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MOSCOW, USSR 

The general features of the diffraction techniques used for the investigations of biological 
macromolecules are considered. The possibilities of  small-angle scattering a s a  method of structure 
determination are analysed. The new method of direct structure analysis of small-angle scattering data is 
desc¡ and an example of its practical application is pres~nted. 

The study of the structure of biological macromolecules, i.e. proteins, nucleic 
acids, nucleoproteins, polysaccharides and their associations into more complex 
systems such as viruses, ribosomes, chromosomes, membranes and so on represents a 
rather important problem in molecular biology. The physical methods to treat these 
problems are based on the scattering of X-rays, electrons and neutrons, respectively. 
After discussing the general principles of diffraction techniques, their possibilities and 
limitations, the paper discusses several methods of structure determination by means of 
small-angle scattering (SAS). Further on some data on the structure of a few 
biomolecules will be presented. 

Our ultimate task aims at obtaining a pattern of the spatial structure p(r) of the 
object under investigation. By means of opties as, for instance, in a transmission or 
electron microscope, one obtains directly ah image of the object. The image formation 
can be presented according to Abbe's scheme as demonstrated in Fig. 1. However, 
depending on the nature of radiation used for analysing the structure under 
investigation the realization of the full optical pattern is sometimes impossible, though 
its first stage, i.e. the observation of scattered, diffracted radiation may be always 
accomplished. In diffraction experiments one first measures the intensities I(s) or 
moduli of amplitudes F(s) of the scattered radiation, subsequently the diffracted beam 
is collected with the aid of lenses to forman image of the object, or, to be more precise, 
to presentan image of its projection prkp(r) along the vector k of the initial wave 
(whenever possible). In the diffraction structure analysis the transition from the 
intensities to the structure of an object p(r) is not realized physically, but it may 
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1 2 3 /, 5 6 7 

plane wave (~ 1-~1 aperture F(~') PrK* ~ (~1 

exp 2~fi ('~~") I ( ~ ) = I F ( ~ ) I  z 

FŸ 1. F o r m a t i o n  o f  the i m a g e  in d i f f rac t ion  exper iment  

1 - -  r ad i a t i on  source,  2 - -  c o l l i m a t i o n  a n d  f o r m a t i o n  of  the  ini t ial  beam;  k - -  the r e c t o r  of  the  initial  wave,  

3 - -  object ,  4 - -  d i f f rac t ion ,  5 - -  d i f f rac t ion  plane;  r e c t o r  s = k - k " ,  k "  is the r e c t o r  o f  d i f f rac ted  wave ,  

6 - -  op t ica l  sys tem,  7 - -  i m a g e  

performed, with some other degree of reliability and accuracy; to do this mathematical- 
ly is the ultimate goal of this kind of research. 

Let us consider this scheme in more detail going from left to right, i.e. from a 
radiation source to the image. 

Various sources of rad~ation, X-rays, electrons and neutrons are used. AII of them 
have wavelength values which are suitable for structural investigations: their 
wavelengths ranging from several tenths of nanometers down to several hundredths, 
which result in a resolution of atomic scales. However, due to a different nature of 
interaction with various substances, the "scattering matter" appears to be different for 
each of them: for X-rays the electron density, for electrons the electrostatic potential, 
and for neutrons the nuclear and spin density of the object. It should be noted that 
when we are not interested in the structure of an object at the level of atomic resolution, 
as in the case of SAS, this difference is not essential. However, it may become important 
combining diffraction data of one and the same object obtained from various 
radiations. 

Passing to the scattering object itself, the character of its order determines, to a 
large extent, the possibility of deriving the structure from a diffraction experiment. 
With higher order the separation of the object image F(s) in the reciprocal (Fourier) 
space 

~(s)= ~'[p(r)] 

becomes more distinct in principle, the derivation of the structure of an "immobile" 
non-averaged object from diffraction data is more readily obtained. With decreasing 
the ordering, textures of different type are obtained whose ordering character may be 
described by some averaging operator B (Vainshtein [ 1]). In this case the intensities in 
the reciprocal space are mixed up being averaged according to the same operator and it 

is impossible to extract a pure module of the scattering amplitude I F(s)l = x / ~  from 
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the given point in the reciprocal space. The intensities are the Fourier transforms of 
self-convolution of an object specifically averaged: 

Q(r) = p ( r ) .  p( - r). 

The general scheme is given in Fig. 2. In the case of SAS by biomolecules in solution a 
random orientation exists (B is a spherical averaging) and most difficulties in the 
structure determination are due to this reason. 

With the question of the properties of the object the problem of the information 
inherent in a scatte¡ pattern is closely connected. As it is clear from Fig. 2 one may 
pass over from the intensities to the structure p(r) using either the amplitudes F(r) or the 
distance function Q(r). Table I illustrates the possibilities ofderiving the structure ofan 
object from experimental data. It demonstrates the principal role of X-ray structure 
analysis of crystals in the investigation of matter and, particularly, of biomolecules. 

At present, this method yielding a resolution of 0.3---0.15 nm has been used for 
investigating more than 100 globular proteins having molecular weights of 10 000 to 
300000. This made it possible to establish the main regularities in the packing of 
polypeptide chains as well as to reveal the mechanism of some enzymatic reactions. The 
structure of transport RNA and the protein coat of two small spherical viruses have 
been also found (Blundell and Johnson [2]). 

The structure of larger proteins as well as of high polymeric DNA and RNA at 
high resolution is still unknown. This may be associated with the very large dimensions 
of these molecules and with difficulties (or sometimes the impossibility) in obtaining 
such objects in the form of single crystals. The multicomponent systems such as 
ribosomes, membranes, viruses, chromatines and so on are to be regarded as the most 
complex biological objects in structural investigations. 

1 �91 

Fig. 2. Connections between real and reciprocal space patterns p(r) - -  electron density, F(s) - -  amplitude 

of  scattering, Q(r) - -  Pat terson function, l(s) - -  intensity of  seattering, 0.(r) - -  Pat terson function after 

averaging procedure, T(s) - -  corresponding intr of  scattering, 1---4 - -  some mathematical  trr162 

1 - -  self-convolution, 2 - -  Fouricr-transform, 3 - -  multiplication by complex-conjugated value (square), 

4 - -  averaging-- t ransformat ion.  Full arrows show the possibility of unambiguous  transition. Dashed 

ar rows  show that the transit ion is not  direct or  ambiguous  
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INVESTIGATION OF THE STRUCTURE OF BIOMOLECULES 109 

Very valuable information on the structure of biological macromolecules has 
been obtained by means of electron microscopy (Vainshtein [3]). However, these 
studies are restricted by their own limitations. The space resolution'presents the first 
difficulty. Despite the fact that the instrumental resolution of the modern electron 
microscopes is 0.15 nm biological samples must be prepared by staining with heavy- 
atom compounds; this reduces the resolution to 3--2 nm. The second limitation is the 
transition from an image which is a projection p(r~)--,p(r) to the three-dimensional 
structure. 

Thus the methods of X-ray diffraction and electron microscopy cannot be 
applied in all instances, especially in dealing with complex biological objects; with this 
type of samples one has to resort to SAS in solutions. Here the molecules are in their 
natural, native state, though due to spherical averaging a large amount of diffraction 
information is lost. Nevertheless many important characteristic features of an object 
may be found, andas  it will be shown below, in some cases one can even directly 
determine the inner structure of a biomolecule. 

The X-ray SAS owes its origin to the classical works of Guinier [4]. The name 
itself-- SAS--  is associated with the observation of diffuse scattering near the primary 
beam. 

Although SAS has been applied for more than 40 years to many inhomogeneous 
systems such as coals, glasses, alloys, catalyzers and so on, the revival of the method is 
doubtlessly associated with biological objects. 

The possibility of the study of dilute solutions of biomolecules is an impetus for 
the development of theoretical methods to extract structural information from 
scattering curves and for the development ofnew experimental methods. The success of 
X-ray small-angle studies of biological objects is associated with the development of X- 
ray experimental and calculation methods involving computers as well as the 
possibility of obtaining homogeneous preparations in large amounts. 

In the last ten years the experimental SAS methods have, in principle, acquired 
new forms. New possibilities arose a s a  result of synchrotron radiation, powerful 
neutron beams, position-sensitive detectors. Let it be noted that the detailed 
investigation of the structure of biological objects, i.e. the search for the shape and inner 
structure of the molecules require precise intensity measurements at angles where the 
intensity of scattering by the solution decreases by 3--5 orders of magnitude as 
compared with the scattering at zero angle, and is only slightly different from the 
sr by a pure solvent. Consequently, one of the main experimental requirements 
is the measurement of a wide range of small scatte¡ angles. The position-sensitive 
detectors adopted from nuclear physics are rather suitable for this task. 

Let us now consider the problem of deriving the structure from an experiment. 
The intensity of SAS (to be denoted by l(s), where s = 4~ sin ~,/~, A = wavelength and 2~ 
is the scattering angle) for any predetermined system may be calculated either 
analytically or by numerical methods. The problem ofcalculating the function l(s) from 
the function p(r) presents no difficulties. In p¡ the classical Debye formula 
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(Guinier and Fournet I-5]) 

r (' . . . . .  sin s [ r - r ' l  
I(s) = J j p t r j  ptr ~ sJr---~ do, dvz 

is the basic equation and may be applied in most of the SAS tases. 
However, when analysing an unknown object the investigator is naturally 

interested in the opposite problem, which consists in finding the distribution p(r) from a 
given scattering intensity l(s). This problem has no unambiguous solution due to 
considerable loss of information as a result of the spherical averaging. Up to now there 
have been no direct methods of structure determination based on SAS data, and 
therefore the principal method is still the comparison of experimental intensities (of 
their density distribution functions) with the scattering by model structures. 

In the calculations of the scattering intensity many configurations from simple 
geometrical forms and their aggregates to compact and unfolded macromolecules, or 
particles with nonuniform scattering density distribution are considered. In some tases 
strict analytical solution can be obtained, however, in many cases only approximations 
with the aid of a computer are possible. The solution should fit the integral 
characteristics of an object, i.e. its invariants which are determined directly from the 
intensity: these are the radius of gyration Rg, the volume V, the surface S, the maximal 
size lmal and some others. These invariant quantities serve as the basis of a model both 
in the framework of the simplest geometrical bodies and in the homogeneous density 
approximation. 

An important step forward was the development of the modeUing method 
(Kratky [6]; Feigin [7]). We can now build up a model of a homogeneous body of a 
complicated form, fiUing its volume with certain elementary bodies, e.g. with cubes, 
balls, etc. By varying the form of the model one obtains different curves l(s), which may 
be compared with the tentative form. Ir turned out that the theoretical SAS curves are 
rather sensitive to any changes in the model. 

Thus the model method is a peculiar version of the trial-and-error method in 
classical structural crystallography. The choice of an initial model is, to some extent, an 
intuitive process, since any, even a very simple model of a molecule, is a function of 
many parameters. Here the superfluous details at the initial stage may only impede any 
subsequent research, The choice of an initial model (satisfying the invariants) is 
completed by outside information extracted from electron microscopy, biochemistry 
and physico-chemical data. 

Ir is difficult to state unambiguously which of the numerous models is the most 
preferable one. The integral discrepancy factor may serve as an objective criterion. Asa 
rule, one uses the foUowing R factor 

82 
[/mod, l(S) - - / ( 8 ) ]  2 $4. ds 

R I  st = ~,  , ( 1 )  

f 12(s)s" ds 
$1 
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1 2 S(nm "1 

Fig. 3. The model of catalase 

Full line - -  experimental curve, Dashed line - -  the curve of SAS by the model 

where (st, s2) is the interval whithin which the comparison is made. The derivation of 
the model from the SAS data may be compared with the search for a tentative model in 
the structure analysis of crystals. 

As an example of applying the model method the SAS investigation of catalase is 
presented. 

Catalase is an enzyme (mol. weight 250 000) which catalyzes the decomposition 
of hydrogen peroxide into water and oxygen. According to X-ray analysis and electron 
microscopy data catalase has the tetrahedral symmetry 222, which has been used asa 
starting structure to construct the model. Fig. 3 shows the best model found for catalase 
as well as its theoretical intensity curve together with the experimental curve. The 
model consists of four identical ellipsoids of revolution (a = 1.7 nm, c = 4.7 nm) spaced 
in the tetrahedral vertices with an edge iength of 5.9 nm. The gap between the ellipsoids 
is also filled by scattering density (Vainshtein et al [8]). 

More recent examples of the model method by the precise modelling of the form 
ofa biomolecule may be represented by the studies ofhistidinedecarboxylase (Gonchar 
et al [9]) and the bacteriophage T7 (Rolbin et al [10]). The parametrisation of the 
model and the use of the discrepancy integrals will probably render it possible to find, 
in the future, an algorithm for looking for the "best" model by the method of non-local 
search or the least-square technique. 

The objects with inhomogeneous density such as various nucleoproteins 
(viruses, ribosomes, etc.) are becoming important for small-angle investigations. With 
these samples the decisive role is played by the possibility ofvarying the solvent density 
which changes markedly the s dependence of ! as well as the possibility of combining 
various radiations. The method known as "contrast variation" (Stuhrmann and Kirste 
[11]) allows after pr measurements in a series of solvents, the separation of 
three scattering functions 

l(s) = Ir(s)  + les(S)  + Is(s)  , 
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where Ir(s) is the scattering intensity corresponding to the homogeneous electron 
density, ls(s) is the scattering by inhomogeneities when the medium electron density is 
equal to the mean electron density of a particle, Irs(S) is the interference term, which 
may be both positive and negative. For biological objects the contrast variation is best 
achieved for neutron scattering with the aid of solvents of different eoncentration of 
heavy water. 

Some useful information about the specific features of biomolecules can also be 
obtained with the aid of the recently developed methods of heavy-atom markers 
(Vainshtein et al [12]), anomalous SAS (Stuhrmann [ 13]), and the methods using real- 
space information (Glatter [14]). 

It should be stressed, however, that aU these methods, except a very few special 
cases, do not provide directly the structural information about a particle. Only some of 
its general parameters can be specified without modelling. The relationship between 
the theoretical and experimental possibilities in the small angle studies of biological 
objeets is rather complicated: partly because up to now the experiment is devoid of 
sufficient accuracy, so that some parameters which may be found theoretically cannot 
be calculated from experimental data; and partly because even the high precision 
experimental scattering curves do not yield sufficient information; consequently, we 
still fail to provide direct information about the structure. So one of the most important 
problems in the fieid of SAS to solve biomolecular objects is the creation of a direct 
method to find their structure, i.e. to obtain the density distribution p(r). 

It is clear, however, that the task is to obtain a three-dimensional function p(r) 
from the one-dimensional function I(s), which has an infinite variety of solutions. This 
means that any direct method should be regarded as an approach which enables to 
narrow down this variety as muchas possible by means of imposing some physically 
justified restrictions. We have developed the direct method of structure analysis in SAS 
using the information about the symmetry of a particle, its dimensions and the range of 
scattering density (Svergun et al [15]). The main features of the method as weU as an 
example of its application to the concrete structure investigation are given below. To 
choose a convenient class of possible solutions the apparatus of spherical harmonics 
was used. Such mathematical approach was introduced in SAS by Stuhrmann [16]. Ir 
one represents the density p(r) a sa  series 

| o3 

p(r) = ,=oE E=_ p,.(Or,.(o. r  ,E ~ p,(r). (2) 

where r, 0, ~p are spherical coordinates, Yzm(O, q~) are spherical harmonics, pl,,(r) are 
radial functions, and the equation 

l 
p~(r)= ~ p..(r)Y..(O,~p) (3) 

m =  - - l  
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defines the partial multipole densities, the intensity of the SAS is given by: 

/(S) =27r2 �91 ~ [Alto(S)[ 2" 
l = O m = - I  

(4) 

The functions pzm(r) and Atm(s) are connected by the Hankel transform of order l: 

Aun(s) = i ' ~ / ~  ~ pu.(r)j,(sr)r 2 dr, (5) 

pt.(r) = (-- i ) lx / /~  i Alm(s)jl(sr)r 2 dr . (6) 

Herej~(sr) are spherical Bessel functions. Stuhrmann has shown that the function l(s) is 
invariant to independent real space rotations of any partial density p#) .  So the 
manifold distributions p(r) are determined by the same functions pu,(r) corresponding 
to the decomposition (4), and the set pu~(r) can be regarded as the variety of possible 
solutions introduced above. 

It is clear that one can decompose I(s) into a sum of squares of the amplitudes 
At=(s), generally speaking, quite arbitrarily. Thus to use this approach it is nessesary to 
obtain the decomposition (4) corresponding to the real structure of a particle. Few 
attempts were made to solve the problem (Marguerie and Stuhrmann [ 17]; Stuhrmann 
and Fuess [18]), but the general algorithm has not been found yet. 

Obviously, the summands cannot be separated from the sum unless some 
assumptions are made. First of all let us suppose that the density p(r) is satisf~ctorily 
represented by a finite sufficiently small number of harmonics. Furthermore, as it 
results from formulae (5), functions Az=(s) are independent of the value of m upon the 
fixed functions pt,(r). This fact means that the contributions of harmonics with 
different m and the same I ate in principle inseparable in the scattering intensity l(s). 
Thus the formulae (4) can be rewritten: 

I(s)=27t 2 �91 [Al(s)[ 2 , (7) 
I=O 

where 
! 

IA~(s)12= ~ IA,.(s)l 2. (8) 
m= --I 

In this way the problem consists of obtaining the decomposition (7), i.e. 
harmonics with different I values. Each term of the sum (7) determines according to 
transform (6) a radial function p~(r). In the case of an axially symmetrical particle 
(p~,(r)-=0 if m # 0 )  the sum over m vanishes and one has simply pz(r)=pto(r). In the 
general case the decomposition (7) holds, but the functions pt(r) have no explicit 
physical meaning, they are superpositions of the functions p~,(r). 
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Whatever the meaning of the functions p~m(r), there are strictly specified angular 
non-uniformities depending on the number of the harmonic l, inh› to any partial 
density (3), and therefore there are definite regions in the reciprocal space where the 
scattering intensity IA~(s) l 2 contributes maximally to 1(s) (in accordance with the order 
of the Hankel transform (5)). Consequently, the changes of the relative contribution of 
different harmonics to the total intensity I(s) are connected with their numbers. 

Besides, the possible mode of A~(s) is restricted by the fact that any biomolecule is 
¡ in space, i.e. there exists an R value so that 

p(r)_=pt.(O ~-0. if r>R.  (9) 

The peculia¡ of the behaviour of the functions A~(s) examined above can be 
regarded as the physical foundation for developing an algorithm to decompose the 
seattering intensity into functions (7). 

Aetually let us specify the L + 1 functions p~k)(r), obeying the space rest¡ 
and determining the functions A~k)(s) which in turn determine, according to (7), the 
intensity I(k)(S). This l(h)(s), generally does not coincide with the true intensity I(s). 

In order to fit the intensity I(s), by keeping the relative contributions of different 
harmonics the same, one may renormalize the amplitudes as foUows: 

-- A(k)*S~ Xl~)(s)- ' ' ' ~/ l(~)(s)" (10) 

The amplitudes X~k)(s) will obey Eq. (7), but the set ~Ik)(r) specified by Xlk)(s) will 
generally not obey (9). Let us therefore set 

~p~k), r < R, 
Plk+l)(r)=plk)(r)H(r--R)=(O, r>R.  (11) 

The amplitudes of the next approximation A} k+ t)(s) are determined by the function (11) 
according to (5). 

Thus, with each step of the iterative process determined by Eqs (10) and (11) the 
partial amplitudes are redist¡ in accordance with the number of the harmonic l, 
the value of R and the scattering intensity l(s). Since no a priori information about the 
radial functions, except condition (9), is available, the step functions 

P~~ II(r-  R)= { loi r > R (12) 

seem to be convenient for the first approximation. 
It is possible to show that the procedures (10) -(11) converge to the true intensity 

l(s). To estimate the deviations in reciprocal space between I(s) and l(k)(s) the same R 
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factor has been used as for the model method. The convergence of the process over the 
R factor is uniform. 

The efficiency of this procedurr has b•en verified by means of model examples. 
The transforms (5)---(6) have been computed by the Simpson rule, the termination 
eiTects in (6) (the intensities have been calculated up to some finite value Sma,) were 
reduced by the generalized Steklov filter (Rolbin et al [10-1). 

In the simplest case L = 0 (spherically-symmetric particle) the problem is reduced 

to the determination of the true set of signs of the function x / ~ .  When the change 
of signs stops, the process is interrupted. 5- -6  iterations are usually quite enough to 
obtain the solution, function p(r) is restored practically completely. This is an example 
of a quite unfavourable case of the multistep function p(r) shown in Fig. 4. The restoring 
appears to be good, the R factor is comparable with one of the transforms by true signs, 
i.e. with the termination effects. 

The most important practical case, however, corresponds to L > 0. In this case 
the convergence of the process to the true intensity l(s) does not guarantee the 
convergence to the true radial functions pt(r). The incorrectness of the problem (one 
should restore the summands from the sum of their squares) may lead to considerable 
distortions of these functions. To reduce them natural physical conditions were used, 

J 

~ ( r )  

-1.- 

I 
100 

Fig. 4. The restoring of the structure of a spherically-symmetrical particle 
Full line - -  true density dist¡ Dotted line - -  restored distribution, Vah,es R = 24 nm, s,,a. = 5 nm- 1; 

the result of the 7th iteration is shown, Rf =2.5 x 10 -4 
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0.2 

0.5 o.~ ~ 
08 

O.2 
(15 

0~8 

I.! 

Fig. 5. The rr241 of the model of an axially-symmetrical structure 
a - -  true structurr b - -  restorr structure 

T h e  distribution in the cross-sr containing the axis  o f  ax ia l  symm�9 (indicatr by an arrow) is shown; 
valur R = 1 0 n m ,  s ~ . x ~  5 n m - x .  The numbr rr162 to density levels in 10 -~ nmL The rr of the 9th 

iteration is presr162 R z - - 7 . 8  x 10 - a  

namely the existence of limiting values of the scatte¡ density 

p s l . < p ( r ) < _ p m  x . (13) 

In fact, one can introduce the corrections p~(r) to the radial functions ensuring the 
correctnr of(13) with a minimal R factor. It is convenient to express the corrr as 
a series of Laguerre polynomials (see Stuhrmann [ 16]). Assuming the corrections to be 
small enough, one can solve the problem by means of linear programming (Dantzig 
~20J). We have used the modified simplex method (ibid). It should be noted that the 
decreasing of the R factor suggests the relevance of this procedure. 

Ah example of using procedures (10)--(11) with the restrictions (13) is presented 
in Fig. 5. The axially-symmetrical model structure (Fig. 5a) is constructed from three 
first non-zero radial functions of an ellipsoid of revolution with the density p(r) = 1, 
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Fig. 6. The scat ter ing curves  of  bac te r iophage  T7 

Full  l ine - -  expe r imen ta l  curve, Dot ted  l ine - -  the SAS curvr from the res tored  s t ructure  

half-axes a = 5 nm, c = 10 nm. The structure shown in Fig. 5b is constructed from the 
intensity calculated for the previous one. The agreement seems to be quite satisfactory. 

The examples shown above illustrate the efficiency of the procedure using 
parameters R, Pmi,, Pro,, a n d a  set of exactly defined harmonics. In practice, these 
parameters areas a rule known with some errors. We have verified the stability of the 
procedure with respect to the deviation of these input parameters in the model 
examples. It has been proved that the method yiel[ls suitable solutions with deviations 
up to 10% in R and 20% in Pmin and Pm,z. The errors in the set of harmonics may be 
connected mainly with the fact that any particle is generally represented by an infinite 
series of harmonics, whereas one has only a finite number of terms. It may be noted, 
however, that the spherical harmonics constitute a complete system of functions, anda 
few first terms in the series would describe the whole structure, as a rule, quite 
sufficiently. 

It should be stressed that the procedure holds also for particles with arbitrary 
density distribution. In the general case in order to select a elass of possible solutions 
one should pefform a new separation, the separation of functions pl,,(r) from pz(r), with 
the aid of some additional (non SAS) informations. Selecting one (or several) relevant 
solutions one should analyze independent rotations of different partial structures pt(r) 
(the problem is much easier in the axiaUy-symmetrical case since any rotation of the 
partial density other than ~t violates the given axial symmetry). 

As an example of a practical application of the method to certain structural 
investigation some results are presented which were obtained from the SAS curve of the 
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Fig. 7.. The map of electron density of bacteriophage T7. The cross-section containing the axis of axial 
symmetry (indicated by an arrow) is shown. Level 0.4 corresponds to the protein, 0 .45- -  to strongly hydrated 
DNA, 0.52 - -  slightly hydrated DNA. The numbers refer to dr levels in 10 -3 nm 3. The result of the 8th 

iteration is given, R~=2.2 • 10 -2 

bacteriophage T7. This large bacterial virus has been studied also by various physical 
and chemical methods. It possesses an approximately axially-symmetrical constitution 
(isometrir polyhedral head and cylindrical tail). Highly refined solutions of the phage 
T7 for our SAS studies were extracted at the Semmelweis Medical University, 
Budapest, under the guidance of Prof. I. Tarj• and Prof. G. Ront£ We recently 
measured the X-ray SAS curve of the phage quite precisely in a wide range of angles, a 
number of general parameters of the phage have been determined and its model has 
been w (Rolbin et al [19]). We have applied the direct method to interpret the 
part of the curve shown in Fig. 6. The parameters R, Pmin and Pmax have been selected by 
using general phage parameters determined from this curve. An iterative procedure has 
been applied and the result is presented in Fig. 7. 

This figure is a map of the electron density of the phage T7 in cross-section 
containing the axes of axial symmetry, the radial resolution is 1.2 nm. One can see the 
projer of the phage head to be embraced by a six-fred symmetry with the 
corresponding edges equal to 35 nm. The tail appears a s a  circular cylinder with a 
radius 11 nm anda height of 18 nm. This is a protein core in the central part of the head 
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with a d iameter  of  a b o u t  24 nm, in good  agreement  with the d a t a  of ne u t ron  scat ter ing 

(Agamal ian  et al [21 ]). There  is a cyl indrical  reg ion  of  higher D N A  concen t r a t i on  near 

the tail, whereas the phage  D N A  a s a  whole  is s t rongly  hydra t ed  lead ing  to an a lmost  

uni form densi ty  wi th in  the phage.  F u r t h e r  on,  thore are  hints in favour  of a regular  

a r rangement  of  D N A ,  which is revealed by  the arcs in Fig. 7. 

The sca t ter ing  curve of the res tored  dens i ty  d i s t r ibu t ion  (Fig. 6) coincides with 

the exper imenta l  one  well enough up  to the  scat ter ing angles respons ib le  for the 

d imensions  in a par t ic le  c o m p a r e d  with the value  of  radia l  resolut ion.  AII T7 fr 

specified are in g o o d  accord  with the d a t a  o b t a i n e d  ( a s a  rule, by  indirect  methods)  from 

o ther  physical  and  chemical  techniques.  

The results  suggest  tha t  this me thod  will  be qui te  useful for the s t ruc ture  analysis  

of b iological  mac romolecu l e s  in so lu t ion  by  SAS studies. 

It is a honour for the authors to publish this papr in the issue devoted to the 70th birthday of 
Prof. I. Tarj• who made valuable contributions both to solid state pl]ysics as well as biophysics. The 
rr presr in this papr on bacte¡ viruses would have br162 impossible without our collaboration 
with Prof. I. Tarj• and his coworkers. 
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