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So]utions of EINSTEIN'S field equations ate ob ta ined  under  the  assumpt ion  t h a t  (1) the  
souree of the grav i ta t iona l  field is a perfeet f luid wi th  pressure p,  equal  to energy densi ty  ~, 
(2) the  space t ime is cylindrically symmetr ic  wi th  two degrees of freedom, and  (3) the  metr ic  
is given by three functions of two variables. The eo-ordinate transformation to eomoving co- 
ordinate is diseussed. The HAWKINC.--PENROSE energy conditions and TrIonN~'s C-energy 
ate also studied. Some physically interesting solutions are obtained. The retation of the present 
work to EINST€ waves is also investigated. 

1. Introduction 

I n  a recen t  p a p e r  TAnENSKY and  TAUB [1] have  found  t h a t  EINSTEIN's 
field equat ions  for  se l f -grav i ta t ing  per fec t  f luid wi th  pressure  p equaI  to  t es t  
energy  dens i ty  ~ and  fou r -ve loc i t y  u i is equ iva len t  to the  f ield equat ions  

R q  = --2~,i ;  a j, 

[ ]  ~ = ((_g)11~ ~~ g~j),j = 0, 

(1.a) 

(X.b) 

when i r ro t a t iona l i t y  is imposed,  viz. 

ui = a,#(a,k a,~). (2) 

The  pressure p a n d  energy  m o m e n t u m  tensor  T q  ate  re la ted  to  a b y  

p = ~ = a,k ~,k, (3) 

Tij  = 2a, i a 3 - -  gij ~r,k a 'k. (4) 

The uni ts  are chosen so t h a t  the  ve loc i ty  of  l ight  C = 1 and  Newton ' s  
cons tan t  of  g rav i t a tŸ  G = 1q A c o m m a  means  pa r t i a l  de r iva t ive  wi th  
respect  to the  index.  

Fu r the r  LETnLIEn [2] and LETELIER and TABENSKY [3] have  ob ta ined  
cyl indrical ly  s y m m e t r i c  so lu¡  of  the  field equat ions  (1). I t  is the  purpose  
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of this  paper  to discuss the solution of Eqs. (1) in  a cyl ind¡  symmetr ic  
space t ime with  two degrees of  freedom (STACHEL [4]) expressed as 

ds ~ = e2A-2B(dt  2 - -  dr  2) - -  (C2e 2B -~- r2e -2B)  dq92 - -  e 2B dz  2 - -  2Ce 2B dq~ dz ,  (5) 

where A, B and C are functions of r and t only, and r, ~ ,  z, t correspond re- 
spectively to x 1, x 2, x s, x 4 coordinates.  When C-~ 0 the  metric (5) reduces to 
EINSTEIN--ROSEN metric (EIr~STEIN and ROSE~ [5] and ROSEN [6]) wi th  one 
degree of  freedom. 

In  Section 2 we f ind the solution of  Eqs. (1) for the  me t ¡  (5). In  Section 
3 the coordinate t ransformat ion  t h a t  enables us to write the solution in comov- 
ing coordinates is discussed. In  Section 4, the  HAWKING--PENROSE energy 
condit ions [7] are verified. In  Section 5, some special solutions corresponding 
to monochromat ic  and pulse wave solution for a ate obtained and THORNE'S 
C-energy is discussed. Also the  relat ion of the present  work to EINSTEIN-- 
ROSEN waves is pointed out.  

2. The solution of  field equat ion 

For  the metric (5) the  f ield equations (1) and  the  pressure p a te  

BxI - -  B44  + B---!~ - (e2B/2r 2) (C 2 - -  C~) = O ,  
r 

(6) 

Cl l  - -Ca4  - -  C---L -4- 4 ( B ~ C 1  - -  B~C4)  = 0 ,  ( 7 )  
r 

1 
A 1 = r(B 2 + B 2) -f- (e4B/4r) (C~ -t- C 2) + ~ (a2 _~ a2), (a) 

2r 

A ~  = 2 r B 1 B  ~ -4- (e4B/2r)CIC4 + r~Ÿ (9) 

1 
Al1 -- A44 + B~ --  B~ --  (r161 (C~ --  C~) = --  - - ( a ~  -- ~2), (10) 

2 

a11 - -  a44 A- a_11 = 0 , ( 1 1 )  
r 

p : ~ = e--2A+2B(cr 2 - -  a2), (12) 

where the indices 1 and 4 indieate part ial  derivatives wi th  respect to r and t, 
respectively. 

The Eqs. (6) and (7) which determine B and C are identical  to those of  
the empty  space for the metric (5). Eq. (10) can be obtained from (6)--(9) 

Acta Physica Ar Scientiarum Hungaricae 45, 1978 



CYLINDRICALLY SYMMETRIC SELF-GRAVITATING FLUIDS 109 

and (11). When B and C are known from (6) and  (7) and r f rom Eq.  (11) 
Eqs. (8) and (9) give A as ah integral  

~ =  f/ + + f r(B~ B~) (e'Z/4r) (C~ + C~) + 

+ {2rB1B4 -4-(e4B/2r)C~C4 A- rala4} dt] 
J 

~(.} + ~)} dr § 

(13) 

The integrabi l i ty  conditions for A are satisfied by  vir tue of Eqs. (6), 
(7) and (11). One can always add a cons tant  to A. Fur the r  ir  (gq, ~) is any 
solution (,~gq, ~) is also a solution whenever  ~ is a constant .  So from now 
onwards all line elements can be mult ipl ied by  a constant  conformal factor.  

3. C om ov ing  coordinates  

Now we shall discuss how to t ransform the  solution to comoving coor- 
dinates which are usual ly used in hydrodynamics  and they  are impor t an t  for 
physical interpretat ion.  

We can choosc ~ as the comoving t ime T. Ir  can be easily seen t h a t  the 
coordinate R defined by  

dR = r ( a J r  + aldt) (14) 

and T = a t ransform the four-velocity u i to Ui = (0, 0, 0, U4) and therefore 
R is comoving. Eq. (11) ensures the exactness of the differential (14) defining R. 

The required t ransformat ion formulae are 

I T  = a(r, t), R = R ( r , t )  (15) 
= ~, Z ~-- z, 

where T, R, q} and Z are comoving coordinates.  The Jacobian  of  (15) is 

O(R, q}, Z, T)  ___ r(a~ - -  a~), 

0(r, ~, z, t) 

which can vanish where p = ~ = 0 in the nonsingular regions of  space time. 
In  comoving coordinates the line element (5) is t ransformed to 

ds 2 = {e2A-2B/(a~ __ a2)} {dT 2 __ l 2 ] --  (C2e 2B + r2e -2B) X 

X dq ~2 --  e 2B dZ 2 --  2Ce 2z d e  dZ .  (16) 

The line element (16) has a singulari ty at  r = 0. 
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4. The reality conditions 

I n  i r ro ta t iona l  fluids wi th  the l imiting forro of  the ecluation of  s ta te  
P = e, the  energy condit ion TijuiuJ> ~ 0 and the  HAWKING--PENROSE con- 
dit ion [7] 

{Tij -- I _ ,d uJ ~ 0 gij 
) 

bo th  r educe  to 
1 

= .s_ e-2A+2B(~r~ _ a~) > O. 
2 

Thus  i t  is possibIe tha t  ~ m a y  be negat ive in some regions of the  space- 
t ime. The  metr ic  does not  have  necessari ly a pathological  behaviour  when this 
happens.  The way of solving this problem is to fill the  region where the energy 
densi ty  is negat ive with a different  kind of fIuid, whose energy tensor  we 
prescribe as follows. 

F r o m  (14) we f ind t ha t  R,i is or thogonal  to a,i, q~,i and Z,~. In  this region, 
R i i s  a tinaelike r e c t o r  and ~,i is spacelike. Now let R,i, q~,i, Z,i, ~,i denote  
the cor responding  uni t  r e c t o r  fields. I f  we use the  fact  t h a t  

g,+ = ~ ,  .~j  - ~ ,  a j - -  ~ ,  ~.+ - 2 ,  2 j  

the  stress energy tensor  (4) can be wr i t t en  as 

T i / =  ( - -  a,~ a ,k) [R,i =R,/ + ~.i ~,j - -  ~,f ~, j  - -  ~ i  ~ j ] "  

This stress energy tensor  is t ha t  of  ah anisotropic f luid with positive rest  
energy dens i ty  ( - -a~ ,  a,k) and vanishing heat  f low vector .  In  this case b o th  
the rea l i ty  conditions ate satisŸ 

5. Some specŸ solutions and Thorne's C-energy 

The  Eqs.  (6)--(9)  a r e a  set of coupled, second order  non-linear par t ia l  
differential  equat ions and ir is diffieult  to obtain a general solution of  these 
equat ions.  As Eqs.  (6) and (7) which determine B and C are the same as those 
in the case of e mp ty  space, following STAC~EL [4] we t r y  some special solutions. 
STACItEL has ment ioned two par t icu lar  cases (i) B = 0 and B = (1/4) log r 4- b, 
where b is a constant .  When  B = 0, Eqs.  (6) and (7) lead to C = cons tan t  
which can be el iminated wi th  the  help of  a coordinate  t r ans format ion  z'  - -  
= z + Cq0, where C is a cons tant .  When  B = (1/4) log r -? b, f rom Eqs.  (6) 
and (7) i t  follows tha t  C is a funct ion of t --  r or t -~ r, bu t  not  thei r  sum, 
because of  the nonl inear i ty  of  the equations.  
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The Eq.  (11) is the  Eucl idean wave equat ion in eyl indrieal  coordinates  
f rom which a can  be obta ined b y  the  well known method.  A typica l  solution 
of  this equat ion  m a y  be wr i t t en  in the  form 

a = MJo(kr ) cos kt, (17) 

where M and k are constants  and Jo(kr) is Bessel's funct ion of  f irst  kind and 
of  order zero. As suggested by  W~BER and WHEEL~I~ [8] a physical ly  more 
interes t ing case is t h a t  of  a pulse fo rmed  b y  l inear  superposi t ion of  monochro-  
mat ic  waves wi th  a of  the  form (17). One can superpose such waves wi th  an 
ampl i tude  fac tor  M = 2Ne -ak and thus  

= 2N I e -ak Jo(kr) cos kt dk = N[{(a  --  it) ~ + r2}-l/2+ {(a + it)2+ r2}-1/2]. 
d O  (18) 

For  monochromat ic  outgoing waves,  we have C = C(t - -  r), B = (1/4) 
log r q- b, a given b y  (17) and 

A ..... 161 log r - -  12 e~b S (~)2 du +-~1 (L2kr) Jo(kr) J£ cos 2kt q- 

-}- ~-(L2k2r2) { [J£ ] 2 -  Yo(kr) J£ ) , (19) 

where u = t - -  r a n d a  bar  over  a funct ion  means di f ferent ia t ion with respect  
to its argument .  

For  monochromat ic  incoming waves,  we have C = C(t + r), B = 
= (1/4) log r q- b, a given by  (17) and 

1 1 ,, 
A = 1 log r + - -  e ~b S (~)2 dv + (L2kr) Jo(kr) Jo(kr) 

16 2 2 

+ 1 (L~k2r2) {[J£ -- J 0 ( k ~ ) J £  

cos 2kt + 

(20) 

where v = t + r .  
In  the case of the  pulse wave also one can write down the  expression 

for A, when B = (1/4) log r § b, C = C(t A- r) a n d a  is given b y  (18). 
F u r the r  THOR~E [9] has given a def ini t ion of  energy for cy l ind¡  

symmetr ic  systems t e rmed  as C-energy. His defini t ion has been  adapted  by  
one of the present  authors  [10] to cylindrical  systems in a scalar- tensor theory.  

In  this def ini t ion of C-energy a quan t i t y  E(r, t) expressed in terms of 
the generators of the  system acts a s a  potent ia l  funct ion f rom which C-energy 
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f lux  v e c t o r  p iis ca l cu la t ed  for  t he  me t r i c  (5). The  f u n c t i o n  E is 

E(r, t) = (1/4G) A(r, t) ~- 2A(r ,  t), (21) 

whe re  we  h a v e  t a k e n  G = 1/8z~, G be ing  the  u sua l  un ive r sa l  g r a v i t a t i o n a l  

c o n s t a n t .  T h u s  t he  use o f  t h e  express ion  for  A in  (21) wilI give E cons i s t ing  
o f  t w o  pa r t s ,  one c o r r e s p o n d i n g  to  gq a nd  the  o t h e r  to  o, b o t h  e o n t r i b u t i n g  

p o s i t i v e l y  to  the  C-ene rgy  dens i ty .  
W h e n  C = 0, the  m a t r i x  (5) reduces  to  t he  EI~STEIN--RosEr~  m e t r i c  

[5],  [6] in  wh ieh  case t he  f ie ld  equa t i ons  have  a l r e a d y  been  i nves t i ga t ed  b y  
LAL a n d  SIr~GH [11] and  LETELIEa [2]. The  cy l ind r i ca l  g r a v i t a t i o n a l  w a v e s  

a t e  r e l a t e d  to  a speeial  class o f  spher iea l  and  t o r o i d a l  w a v e s  [12], [13] a n d  

t he r e fo re  t h e  so lu t ions  c a n  eas i ly  be r e l a t ed  t o  these  waves .  

Remarks 

I t  is interesting to remark that the solutions found in this paper can be transformed to 
solutions of B~Ns--DICKE theory in the vacuum (DIcKE [14]). 

The solutions can also be interpreted as the sohtions of EINSTEIN'S equation with a 
massless scalar field source, since such a source has the same stress-energy tensor as an irro- 
tational fluid with p : ~ (TABEr~SKY and TAUB [1]). 
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