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LOW TEMPERATURE YIELD STRESS INCREMENT 
DUE TO IMPURITY-VACANCY DIPOLES IN NaC1 CRYSTALS* 

A. T£ P. K�93193 T. KESZTHELYI and J. S�93 

DEPARTMENT OF EXPERIMENTAL PHYSICS, INSTITUTE OF PHYSICS, TECHNICAL UNIVERSITY 
1521 BUDAPEST, HUNGARY 

The yield stress increment of NaC1 crystals caused by impurity-vacancy dipoles containing Mg 2 +, 
Sr z+ and Ba 2+ impurity ions is calculated on the assumption that it is essentiaUy controlled by the 
interaction betwer the dipoles and screw or edge dislocations. For calculation of the elastic strength of the 
dipoles the ionic displacements around them ate calculated using the semiclassical Born--Mayer  theory of 
ionic solids. There is no fitting parameter applied throughout the calculations. 

lntroduction 

It is generaUy accepted that divalent cation impurities significantly influence the 
mechanical properties of NaCI type crystals [ 1, 2]. A theoretical calculation of the low 
temperature yield stress increment in NaCI crystals due to rigid Ca 2 + ion--cation 
vacancy dipoles was giveh in [3] recr Following the method described there 
further calculations have been made to obtain the yield stress increment for the dopants 
Mg, Sr and Ba in NaCI crystals. Since the mr of calculation has br detailed in 
[3], only a brief account of the main points is given here. The lattice distortion around 
the dipole, i.e. the displacements of the chlorine ions nearest to the dipole, are 
determined on the basis of the semiclassical Born--Mayer theory of ionic solids. From 
the displacements obtained in this way the mean strain tensors asc¡ to dipoles of 
different impurity ions are calculated. The interaction energy and thus the force acting 
between the dipole and a dislocation are determined with the use of the continuum 
theory. Once a general formula is found for the force acting on the moving dislocation 
from the dipoles of different orir with respect to and at different distances from 
the slip plane, the yield stress increment is straightforward to determine by Friedel's 
formula [4]. The calculation is carried out for screw and edge dislocations as well. 

Method of computation 

In the lattice distortion calculation the crystal is divided into two regions. 
Region I includes the divalent impurity ion, the cation vacancy and their fiearest 
neighbour chlorine ions (Fig. 1). Here all the variables (ionic displacements and ionic 

* Dr to Prof. I. Tarj• on bis 70th birthday. 
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Fio. 1. The frame of referente and region I used in lattice distortion calculation. The divalent impurity and all 
the ions numbered are in region I 

polarizabilities) are calculated simultaneously. Region II contains the rest part of the 
crystal, where only the ionic polarizations are taken into account [51 using rigid 
boundary condition. 

The equilibrium displacements and dipole moments (66 variables) of the ions in 
region I are determined by the solution of coupled nonlinear force balance and 
polarization equations. The number of independent variables and equations can be 
reduced to 22 through the symmetry relations of the n.n. dipole. The symmetry 
relations, the system of the remaining nonlinear equations and the two-body potentials 
together with the parameters used are given in paragraph 2 of [3]. 

Taking the dipole to be point-like, i.e. neglecting the variation of the stress field of 
the dislocation over the defect volume, the dipole--dislocation interaction energy 

where Va is the defect volume (in our case 8a3; ao is the cation--anion distance), a£ is 
the stress of the dislocation at the centre xa of the dipole and the mean strain tensor 
characteristic of the dipole e-,.~ is the following 

1 f ~7~ dV. (2) 
d 
Va 

The suffix n refers to the orientation of the dipole. When calculating the mean strain 
tensor from formula (2) the volume integral can be transformed into a surface integral 
of the displacement field over the defect surface, i.e. the surface covering the defect 
volume presented in Fig. 2. Furthermore, since the displacement field is given by the 
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Fig. 2. The frames of reference, the defect volume and surface used in the calculation of the mean strain tensor 

of the impur i ty- -vacancy  dil~ie 

discrete values of the ionic displacements the integral is approximated by a simple sum 
of the products of the displacements and the corresponding surface element vectors. As 
the mean strain tensor of the dipole obtained in this way is given in its principal axes 
system K' (Fig. 2), it has to be transformed into the system of the dislocation, where the 
stress field tr ‰ is known [6]. The transformed mean strain tensor is denoted by g~. The 
suttix n refer¡ to the orientation of the dipole can take on integer values 1--12 
aecording to the twelve possible orientations the dipole can have at a given location of 
the impurity ion. The explicit formulae for the appropriate dipole---dislocation 
interaction energies for edge and screw dislocations can also be found in [3]. 

The force f~ acting on a moving dislocation can be deduced from the interaction 
energy E~(x, y): 

f~(x, y) = dx E~(x, y) (3) 

with the dislocation moving along axes x in its slip plane at distance y from the centre of 
the dipole of o¡ n. The maxima f~,(y) of the force can be computed from 

-~x f~(x, y)=0. (4) 
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The yield stress increment caused by fixed, localized dipoles can be given by the 
generalized Friedel relationship [3, 4, 7] 

Ax = (2T~'1/2 b (f~' (Y'))ac;' " (5) 

Here Cpi is the planar concentration of dipoles of orientation n in the i-th plane at 
distance Yi from the slip plane, f~,(yi) is the maximum of the force the dislocation must 
overcome as it passes a corresponding obstacle, T is the line tension of the dislocation 
and b i s  the magnitude of its Burgers vector. 

Resuits and discussion 

The ionic displacements around the dipoles of Mg 2 +, Sr 2 + and Ba 2 + impu¡ 
ions ate similar to those obtained in [3] for Ca 2 + impurity.,The only difference appears 
in the magnitude of the displacements yielding different mean strain tensors for dipoles 
containing different impu¡ ions. The p¡ strains ate given in Table I. 

In the calculation of the yield stress caused by dipoles of given impurity the effects 
of those dipoles have been taken into account, which give a maximum force f~, greater 
than one tenth of the greatest one. The problem of intersected dipoles is dealt with as 
before [3]. 

Rearranging Eq. (5) the yield stress increment can be expressed through the 
atomic concentration c of the dipoles in the general forra: 

A'C = t i "  C 1/2 . (6) 

The different values obtained for fl in the case of screw and edge dislocation for different 
impudty ions are given in Table II. It can be seen that similarly to the case of the Ca 2 + 
impurity [3] the fl values and thus the calculated yield stress values are much higher for 
edge dislocation than for screw dislocation. 

In the foUowing we discuss only the screw dislocations, firstly because the yield 
stress calculated for Ca 2+ ion--cation vacancy dipoles interacting with screw 

Table I 
The principal strains of the dipoles with different impurity ions 

Pr inc ipa l  I m p u r i t y  ion 

s t ra in  M g  2 + Sr 2 § Ba 2 + Ca  2 + 

~11 0.034 0.031 0.028 0.032 

~22 0.041 0.229 0.192 0.066 

~33 - 0 . 0 9 2  - 0 . 1 1 8  - 0 . 1 0 1  - 0 . 0 8 8  
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Table II 

The fl valu•s in formula (6) for ~dgr and screw dislocations and for diffr impurity ions 

79 

Impurity ion 

Mg2 + Sr z + Ba z + Ca 2 + 

Screw 1900 6000 4700 2100 
fl (MPa) 

Edge 5100 65 500 50 100 8 000 

dislocations [3] are in agrecment with the low tempr y idd  stress values 
measured in NaC1 crystals dopr with Ca [81 and secondly because the mechanism 
giving the lower yield stress is expr to control the procr 

The calculated results are valid at 0 K, and can only be compared with those of 
low tempr measurements. Such expr have been made in NaC1 :Ca system 
[81 but no data of this kind are available for the other three impurities. However, some 
rough consideration can be made in order to compare our results with experimental 
data obtained at room temperature. We cannot compare of course the yield stress 
values themselves, because in these cr~stals the yield stress at room tempr is 
thought to be caused mainly by Snoek effect [9, 10] and not by the Fleischer-typr [1] 
rigid obstacles used in our calculations. But one can use the tetragonality values (A2) 
characterizing the dipoles as obtained from room temperature yield stress measure- 
ments [11] on the basis of Frank's formula for the Snoek effect [12]. We can also 
evaluate the tetragonality values from our calculated yield stress data as if they were 
experimental ones using the expression for Fleischer-type interaction [1]. Since the 
tetragonality is in proportion to our fl value, we can use it for a rough comparison 
provided we compare only the relative quantities 

/7 (7) /~, = & ,  

A2 
~+, = - -  ( 8 )  

A2c. 

for different impurities. Here tic. and A2c, means the appropriate quantities for Ca 
impurity. The/7, and 2, values are given in Table III. As can be seen, the dependence of 
tetragonalities of both kinds on the type of the impurity ion has the same character. 

Table I I I  

Relative tetragonalities obtainr from expr241 (2,) and theoretical (ti,) yield stress data 

Impufi tyion 

Mg2 + Sr 2+ Ba 2+ Ca 2+ 

0.8 2.1 1.5 1.0 

0.9 2.9 2.2 1.0 
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