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The pseudopotential method is used to calculate the ground states and excited states
of the Li atom and those of the ions of its isoelectronic series in the first row of the periodic
system. The energy eigenvalues and the pseudowavefunctions were computed numerically.
The agreement between the calculated and empirical energies is good. The method is appro-
priate to consider the effect of the inner orbitals of many-electronic systems on the valency
electrons.

Introduction

The solution of the Hartree—Fock equations causes great difficulties in
the computations of atomic, molecular and solid state properties. There are
a number of attempts to simplify either the methods of solution or the structure
of the equations. One of the possibilities is the introduction of the pseudo-
potentials, which means to take into account the orthogonality of the
valence states to the core states with a repulsive term [1]. In the Hartree—
Fock equations one may try to substitute the sum of the terms of the nucleus-
electron interaction, the Coulomb and the exchange-interaction with a Coulomb
like and a non-local repulsive potential. In this way we can attain so consider-
able a reduction on the computational effort that the calculations may be
carried out for the atomic systems with small or medium size computers [2].
There are further possibilities of the applications of this method in the mole-
cular and the solid state field.

We have tried to substitute the non local potential with a linear com-
bination of a local radial part multiplied by projection operators in the angular
momentum space. The local radial part is a Gauss-type term, which contains
some adjustable parameters. The values of these parameters have been obtained
numerically with a semiempirical procedure. Substituting these values of
parameters into the Gaussian term, we have calculated some energy eigenvalues
and pseudowavefunctions of the Li atom and its isoelectronic series, nume-
rically too.
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The pseudopotential

Let us consider the Hartree—Fock equations of an atom with N electrons
in the form

[H(l) + Sy a1 — Py ij>]ws(1) — B (D), )
je=1
where !
HO) = — 24—, @)
T

z the atomic number, P,, the permutation operator and the quantities are
measured in atomic units.
If we use the Eq. (1) the wavefunction of the atom is

pi(1) wi(2) .. pyN)
= N"%p,(1) 9,(2) ... py(N)|, (3)
(1) wn(2) - - . pn(N)

where p,, is the wavefunction of the valence electron and the y; functions
are assumed to be orthogonal ones. Let us write v, in the following form:

N—1 A
YN=Yo— D Cv» =<l )
i=1

where y, is not orthogonal to the core functions y,, We can substitute (4)
into the determinant (3), and we get the Hartree—Fock equations (1) in the
form

o (Hz + V2) %o = Ey por (5)
H, = H() + Ng‘ Wyl 71— Py (6)

and
V= ';;T(EN — E) v <y - @

Vy is called the pseudopotential.
Hevimann suggested [3] that the total interaction potential should be
written in the form

Vy=— -—;Z— + A exp {—ar}/r. (8)

We can discover other forms suchas —Zjr + Ae/r®, —Z[r + A e/r" andso
on used before. The latter form has been employed by Ry and Swrrarskr [4].
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With this potential we have also calculated numerically some energy eigen-
values and the eigenfunctions using the parameteres obtained by Ray and
SWITALSKI.

Let the form of the pseudopotential be

Vir) = — _rg + 4,0 P, ©)
i

where Z is the nuclear charge minus the number of core electrons and A4,
and @, the parameters of the pseudopotential for the state with quantum
number [, respectively, P, projection operator. The potential consists of two
terms: the first is a Coulombic term and the second has Gaussian form. The
latter will be used for the description of an electron, moving in the field of
an (1s)? closed shell ion excluding the Coulomb term, but including all other
interactions e.g. correlation, polarization, ete.

There are a number of ways to determine the parameters of (9). At the
first trial a variational method with doublezeta wave functions has been used.
The computed energy-values were fitted to the 2s, 3s and 2p, 3p terms of the
Li atom and the ions of its isoelectronic series, resp. [5].

Here the parameters A; and @, have been determined by a numerical
procedure. Let us consider the one-electron wavefunctions in the form

1
Putm(Ts %5 %) = — Pralr) Yim(, 7) » (10)

where Y, are spherical harmonics. Because the computations have been car-
ried out for atoms containing ene valency electron, the dependence of one-
electron wavefunctions upon the spin coordinates has been neglected.

By inserting the function (10) into the equation

1
[— 5 Ao + V(r)]wnim = Eut oum ()

obtained from the Eqs. (5) and (6), and multiplying the Eq. (11) from left by
the (Y,, |, we obtain the radial Schrodinger equation

_1_ d>P nl

I+ 1) B
3 et [Ba = = Vo] Pu =0 (12)

To simplify the form of Eq. (12), it is convenient to introduce Rydberg units
for the energy and the potential. Then Eq. (12) becomes

a?P,,

201 + 1) B
e + (Enl_ T —‘2Vz(?)) P, =0. 13)
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The numerical solution of this equation has been obtained by a sub-
routine suggested by HERMAN and SkiriMan [6]. The pontential V(r) in
Eq. (13) has to satisfy the conditions

lim rVy(r) = —Z (14a)
r=0
and
m Vi(r) =0, (14b)
T 0

which is in agreement with the form (9) selected by us. The parameters 4,
and a, in (9) have been determined by the requirement that the energy value
for the ground state and the energy value for the first excited state (if Il = 0),
the energy values of the first and second excited states (if / = 1) computed from
(13) agree with the experimental values, respectively. This requirement means
that we have to solve the equations

Ef(Ap, a)) = EFfP, n = ny, ny, (15)

where Ef,(A,, a;) are the computed energy values at some parameter values
and EJJ® is the experimental value.
The solution of the system of equations (15) has been obtained by deter-

mining the roots of the nonlinear equation

Ef (A, ) — EZP
€X)
thfp

E; (A, a)) — EGP
eX
Eﬂxlp

fld, a) = (16)

|

The Gauss—Seidel method and/or a random-search method has been suitable
for this purpose. The convergence of both methods has been nearly the same,

The function f(A4,, ¢;) in Eq. (16) has been regarded to be zero, if the
|f] < & condition has been satisfied, where ¢ = 0.01 has been selected in
our case.

Discussion of results

The calculations with the Gaussian pseudopotential (9) were performed
on the Li atom and the ions of its isoelectronic series. The parameters have
been determined for the I = 0 and I = 1 states. The reference energy levels
have been the lowest experimental states 2s, 3s and 2p, 3p, respectively.

In Table I the parameter values determined with the double-zeta wave-
function and the numerical one are presented. We may observe considerable
agreement between the parameters g,, computed with different wavefunctions.
In the calculational process more roots of function (16) have been obtained
at some elements. In this case the values lying nearest to the values obtain-
ed by the double-zeta wavefunction method have been chosen.
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Parameters of the potential V)(r) determined with the double-zeta wavefunction variationally

and with the numerical method (I = 0)

A4, a,

z Double zeta Numerical Double zeta Numerical
1 11.470 53.528 3.1113 3.0881
2 20.345 77.185 5.2933 5.2939
3 30.408 32.178 7.7567 5.2173
4 31.690 52.458 8.0076 8.0076
5 39.390 55.590 9.6892 9.6891
6 54.942 76.330 13.318 13.320

7 78.083 123.12 18.813 18.810

Table Ib

Parameters of the potential ¥ (r) determined with the double-zeta wavefunction and with the
numerical method (! = 1)

4, o
z Double zeta Numerical Double zeta Numerical
1 — 5.2287 — 1.0831 1.4464 1.4464
2 — 8.2100 — 8.2080 7.0004 7.0110
3 —11.894 —11.894 13.504 13.504
4 —15.271 —15.083 20.631 20.631
5 —16.603 —16.604 29.156 29.156
6 —17.090 —20.490 37.860 37.860
7 —17.522 —17.980 47.228 47.090
Table I1a

Energy eigenvalues computed by numerical integration for the Li atom at | = 0 with
different pseudopotentials

—E (in Rydberg units) Z=1
Numerical Double zeta
n Experimental A = 53.5287 A = 11.47005 RAY— SwrTALSKI
a = 3.08811 a = 3.11307
1 0.39643 0.40210 0.48554 0.39894
2 0.14842 0.14806 0.16510 0.15054
3 0.077262 0.076172 0.082517 0.077467
4 0.047293 0.046383 0.049580 0.047064
5 0.031911 0.031131 0.032776 0.031527
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In Tables II—II1 we present the energy eigenvalues computed by the
numerical integration procedure outlined before with the pseudopotential
field (9) with the numerical and the double-zeta parameter values, respecti-
vely, the RaAy—SwITALSKI potential and the experimental energy values [7].

Table ITb

Energy eigenvalues computed by numerical integration for the Li atom at I = 1 with
different pseudopotentials

—E (in Rydberg units) Z=1

n Experimental Aziumf;lz;l:"l AD;)uilse;;g!& Ravy—SwrrALsr

a = - 1.44637 a = 144637
2 0.26056 0.26095 0.53752
3 0.11450 0.11287 0.16369
4 0.063980 0.062729 0.081915
5 0.040783 0.039842 0.048676
6 0.028253 0.027489 0.032501

Table Illa

Energy eigenvalues computed by numerical integration for the 0%+ jon at I = 0
with different pseudopotentials

—E {in Rydberg units) Z=456
Numerical Double zeta
n Experimental A = 76.3259 A = 54.94254 Ray— SwrrALsg:
a == 13,32 o = 13.318322
1 10.155 10.244 11.283 10.212
2 4.3208 4.2799 4.6143 4.8958
3 2.3822 2.3340 2.4938 2.6383
4 — 1.4745 1.5502 1.6328
5 — 1.0165 1.0563 1.1066

For saving space the Tables contain the energy values for the Li atom
and the O3+ ion only. The energy eigenvalues computed with the numerical
parameters are in agreement with the experimental ones within the precision
of the accuracy of the fitting criterion (16) at the excited states, too. The
agreement between the energies calculated by the numerical and the experi-
mental parameters is better than the agreement of the energies with the double-
zeta parameters; these latter are sometimes even lower than the experimental
ones. This fact can be easily explained, when we observe that the potential
(9) with the double-zeta parameters is less repulsive, than the potential with
the numerical parameters.
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Table IIIb
Energy eigenvalues computed by numerical integration for the O** ionatl =1
with different pseudopotentials
—E (in Rydberg units) Z =6
Numerical Double zeta
n Experimental = —20.4903 = —17.0903 Bay—Swrratsxx
a = 37.8607 a = 37.8607
2 9.2770 9.3049 9.3563 9.3531
3 4.0831 4.0684 4.0483 4.0404
4 2.2852 2.2588 2.2617 2.2368
5 — 1.4340 1.4255 1.4271
6 — 0.99093 0.98557 0.98158

The radial pseudowavefunctions with the different parameter values
in the potential (9), those of the RAY —SwiTALSKI potential and the wave-
function for the Li obtained from the Hartre—Fock calculations [8] are exhi-
bited in Figs. 1, 2, 3 and 4. The wavefunctions are plotted for the states [ = 0
and ! = 1 respectively and for the Li atom and O°+ ion only. In the Figures
it may be seen that the maxima of the numerical wavefunctions are always
farther from the origin than those computed with the double-zeta parameters
by the same method. This is due to the more powerful repulsion of the poten-
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Fig. 1. Radial part of the wavefunctions computed with different parameter sets and different

pseudopotentials, and the Hartree—Fock wavefunction for the Li atom at n =2, [ =0
numerical; - - - - double-zeta; .... RAY—SwWITALSKI, ~«—+—+— HARTREE—FocCK
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Fig. 2, Radial part of the wavefunctions computed with different parameter sets and different
pseudopotentials for the Li atom at n =2, ] =1, ———— numerical; ~ - - - double-zeta;
.... RAY—SwrITALSKI

tials obtained by the numerical method, as compared with the other ones.
Although the pseudowavefunctions are nodeless (in the ground state) they have
some oscillations clese to the origin, which is more conspicuous for wavefune-
tions for the ions with higher atomic number.

r

Fig. 3. Radial part of the wavefunctions computed with different parameter sets and different
pseudopotentials for the 0% jon at n =2, 1 =0, -—— numerieal; - - - - double-zeta

Acta  Physica Academiae Scientiarum Hungaricae 45, 1978



CALCULATIONS IN A MODEL POTENTIAL FIELD 131

P

¥

1 r

Fig. 4. Radial part of the wavefunctions computed with different parameter sets and different
pseudopotentials for the 0% ifon at n=2,1=1. - numerical, - - - = double-zeta;
.... RAy—SwirrALsg:
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