact that laser damage in insulating 
transparent crystals has multistage character, although it is a fieeting phenomenon. 
The stages differ from each other both by the phase state of matter in the irradiated 
region and the light absorption mechanism and they ate domŸ physical processes. 
The electron avalanche development discussed in Section 2 can be considered as the 
first stage of the entire optical damage process. In due time the irreversible varia- 
tions take place in the crystal at high values of n(t). Let ti be the solution of equation 
T(t )  = Tr,, where Tm is the melting temperature of the crystal and: T(t )  is given by (10). 
Then at t>  ti the crystal melts in the above small region. There is, at the same time, a 
considerable concentration of free charge carriers (electrons and holes). 

The arrangement of ions in the liquid state has been described by Bernal as 
"random close packing". Therefore the localization of some amount of valency 
electrons on the outer shells of ions, as it was in the crystalline state, becomes 
energetically unfavourable. It seems reasonable to suppose that in a small part of the 
solid a new, e.g. a liquid metal phase appears, with the free charge carriers 
concentration of the order of 1020- 1021 cm -3. This results in an ever increasing 
absorption of incident light (photon absorption by the electron is accompanied by 
electron--ion scattering). The temperature in the considered region also increases 
quickly. 

The next stage of optical damage consists in the formation of electron--ion 
plasma whose temperature is fairly high and the density of free electrons is 
> 1023 cm- 3. At this stage the continuous radiation is emitted from the crystal [20, 21]. 
Its origin is probably connected with electron bremsstrahlung and recombination 
radiation. The experimental study of spectrum of radiation emitted from alkali halide 
crystals in the course of their laser damage gives the value of plasma temperature up to 
27 000 K [20, 21]. Again the lines of doubly ionized aluminium were identified when 
the damage region in ruby was investigated spectroscopically [21]. 

The volume filled with plasma increases asa  consequence of the energy transfer 
from plasma particles to ions of crystal phase on the interface. The low heat 
conductivity of the insulating crystal results in the onset of considerable temperature 
gradients in the frontier of the crystal, inducing thermal stress [22]. 

When the thermal stress reaches its critical value, the stress crack arises in the 
cleavage plane of the crystal. The crack is developing, while the electron--ion plasma is 
penetrating into its cavity. The total absorption of light falls. A movement of the crack 
frontis accompanied by the same processes as in the case of the brittle failure under 
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mechanical influence: the electron emission from the newly formed s91id surfaces 1-23], 
the triboluminescence 1,24], and the radio-frequency radiation [25]. 

The damage process ends with the thermochemical processes in the damage 
region: plasma cools down and its matter precipitates on the new solid surfaces. The 
precipitation is accompanied by considerable crystal disordering in close proximity to 
the above surfaces (formation of vacancies, interstitial atoms and so on). This 
supposition can be indirectly corroborated by the coloration that takes place in the 
alkali halide crystals near the zone of fracture 1-26]. 

4. Discussion 

When the kinetic equation is solved in the diffusive approximation upon the 
energy variable 1,2, 4, 5], then function f(e + hco) is substituted by f(e)+ l~cof'(e)+ 

+ f"(e) for all values of e. This is equivalent to the neglect of all the other terms in 

the Taylor expansion. In order to clarify the question for what tyNs of functions f(e) 
this procedure is legitimate, we shall w¡ down the remainder of Taylor se¡ in the 

(/~~o) 3 
Lagrange forro as R 2 = - -  f'"(e + Ohm), where 0 < 0 < 1. Thus the terms neglected in 

3! 
the diffusive approximation are negligible indeed if the inequality 

max lf'"(e)l <~ ~ l f'(e) + ~-~--~ f"(e) 

is valid for all energy values. On the left side here there is a maximum value of I f'"(e)[ 
within the energy interval under consideration. If the photon energy/~to > 1.5 eV, it is 
comparable to the impact ionization threshold I. Then in interval 0 < e < I  the 
inequality is satisfied only by functions f(e) obeying f'"(e) ~ 0, i.e. f(e),~ cl + c2 e + c3 ~2 
Again the energy balance condition must be kept in mind. For its fulfilment the average 
number of electron transitions per unit time, with an incident photon absorbed, must 
exceed the average number of transitions with induced photon emission. This rules out 
functions f(e) monotonically increasing with the growth of energy. 

As soon as n(t) reaches the values when electron--electron collisions become 
essential, function f(e) approximates to the Boltzmann distribution function. Then the 

above inequality takes the form 3 \2kTe,I - 1 "It is not fultilled ifthe intensity 

of light is close to its damage threshold value and he)> 1.5 eV. 
In this paper heat diffusion from the part of the crystal which is exposed to the 

incident radiation was left out of account. It is of importance at t > z ..~ 10- 3 s. If the 
asymptotic value of n(t) does not cause irreversible variations in the crystal at t < z, then 
at t > z some quasi-stationary magnitude of T is set in. In fact, it does not differ much 

Acta Physica Academiae Scientiarum Hungaricae 53, 1982 



ON THE KINETICS OF GROWTH OF CONDUCTIVlTY ELECTRON CONCENTRATION 131 

from To. Photoconductivity and exciton luminescence can be recorded in these 
subthreshold conditions. 

(4rcn(t)e2.y/2 
The plasma frequency c% = can also be evaluated by means of the 

\ me ] 
expressions obtained here. A discovery of light scattering on plasma oscillations at 
subthreshold intensities could bear out the electron avalanche mechanism of optical 
damage in insulating crystals. 

The authors consider it an honour to be able to publish this paper in the special issue of the Journal 
dedicated to the 70th birthday of Professor I. Tarj• who has made important contributions to the physics of 
dielec/ric and, particularly, ionic crystals. We are happy to mention that our research cooperation with 
Professor I. Tarj• has been in progress for more than two decades. 
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