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An exaect solution of the problem of an unsteady combined free and forced convection
flow of a viscous incompressible fluid between two horizontal parallel walls with a linear
axial temperature variation has been solved. It is found that the velocity and temperature
profiles are asymmetric. The skin friction at the upper wall is always negative for cooling
there, so that no reversal flow takes place while heating the upper wallleads to incipient reversed
flow thus increasing the tendency of instability. Also more and more cooling at the lower wall
induces reversal flow there.

1. Introduction

It is well known that forced and free convection play a predominant
role in determining the rate of heat transfer from a surface to fluid moving
past it. To date, however, the theoretical and experimental studies on this
subject have been limited, with a few exceptions, to cases where either, but
not both, of the two mehanisms is taken into account. These investigations
have been very successful, particularly in regions where the flow is laminar
and have resulted in experimentally verified theoretical predictions. In general,
however, heat is transferred by both mechanisms acting simultaneously. It
is, therefore, of some interest and importance to be able to predict how the
rate of heat transfer is affected by the combined action of both forced and
free convections and to know under what conditions it is permissible to neg-
lect one mode of transfer or the other. A few studies have been madein this
direction. By including free convection effects a few researchers have investi-
gated the velocity and temperature distribution in vertical pipes and channels
with low Reynold’s numbers. Acrivos {1] has given a theoretical treatment of
combined laminar free and forced convection heat trasnfer in external flows.

This paper will present a theoretical investigation of unsteady combined
free and forced convection flow of a viscous incompressible fluid between two
horizontal parallel walls with a linear axial temperature variation. Initially
the walls and the fluid are at the same temperature T, and there is no flow.
The temperature of beth the walls of the channel changes with the law Ty 4 Nx
and a constant pressure gradient is impressed upon the system. An exact
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solution of the governing equations has been obtained. The effect of the
dimensionless physical parameters characterizing the flow on the velocity,
the skin friction and the temperature distribution have been discussed in
detail.

2. Equations of motion and their solution

We choose a Cartesian coordinate system such that the x-axis is in the
direction of the flow. Then the governing equations for unsteady combined
free and forced convection flow can be writen as

oa op 0%
LA ST 1
® ot o8 | oy M
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0=— L _ o, )
oy

when the y-axis is perpendicular to the walls ¥ = 4-h.
The equation of state under the Boussinesq approximation is assumed
to be
e = o[l — B(T — Ty)] (3)

where T is the temperature, § is the coefficient of the thermal expansion
and oy, Ty are respectively the density and temperature in the reference state.
The boundary conditions are

i=0;3=0, T=T,for al 1 ¥€ [—h, h],
P>0;45=0,T=T,+ N% at ¥ — +h.

Using (3), Eq. (2) can be written as

P — gl — AT — T @
Y

Assuming that the wall temperature has a uniform gradient along the x-axis
the temperature of the fluid can be assumed as

T — T, = N& + G, ). (5)
Now Eq. (4) becomes

op _ —
8—; = —008 + 0,8BNx + 0,8P(y, 1) -
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which gives

P = —008Y 1+ 0,8BNxY + 0,88 { (3.1 dy + F(z, 1)
and ap . 81‘7

ox

Using (6) Eq. (1) can be written as

oi . 1 8F 0%
= —gfNY - — —— P, 7
" 88Ny o0 o T 77 ™
where
p =
Qo
We define the following dimensionless quantities:
- i t 2 — —
uz_h_'i, t:Lt, ,F’:’Fh7 y:l, x:i_
v h? oo¥? h h
Eq. (7) then becomes
du 2u
— =c—G —_— 8
ot y+ oy? ®
where
oF gBNR:
— =t >0), G=-—""—.
ox ( ) ¥
The boundary conditions are
t=0,u=0V ye[-1,1], 9)
t >0, u=0at y=+1.

Eq. (5) shows that positive and negative values of IV correspond to heating
and cooling, respectively, along the walls of the channel. Therefore G = 0
according as the channel walls are heated or cooled in the axial direction.

Let L :r e~ udt be the Laplace transform of u, then the expression
0

(8) takes the form

2
¢L e (10)

dy? s s
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The solution of (10) under the boundary conditions (9) is

Gsthsz _ccoshvggi+c~Gy. (11)
s?sinh s stcosh |/s s?

L =

On inversion we get

u= —g-(l — ) — %Gy(l — ) — —i%,,‘z; (_n? exp (—n? 7% t) sin (nny)
- n 2 2
2 -1) exp [_“ (2n 4 12 x t} cos (Zn +1 ny
neb 2n + 1) 4 2
(12)
The energy equation is
S (T T+ (T~ T) = ey (T~ T)) (13)
— _ u— — P J— J— s
ot ° 0% ° oy® ¢
where « is the thermal diffusivity of the fluid.
Using (5), Eq. (13) becomes
2
kid + Ni = a 8_@ (14)
0 oy*

Introducing the dimensionless variables as given before, the above equation
becomes

020 o6

Y - il 15

oy p(u + 81‘,) (15)
where _
vy /]

=, O=—". 16

p=- N (16)

Obviously the boundary conditions for 6 are

t=0;0=0 VyE[‘]-’l]’} (17)

t>0,0=0aty=+1.
Let 6 zr e 6dt be the Laplace transform of 6, then using this and the

0
condition (17), Eq. (15) gives

————-—psO—pL. (18)
dy?
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Using (11) the solution of (18) under the boundary conditions (17) is

foe © coshy ) ps G sinhy Vps Gy —c¢
1—p s3coshps 11— P s¥sinh|ps s?
n pG  sinhy s __pc coshy Vs

- 19)
1—p sinh |s 1 —p s3cosh |s

where p =< 1.
Inverting (19), we get

0= —L -y y2)+§§g<1 ¥2) (T — 3y%)

_ 64cp? 2. (=1 exo | — 2n 4+ 12 a2 t| cos 2n +1 .
I —p)® 5 (2n + 1) { 4p ]

- 1\ 2 o2
64cp (-1 exp[— 2n + 12 n t] cos 2n + 1 ny

(1 — p)n® n=o (Cn 4 1)8 4
o 1w 2
__2p 2 (=D exp [ _ t|sin nay
l—p»° = nd p
2Gp =, (=1)" 5347
exp [—n?a?t] sin ny. 20
+(1"P)a5n251 — P [ ] y (20)
The non-dimensional shear stresses at the wallsy = 1 and y = —1 are given by

o (%) :_Hﬁg__l__exp[_mw,]
dy y=1

2 = (2n + 1) 4
+—'- —225 —Lexp [—n? %], (21
,C:[_d_li 26_26"‘ 1 ox [__(2n+1)27z2t]
: \dy y=—1 7% n=o (2n -+ 1) 4
2G =
“r—* —-——2-—-—exp [—n2a%1¢]. (22)

3. Results and discussion

The velocity profiles have been plotted against y for ¢ = 1 and for various
values of G and ¢t in Figs.1 to 3. It is found from these Figures that with the
increase of the magnitude of G(G > 0) the veloeity increases in the lower
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half while it decreases in the upper half of the channel. The position is reversed
for negative values of G. The velocity profiles are asymmetric due to the
presence of buoyancy force G(G == 0).

The temperature profiles have been plotted against y forc =1, p = 0.5
and various values of G and ¢ in Figs. 4 to 6. From Fig. 4 we observe the oscilla-
tions in the temperature profiles for small values of ¢ and clearly as time t
increases the temperature at any point in the channel becomes steady. It is

t=c0, c=1
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Fig. 3

found from Figs. 5 and 6 that with theincrease of the magnitude of G(G > 0),
the temperature increases in the upper half while it decreases in the lower half
of the channel. The position is reversed for G(G < 0). These Figures depict
that the temperature profiles are also asymmetric.

When the buoyancy forces are absent (G = 0), the Eq. (22) shows that
the skin friction at the lower plate is always positive for t = oo since ¢ > 0.
There is thus no flow separation in this case. On the other hand more and more
cooling at the lower plate (which corresponds to the negative value of G mention-
ed before) causes progressive decrease in the values of the skin friction there.
From Fig. 7 we observe that 7, is always negative for cooling at the upper wall
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so that incipient reversed flow does not take place. This Figure also shows
that heating the upper wall leads to incipient reversed flow there and thus
increases the tendency of instability.

Fig. 8 shows that there is an incipient reversal flow at the lower wall when
the temperature of the lower wall decreases. Thus more and more cooling at
the lower wall induces reversal flow there. From this Figure we also observe
that 7, increases with increase of time.
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