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Solutions of EinsTEIN'S field equations are obtained under the assumption that (1) the
source of the gravitational field is a perfect fluid with pressure p, equal to energy density o,
(2) the space time is cylindrically symmetric with two degrees of freedom, and (3) the metric
is given by three functions of two variables. The co-ordinate transformation to comoving co-
ordinate is discussed. The HAWKING—PENROSE energy conditions and THORNE’s C-energy
are also studied. Some physically interesting solutions are obtained. The relation of the present
work to ErnstEIN—ROSEN waves is also investigated.

1. Introduction

In a recent paper TABENsKY and Taus [1] have found that EINSTEIN’s
field equations for self-gravitating perfect fluid with pressure p equal to rest
energy density g and four-velocity u; is equivalent to the field equations

Rj= —20;0, (1.a)
Oo = ((—g)"o,:87);=0, (1.b)

when irrotationality is imposed, viz.
u; = 0 ,/(c, o). (2)

The pressure p and energy momentum tensor T; are related to o by

pP=pQ=0g o, (3)

Tij == 20',3 G ;— 8ij O ak, (4‘)

The units are chosen so that the velocity of light C = 1 and Newton’s

constant of gravitation G = 1/8n. A comma means partial derivative with
respect to the index.

Further LETELIER [2] and LETELIER and TABENSKY [3] have obtained

cylindrically symmetric solutions of the field equations (1). It is the purpose
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of this paper to discuss the solution of Eqs. (1) in a cylindrically symmetric
space time with two degrees of freedom (STACHEL [4]) expressed as

ds? — 2A—2B(ds2 — dr?) — (C22B + r%e~28) do® — 2Bde? — 2Ce2Bdp ds,  (5)

where A, B and C are functions of r and ¢ only, and r, @, z, t correspond re-
spectively to x,4? x3, x* coordinates. When C = 0 the metric (5) reduces to
EiNsTEIN—RoOSEN metric (EinsTEIN and RoseN [5] and Rosen [6]) with one
degree of freedom.

In Section 2 we find the solution of Eqs. (1) for the metric (5). In Section
3 the coordinate transformation that enables us to write the solution in comov-
ing coordinates is discussed. In Section 4, the HAWKING —PENROSE energy
conditions [7] are verified. In Section 5, some special solutions corresponding
to monochromatic and pulse wave solution for ¢ are obtained and THORNE’s
C-energy is discussed. Also the relation of the present work to EINSTEIN—
RoseN waves is pointed out.

2. The solution of field equation

For the metric (5) the field equations (1) and the pressure p are

By— By +1b— (%20 (@ — €Y =0, ©
G
Cp—Cyy— T + 4(BG, — BL) =10, (7
1
A, = (B} + BY) + (e*%/4r) (C} 4 C3) + ;(03 + o9, 8)
A, = 2rB\B, + (45/21)C,C, -+ roy0,, 9)
Ay — Ay + B} — B} — (¢8/4r%) (C} — C) = — —:21-(‘3'% —d3), (10)
011—044+'?=0, (11)
p= o= Aot — o), (12)

where the indices 1 and 4 indicate partial derivatives with respect to r and ¢,

respectively.
The Eqs. (6) and (7) which determine B and C are identical to those of

the empty space for the metric (5). Eq. (10) can be obtained from (6)—(9)
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and (11). When B and C are known from (6) and (7) and ¢ from Eq. (11)
Eqs. (8) and (9) give 4 as an integral

A= f “r(B% + BY) + (et¥]4r) (CF + € + —;- (0% + ﬁ)] dr +
+ {2rBB, + (e15)2r) C,C, + 010} dt] . (13)

The integrability conditions for A are satisfied by virtue of Egs. (6),
(7) and (11). One can always add a constant to A. Further if (g;;, ) is any
solution (Ag,;, ¢) is also a solution whenever 1 is a constant. So from now
onwards all line elements can be multiplied by a constant conformal factor.

3. Comoving coordinates

Now we shall discuss how to transform the solution to comoving coor-
dinates which are usually used in hydrodynamics and they are important for
physical interpretation.

We can choose o as the comoving time T. It can be easily seen that the

coordinate R defined by
dR = r(odr + o,dt) (14)
and T = ¢ transform the four-velocity u; to U;=(0, 0,0, U,) and therefore

R is comoving. Eq. (11) ensures the exactness of the differential (14) defining R.
The required transformation formulae are

{T = o(r,t), R=R(r,1) (15)
D=9, Z=az,

where T, R, ® and Z are comoving coordinates. The Jacobian of (15) is

(R, 9,7, T)

= r(o} — o),
ar, @, z, t)

which can vanish where p = p = 0 in the nonsingular regions of space time.
In comoving coordinates the line element (5) is transformed to

dst = {#A-25)(g% — of)) [aT? — lzdR?-J _ (G2t %e?P) x
r

X dD? — 28 dZ2 — 2Ce*B dd dZ . (16)

The line element (16) has a singularity at r = 0.
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4. The reality conditions

In irrotational fluids with the limiting form of the equation of state
p = ¢, the energy condition T;u'u’>> 0 and the HAwKING —PENROSE con-
dition [7]

(Tij — —;—g,rj T) uu >0
both reduce to

0= e (ot~ ) 2 0.

Thus it is possible that ¢ may be negative in some regions of the space-
time. The metric does not have necessarily a pathological behaviour when this
happens. The way of solving this problem is to fill the region where the energy
density is negative with a different kind of fluid, whose energy tensor we
prescribe as follows.

From (14) we find that R ; is orthogonal to ¢ ;, @ ; and Z ,. In thls region,
R is a timelike vector and G, is spacelike. Now let R, i @ Z o‘ denote
the corresponding unit vector flelds If we use the fact that

8= R R — 0,0
the stress energy tensor (4) can be written as
Tij = (h“O"k G’k) {ﬁ,i _ﬁ”, + 8'1‘ 3"1 — 5),’@ - Z Z]]

This stress energy tensor is that of an anisotropic fluid with positive rest
energy density (—o, ¢’*) and vanishing heat flow vector. In this case both
the reality conditions are satisfied.

5. Some special solutions and Thorne’s C-energy

The Eqs. (6)—(9) are a set of coupled, second order non-linear partial
differential equations and it is difficult to obtain a general solution of these
equations. As Eqs. (6) and (7) which determine B and C are the same as those
in the case of empty space, following STACHEL [4] we try some special solutions.
STACHEL has mentioned two particular cases (i) B=0and B = (1/4)logr + b,
where b is a constant. When B = 0, Eqs. (6) and (7) lead to C = constant
which can be eliminated with the help of a coordinate transformation 2z’ ==
= % + Cp, where C is a constant. When B = (1/4) logr + b, from Eqgs. (6)
and (7) it follows that C is a function of t — r or ¢ 4- r, but not their sum,
because of the nonlinearity of the equations.
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The Eq. (11) is the Euclidean wave equation in cylindrical coordinates
from which ¢ can be obtained by the well known method. A typical solution
of this equation may be written in the form

o = MJ(kr) cos kt, 17

where M and k are constants and J {(kr) is Bessel’s function of first kind and
of order zero. As suggested by WEBER and WHEELER [8] a physically more
interesting case is that of a pulse formed by linear superposition of moenochro-
matic waves with ¢ of the form (17). One can superpose such waves with an
amplitude factor M = 2Ne— and thus

o — 2N J: e~ Jo(kr) cos kt dk = N[{(a — i)t -+ 2} 424 {(a + it +r2}2#].
(18)

For monochromatic outgoing waves, we have C = C(t — r), B = (1/4)
logr 4 b, o given by (17) and

A= %log P % e [ (@ du + % (L2kr) J o(kr) J(kr) cos 2kt -+

+ % (L2k2r?) {[Jo(kr) P — J o(ker) J(kr)} 5 (19)

where u == £ — r and a bar over a function means differentiation with respect
to its argument.
For monochromatic incoming waves, we have C=C(t-+r), B =

= (1/4)logr + b, o given by (17) and

A= .l%hg 4 —;-e“b { @R do + %(szr) Jo(lr) Ji(kr) cos 2kt +

+ %(szzrz) {[Jo(kn) I — Jo(kr) Jo(kr)} (20)

where v = ¢ -+ r.
In the case of the pulse wave also one can write down the expression
for 4, when B = (1/4)logr + b, C = C(t + r) and o is given by (18).
Further THORNE [9] has given a definition of energy for cylindrically
symmetric systems termed as C-energy. His definition has been adapted by
one of the present authors [10] to cylindrical systems in a scalar-tensor theory.
In this definition of C-energy a quantity E(r, ) expressed in terms of
the generators of the system acts as a potential function from which C-energy
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flux vector p'is calculated for the metric (5). The function E is
E(r,t) = (1/4G) A(r, t) = 2A4(r, t), (21)

where we have taken G = 1/8n, G being the usual universal gravitational
constant. Thus the use of the expression for 4 in (21) will give E consisting
of two parts, one corresponding to g;; and the other to ¢, both contributing

positively to the C-energy density.
When C = 0, the matrix (5) reduces to the EINSTEIN—ROSEN metric

[5], [6] in which case the field equations have already been investigated by
LaL and Sineu [11] and Lererier [2]. The cylindrical gravitational waves
are related to a special class of spherical and toroidal waves [12], [13] and
therefore the solutions can easily be related to these waves.

Remarks

It is interesting to remark that the solutions found in this paper can be transformed to
solutions of Brans—DickE theory in the vacuum (Dicke [14]).

The solutions can also be interpreted as the solutions of EINSTEIN's equation with a
massless scalar field source, since such a source has the same stress-energy tensor as an irro-
tational fluid with p = p (TABENSKY and Taus [1]).
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