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A quan tum mechanical treatment is given of the acoustooptic parametric conversion processes in 
dielectric crystals when the signal acoustical and idle light waves are transformed into each other in the 

presente of intensive optical pumping. The approximate  Heisenberg e~luations of mot ion are found and 

solved for the creation and  annihilation operators of  signal and idle modes with due regard to the interaction 

of these modes with other light and vibratory modes  of the crystal ("the thermostat"). It is shown that the 

thermostat  influence results in noise and attenttation effects. These persistent noises are also converted from 
one mode into another  and vice versa. Threshold conditions and asymptotic levels of  noise are discussed. 

One of the most interesting fields of quantum optics is the investigation of 
parametric processes of generation, amplification and frequency conversion. In the 
present paper we shall consider the interaction of three boson modes in dielectric 
crystals supposing that their frequencies and wave vectors fulfil the phase matching 
conditions o~ 1 = o~ 2 + e~ 3 and kl = k 2 -F k 3. Periodic boundary conditions on the crystal 
surface are assumed, thus the normal coordinates correspond to running waves. Let 
mode 3 be intensively excited by an external source. In this case mode 1 will be 
parametrically converted to mode 2 and vice versa. Such processes play an important 
role in physical phenomena as interaction between light and ultrasound, coupling of 
laser and infrared radiation. In the last case the parametric converter can be used for 
the detection of infrared radiation (up-conversion). 

In [i] a quantum mechanical model of parametric conversion was given. In this 
model the interaction of the signal and idle modes with the remaining electromagnetic 
and vibratory modes of the crystal was not taken into account (the set of these modes 
we shall call "thermostat" in the present paper), consequently this model did not deal 
with noise and attenuation. However, if the parametric frequency converter is used for 
information processing the attenuation of the signal and the signal-noise ratio are 
important characteristics of the device. The parametric converter is an example of 
coupled vibrations. Investigation of noise and damping in such systems is of both 
theoretical and practical interest. 

* Dedicated to Prof. I. Tarj•  on his 70th birthday. 
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In this paper we shall consider the quantum theory of the parametric frequency 
converter taking into account the interaction of signal and idle modes with the 
thermostat in a microscopic way. Without pumping this interaction causes attenuation 
and noise, excluding the coherent signal, the average number of quanta in a mode is 
determined by the temperature of the crystal according to Planck's formula. As soon as 
the pumping starts the modes get coupled. Asa  result, both signals and noises are 
transferred from one mode into another. A quantitative description of noise 
transformation in the process of parametric frequency conversion is the main result of 
this paper. Another consequence of mode coupling is the change in the character of 
attenuation. 

The interaction of the signal and idle modes with the modes of the thermostat 
depends on the type of the modes. To be more specific we shall consider acousto-optical 
processes in dielectric crystals when the pumping and idle modes are light waves and 
the signal is a quasi-transverse acoustical wave. 

We shall take into account the interaction between these modes proceeding from 
the Hamiltonian H = H o +  I:1 + V2, written in the representation of secondary 
quantization where H o describes non-interacting light and vibratory modes, I:1 is the 
cubic anharmonicity term and I:2 corresponds to the photon-phonon interaction. We 
shall find solutions of the approximate equations of motion for time dependent 
creation and annihilation operators which allow us to study the role ofattenuation and 
noise in the considered process and investigate the statistical properties of the 
transformed signals. 

1. Equations of motion and their approximate solution 

Let us consider the interaction between a quasitransverse acoustical and two 
electromagnetic modes (signal, idle and pumping waves, respectively) described by a 
coupling constant p in V 2. The crystal temperature is assumed to be so low that the 
Landau--Rumer criterion is fulfilled for the ultrasonic wave. 

For the intensive pumping light we shall use the parametric approximation [1--  
3], i.e. we shall neglect its damping and substitute C-numbers ~~ and ~3 in place of its 
creation and annihilation operators a~ and a3. Terms in H, which describe the 
interaction of the optical idle (1) and acoustical signal (2) modes with the thermostat 
can be written as 

2Ji(a~Q + + a~ Q~), 

where i= 1, 2 and the operators Q~, Q2 are given: 

A t Q 1  =hi~2 ~ Xk.a,~(k~-])aa[b~(k2-])+ + b j ( l -  ko' l  , 
I,l,j 

(1) 

'~'2Q2 =hlq k,~ ' U-k2,ik,j(k2-k) [bik + + + b~~_k)] [bj~k~- k~bj~k-k~)] �9 
J 
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aa and bj~, are the annihilation operators of the thermostat, photons and phonons, 
respectively, • and U are photoelectric and anharmonic coefficients, ! and k are wave 
vectors. The small parameters 2a and 22 are introduced to take into account explicitly 
the weakness of anharmonicity and of the interaction between light and sound. 

Let us assume that the pumping starts at t = 0. For t > 0 from the Hamiltonian H 
we obtain the Heisenberg equations of motion for the creation operator of a photon of 
the idle mode a~ (t) and that of a phonon of the signal mode a~ (t) 

da~" (t) 
dt 

da2(t) 
dt 

- -  = iog! a~ (t) + ig*ei~'~ta~ (t) + i2, Q~ (t) ,  

- -  = iogz a~ (t) + ige-i'~~ta~ (t) + i22 Q~ (t). 

(3) 

Here g = - /~ -  1 ~*p and p = h 3/2 Xk~,k ,,k~. Eq. (3) can be supplemented with equations of 
motion for Qi(t). 

Knowing the solution of Eq. (3) the normally ordered characteristic functions 
Xi(t, r/)= Tr {pe ~~'§ ")e-~'a,,)} can be obtained [3] where p is the density operator of the 
whole system in the Heisenberg representation. These characteristic functions make it 
possible to evaluate the mean value of any operator of [a/+ (t)]m[ai(t)]" type and they 
contain information about the statistical properties of the converted signals. 

Solving Eq. (3) exactly with respect to g we shall use perturbation theory 
regarding the small parameters )q-and 22. 

Let us set some initial conditions at t = 0. For large t we retain only those terms of 
the perturbative solution of Eq. (3), which correspond to secular terms in the expansion 
of X~.2(t, t/). To be more detailed: we sum up those terms in the characteristic function 
which are of (2Ÿ m (2Ÿ type (m, n=  1, 2 , . . . )  and neglect those of 2~ (2~t) "-~ (2~t) m 
type. Taking into account the fact that the macroscopic system of the thermostat is only 
weakly perturbed by the modes under consideration and neglecting the intrinsic 
anharmonicity of the thermostat we obtain from (3): 

da+ (t) 

d t  
- -  = i(o91 + A~ + iF~)a? (t) + ig*ei~ (t) + i21Q~~~ 

da~-(t) 

dt 
- -  = i(o9~ + A o92 + i r 2 ) a i  (t) + ige-i~'~' a~ (t) + i22 Q~ r176 

2 1 ^ 
/- i , j ,k  

c~(o92 - co j l . -  co,k~ _ k~) + 

+ 2[¡ ¡ ~~-1~(o9,~~_ ~~- %~.- ~2)}. 

¡  

(4) 

(5) 
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expression for Aco2 can be obtained from (5)be substituting p ( l ) f o r  6(x, The where 
\ / 

P(x) symbolizes the Cauchy principal value. Analogous expressions can be given for F 1 
and Aog~. In Eq. (4) and (5) F, A~o and Qt~ are operators acting in the Fock space of 
states. Each state in this space is characterized by fixed numbers of photons and 
phonons of the thermostat modes. The above operators shall be evaluated neglecting 
the interaction of the thermostat with the signal and idle modes. 

The solution of the system of operator equations (4) is found to be of the form 

a~" (t) = a~- (0)C(t) + a((O)S(t)  + f ( t ) ,  (6) 
where 

C(t) = exp i~o 2 + i A w  2 F1 F2- t cosr t  + 2 ~ s i n r t  , (7) 

~'~~~),]sinr,, (8, 
t 

f ( t )  = i ~ dt '  [C(t  - t')2 2 Q2 +'~ + S(t - t ')2, Q'~ ,o,(t,)e /o3,'], 
O 

(9) 

r=Itgl2 (F14 f '2 )211 /2  " 

The expression for the operator a-~(t) can be found with subscripts 1 and 2 
interchanged in (6---9). 

By direct calculation one can check that in the sense of the above mentioned 
approximation the obtained solutions obey the commutation relations: 

[a,(t), a+(t)] = 6,j,  i , j =  1, 2. (10) 

If the attenuation is introduced into the equation of motion of aiF(t) in a 
phenomenological way, the solutions of such a system of equations do not obey the 
commutation relation (10). 

2. Statisticai properties of the signals 

Let us assume that at t =0  the density operator of the whole system is p = 
= PlP2Pr ,  where PŸ is the density operator of the thermostat. Itis also supposed that at 
t = 0 the density operators of the idle and signal modes pi and P2 are described in the P- 
representation of the coherent states [3] by weight functions pŸ and pŸ 
respectively. The characteristic function X2(q, t) of the signal mode is given: 

Z2 (t/, t)=~~ d2~ d2fl PŸ176 t; ~, ti), (11) 
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where the kernfunction 

Cr(rl, t; of, f l ) = t r T { p l .  2 < 0t[l <flle"~177 ~ I ~ >  2} (12) 

is the characteristic function of the signal mode ifboth the signal and idle modes were in 
pure coherent states I,t > 2 and I fl > 1 at t =0. Using (6--8) and retaining only the 
secular terms one can evaluate G(r/, t; ~t, ti) 

G(r/, t; ct,/~) = exp { - I ~/12/~(t) + 

+ r/[~*c(t) + fl*s(t)] - t/* [~c*(t) + fls*(t)] }, (13) 

where s(t), c(t) can be obtained from S(t) and C(t) by the replacement of operators by C- 
numbers: 

FI.2---~),.1.2 =trT(prFx.2) ; Acol,2--*trr(prAcot.2) ; 

t 
p.(t)= 2 t dt'{y2n2( T)[c(t')12 + y x nl ( T)[s(t')[ 2 } . (14) 

Here nL2(T ) are the oecupation numbers of the idle and signal modes in 
thermodynamical equilibrium. Let us suppose that at t = 0 each of the considered 
modes is in a state that corresponds to the superposition of coherent signal with 
equilibrium thermal noise: 

1 { [cr z1'212-'~ (15) 
P(~)2(~) = nnl,2(T--~) exp nl,2(T ) ) .  

Substituting (13) and (15) into (11) one finds the characteristic function of the signal 
mode 

X2 (r/, t) = exp { - I ~/[2N(t) + r lR*(t) -  ~l*R(t)~, 

and the corresponding weight function 

1 { 
P2(~t, t) = ~ exp 

where 

and 

(16) 

I*t-R(t)[2"~ (17) 
N(t) ) '  

R(t) = z2 c*(t) + zl s*(0 

N(t) = n 2 (T) I c(t) 12 + ni (T) [ s(t) 12 + q 

(18) 

(19) 

One can see that Eqs (16, 17) describe a superposition of a coherent state having a 
parametrically transformed amplitude R(t) with a Gaussian noise with variance N(t). 
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3. Discussion 

As it can be seen from Eqs (6---9) there are two different dynamic conditions of the 
p• converter depending on the relation between Igl and lYl-y21/2. Let us 
assume that there is a pure coherent signal zl in mode 1 at t=0.  If Igl > Iyx -~,21/2 the 
signal will periodically transform from mode 1 to mode 2 and vice versa with a damping 
amplitude. In this case the damping constant is equal to (~1 + y2)/2. If, on the contrary, 
101 <1~1- ~2 I/2, there is also some conversion but the converted signal will attenuate 
without oscillation. In this case at 0 ~ 0  Eqs (16--19) transform into a form describing 
non-interacting modes. 

To understand the cause of the secondly mentioned dynamic duty of the 
parametric converter let us consider two osciltators with weak and strong dampings, 
respectively. Let us assume that at t = 0 only the oscillator with weak damping is 
excited a n d a  weak parametric coupling begins at that moment. The energy transfer 
from the first oscillator to the second one will be slower than the potential velocity of 
energy loss by the second oscillator. Therefore there will be only a one way energy 
conversion between these oscillators. 

For 101 > I~x - ~2 I/2, using the characteristic function, let us evaluate the average 
number of quanta in mode 2 if at t = 0 there were signals in both modes. From Eq. (17) 
we have: 

(a~" (t) a2(t)) = I R(t) l 2 + N(t), (20) 

The first term I R(t) l 2 in Eq. (20) describes the kinetics of the signal intensity, the second 
term N(t) show.s the level of noise in mode 2. 

The expressions N(t) in Eq. (19) can be divided into two parts: 

Ni(t)=N(t)-#(t ) and p(t). (21) 

The quantity 

Ni(t)=n2(T)exp [-(Yl +y2)t] cos rt + - - -~-r  sin rt + 

lal2 
+ ni (T) ~ exp [ -  (yl + 72)t] sin 2 rt (22) 

originates from the initial levels of noise of the signal and idle modes. It should be 
noticed that in tbis expression the temperature T can be different from the crystal 
temperature (e.g. in case of ballistic phonons [4]). In this case if zL2 = 0  Eq. (19) 
describes parametric conversion of input signals with Gaussian statistics. 

The term 
~(t)  = N a + N t ( t ) ,  

where 

Na=(Ig12+yl~'2)-lln271Y2+71n17x+Y2+Yzn2 [g[z I 

(23) 

(24) 
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and 
_ e _ ~ ,  , + ~~,,,[!012(n2)'2 + n171) 

N,(t) = [ r2()'x +72) + 

[ ( rŸ cos2rt 1912()'t+~2)(n2)'2-nl)'x) -t- n2) '2() '1--) '2)  1 
+ 2(1[/I 2 +)'1)'2) 2r2 4 7  ,]J + 

si.~r, F,~,.~,,,~-,,~,~, -'~'(1 ~"J~)l} 
+ 2(Io-~+~~'a) + ne)'e()'~ (25) 

describe Gaussian noise in mode 2 connected with the persistent influence of the 
thermostat on modes 1 and 2 in the interval of time from 0 to t. The quantity Nt(t)~O in 
the limit t ~ ~  and corresponds to rather complicated transient conditions of noise 
level. The term N. describes the asymptotic level of noise in mode 2 in the limit t ~  ~ .  

From Eq. (24) in the limit 9--.0, as it can be expected, we have N,~n2(T). On the 

contrary, if I g I �87 x ])2, then 

N a ,~ 71nl(T)+)'2n2(T) (26) 
)'1 +)'2 

In the last case (i.e. 101�87 the number of quanta of noise in mode 1 has the same 
limit. This limit will be between the equilibrium numbers of quanta in modes 1 and 2; 
nx (T) and nz(T). In case of acoustooptical conversion the asymptotic level of noise in 
the optical idle mode will be higher than that which corresponds to Planck's formula 
and the asymptotic level of noise in the acoustical signal mode will be correspondingly 
lower than in thermal equilibrium. 
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