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In terms of the virial theorem for an arbitrary two-dimensional lattice a self-consistent system 
ofequations is developed that allows its dynamics and the temperature evolution to the stability limit 
to be investigated in the nearest neighbour approximation. Contrary to the traditional approach the 
relative correlation functions of the longitudinal and transversal displacements of particles and the 
force constants corresponding to them ate introduced. The topology of the Grial surface and the 
evolutional trajectory of the lattice state, the temperature behaviour of the longitudinal and 
transversal force constants of the lattice are discussed. The irregular growth of the adiabatic elastic 
modulus with temperature, and the change of sign of its derivativr observed experimentally in cubic 
crystals ate explained, li is shown that there exists a temperature range where the system stability is 
achieved by the redist¡ of the kinetic energy between the longitudinal and transversal 
displacements of particles. It is established that the instability of the lattice relative to its longitudinal 
oscillations is the main cause ofits structural re-arrangement in the high temperature range in spite of 
the more rapid development of the transversal oscillations with temperature increase. 

I. Introduction 

The balance between the kinetic energy of particles and the energy of their 
coupling in the lattice is destroyed during the structural transitions in crystals [ l ]  
which is why the virial theorem establishing the relation between these most important 
characteristics of the system is of great significante regarding the stability of the 
crystalline state [2]. The advantage of the use of the virial equation was proved by its 
having given the best practical results for weakly interacting systems [3]. In spite of 
this, however, the application of the virial theorem for investigating the properties of 
crystals and in particular the mechanisms of their structural instability is still at its very 
beginning. 

In the present paper the mechanisms of the formation of the two-dimensional 
lattice instability due to temperature increase are discussed in terms of a self-consistent 
pseudoharmonic approximation based on the virial theorem. The successive 
introduction of the correlation functions for different types of displacements gives the 
possibility to establish the importance of each of them for instability formation. 

7* Acta Physica Hungarica .57, 198.5 



100 v .K.  PERSHIN and 1. S. GERSHT 

According to the Landau--Peierls theorem the system of atoms in the plane 
forms a crystalline lattice at T= 0 K only. Long-range order of the lattice is destroyed 
by long-wave fluctuations at any non-zero temperature. Strictly speaking, such a 
system is nota crystalline one and it can be considered as such only within the range of 
distance R [4] 

R = a exp (nmu2/2kT), 

where a is the average distance between the particles; u is the average sound velocity 
and m is the mass of the atom. 

The absence of long-range order does not rule out the possibility of structural 
instability in suchsystems, a fact confirmed by high temperature expansion [5, 6], the 
correlation functions technique [7], computer simulation [-8, 9] and the self-consistent 
phonons method [10, 11]. 

Further, for simplifying the calculations the case of the high temperature limit 
will be considered only where the theorem of the equipartition of kinetic energy over 
the degrees of freedom of particles is fulfilled. Ifthe mass ofatoms is large enough then 
the Iowest temperatures can be involved in this classical range [12]. 

2. Self-consistent system of equations 

Let us considera combination of the atoms interacting with each other by the 
pair central forces in the plane. The Hamiltonian of such a system has the usual forro 

H = K + U ,  
where 

( h2 V.2) U= l Z ~(Irk--rll)" 
K= E - ~ ,1, ~-,., 

Lei us write the virial iheorem ror an arbiirary degree of freedom of the atom "0" 
Iocaied ai the origin of the coordinale system 

2m((ª 2 ) = (ug 0~~o5 ' O U  i= 1, 2 ; 

i i s  the i-component of the translational displacement of the atom from the where Uo 
equilibriuni position. For the high temperature limit, by expanding the potential 
energy U in this relation into the infinite series over displacements and presenting the 
multidimensional correlation functions in the pseudo-harmonic approximation [13] 
we get 

kT= - E xgŸ ~g'-, i, i '= 1, 2, ; (1) 
i ',m 

where ii' i i r r Xo. = ((Uo- u.) (Uo- u.)), n is the radius-vector of a certain lattice site and 

- -  X p p , ~  U (2) dP'£ / ~ e x p  ~_~ ii" O~O~, 
pp' 
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is the force constant defined by the functions xgŸ included in Eq. (1). Each of these 
functions can be determined by the spectral theorem 

xgŸ 1 E eikjekJ (l _-iltm_.t. mkj (3) 
m~�9 O~kj - r  j~t. 2kT' 

wherc N is the number of particlcs; k is the quasi-wave vector; j is the numbcr of the 
oscillation branch. 

The force constants (2) are calculated for the equilibrium state of the lattice. 
Therefore, so that the system of equations (1}--(3) becomes closed to all unknown 
parameters it should be added to the conditions of the lattice equilibrium. 

The frequencies of the cxcitations of the crystal, tOkj, includcd in (3) and the 
components of the eigenvectors corresponding to them, eŸ are determined by the 
relation 

Det [[ Dii(k)-mr237 ~ii. li = 0 ,  (4) 

2 , _ y D , , . ( k ) e [ j = 0 .  (5)  mr ekj 
i, 

These parameters are also the functions of {x} since the elements of the dynamical 
matrix D = [] Dir(k ) [{, 

Dii,(k)= X ~ ~~)ii' eikn o. (6) 
B 

depend on the pseudo-harmonic force constants (2). Then, from Eq. (4) and (5), for an 
arbitrary lattice we have 

! 
l l - 1 2 ) ,  (7)  mr237 ~ ( D  l + D 2 2 + ( - - I )  j + l  ~/(D, +Dz2)2-4(D,tD22 D 2 

D t 2 . D11 -- mmŸ (8) 
e~j= x/DŸ +(Dll_mo2Ÿ , e~j= -- ~ …  + ( D l l  _mr237 . 

Since D 12 = 0 due to reflection symmetry for rectangular and square lattices e~, i = �91 
Going over to the high temperature limit hm,~ kTin (3), integrating over the k-space 
and using also relations (7) and (8) we get 

kTs  /" 1 D r �9 2kn x ~  ~ [ A ~ A  A S,n ~ - d 2 k ,  (9) 

(I,) 

where Xo.= [I xgŸ II is the second order translational matrix; A is the 7~q 
matrix; S is the area of the unit ceil; A(k)=D~ tD22-  D22 �9 

The combination of relations (1)--(9) defines the self-consistent system of 
equations describing the dynamic state of a two-dimensional lattice for an arbitrary 
number of coordination spheres and in the particle interaction approximation. Let us 
n o t e  that the virial equations (1) are represented by the linear combinations formed 
accordingly of the elements of the correlation matrix (9) where the force constants (2) 
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are used as coefficients. Thus, they are not independent. Because of their clear physical 
meaning, however, the virial equations have a significant advantage over the spectral 
ones which is precisely why the virial theorem is applied for interpreting the 
mechanisms of the instability formation. 

3. Square lattice in the approximation of the nearest neighbours 

According to Eq. (1) the two-dimensional lattice with the arbitrary angle 0 
between its axes is described by two viriai equations in the nearest neighbour 
approximation. Each of them has four constants ~g'- (iis the fixed index; ct is the 
number of the nearest neighbour) depending on the full set of correlations {xkt.,}. The 
problem is essentially simplified for the case of the square lattice. Due to its symmetry 
we have 

t ~ 1 2  __r161 ~ 0  .o12 . 2 1  
OIo: - -  '~Om~ ~ AOm ~ ~ XOm ~ ~~- V , 

The consequence of the isotropy of the square lattice is the degeneration of the force 
constants 

~ 1 1  __d~22  =(~1, l Ÿ  __ 22 __ 
O [  I l ~ O a 2 O a  2 1 ~ 0 [  1 ~ ~ 2  , 

of the correlation functions 

X I I  _ _ . . 2 2  22 __ 11 
0 [  I ] ~ O [  2 ~ X ] ' X 0 a I I X 0 a 2 ~ X 2 

and of the two viriai equations into one. With the notations introduced before the iatter 
can be written in the form 

kT= - x i  ~ 1 - x 2  dP2. (I0) 

The correlation functions xi describe the longitudinal (i= 1) and transversal 
(i=2) displacements of particles and characterize the extent of corresponding 
oscillations in the crystal at the given temperature. 

To forma closed system one of the following equations 

2kT 
arc sin Gi; i= 1,2 (11) 

X i =  - -  ~i  

is to be added to Eq. (10), where Gi=x/~i/(~ t +~2J. These values are obtained by 
calculating the elements of the dynamic matrix (6) in the nearest neighbour 
approximation 

( '2kn~ 'r - ~ )  Dii,(k)= - 4  4~~'_ sin -~-  +~o.2sin2 

and putting them into (9). Because the equation ~2 = 0 is strictly valid in the harmonic 
case in consideration of the first coordination sphere only 1-14-1 one can suppose that in 
the pseudo-harmonic approximation the unequality 

J~2J '~ ]~1 [ (12) 
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is fulfilled. Taking into account the resulting approximative relation arcsin G 2 ~ G 2 
after corresponding transformations we get: 

XI ~ (qD2 ~1]2 ~ 2  

The system of equations (10), (13) will be closed and self-consistent together with the 
condition of the equilibrium of the crystalline lattice only if 

~3(~)/Ol=O, (14) 

where (~P) is the averaged isolropic pair interaclion potential; l is the equilibrium 
parameter of the lattice in the seif-consistent approximation. 

Now we solve the system (10), (13), (14) for the Morse potential [15] 

~(r) = D(e- 2,(~ - l )  2e - , (~  - 0 ) ,  (15) 

where D is the depth of the potential well; r o is the equilibrium distance in harmonic 
approximation; 9 = ~ro, ~ > 0 are the potential parameters. The interaction potential 
corresponds to the conditions ~(r_/ro)=O, 02tp(r+/ro)/d2r=O, where r• 
+ ln2/o. From this consideration and from the analysis of the dependence of the half- 
width of the potential well on 9 it follows that the interaction forces in the lattice are of 
more long-range order now. 

The averaged interaction potential (~Po.) corresponds to the equilibrium state 
and is calculated by the equation [13] 

f 1 ii" 1 (q 'o . )  = exp l~- i~i, Xo. V', V',~: q'(r.) (16) 

in the pseudo-harmonic approximation. Putting (I 5) into (16) and confining ourselves 
ii" 112 to the terms of order not less than Xo,~, . we get the expression for the anisotropic 

averaged potential of an arbitrary lattice 

2 
(~on) = D(r/r) ~, ( -  1)P+ lp exp { --ap(ln--ro)-- 

p = l  

- ~ ~ . ' ~ "  t. ~ }xo I ,  (,7) 

where ~, = 2~(r/r), 0t2 : ~(r/r), In i= 1. For a square lattice (~. i i - -  r 2 , D(r/r)=-D, �9 lla n a, - -  

) i= 6ial, we have ~(r/r)=~ in the coordinate system na 

2 p = p o + ~ ,  

4)11 = (1 -- xx/p 2) exp ( -- Xll ) , 

�9 • = (xi -- x II) exp ( -- x II)/p2 , 

(18) 

(19) 

(20) 
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where 
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p=ctl, po=g+3xll/2, Xll = 0 t 2 X l  , X •  = 0 t 2 X 2 ,  

~11 ---- - -  ~ 1 / 2 D 0 c 2  ' q~• = - -  ~ 2 / 2 D 0 t 2  " 

Relations (19) and (20) confirm the correctness of the supposition expressed 
above by unequality (12). Putting them into Eq. (13), squaring the two parts of the 
equation obtained, up to first order of the parameter (x•243 we can transform (13) to 

x3 + a x Ÿ  +bx•  + c = O .  (21) 

The following notations are introduced in (21) 

a- - - -x l i  1 + ~  <0, b=xtl ~-~ , c = - x  2 <0.  (22) 

The real solution of Eq. (21) can be written [16] as: 

Now, putting (19) and (20) into the virial equation (10) we get 

k T F ( x l l ' X •  ( l  _ x •  x x •  
2 D -  2D -xll ~ -  e-Xi1+ • p2 e-Xll" (24) 

The notations f(xli ) and F(xll, x• have been introduced in Eqs (23), (24) for later 
convenie,lce. 

Using (23) in Eq. (24) and confining ourselves to the terms up to first order of the 
parameter Xll/Y 2 we  get 

k T  _ F(xil, f(xii)) = xiq + Qg(xli)) , (25) 
2D 2D 

where 
I/ Xll \p/3 

4( • {2~2,, 
c, =(2/n)'/3~0.55, c 2 = -  ~- 1 -  n 2 / \ n j  ~ - 0 . 5 9 ,  

= - ,~ -0 .8 .  

The value of the correlation function xc corresponding to the temperature of the 
dynamic instability of the lattice, T~, is determined by the extremum condition for the 
function F(xll, f(xii)) 

d F = ( 1 + Q,(x  ii)) (1 - x II) + xll dQ, = 0. (26) 
dxll dxll 
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The estimations show that Qo(xll ),~ 1 in the range of the physically reasonable values of 
g and x l l (2<g< 10, 0 < x ~  1). Taking this into account we shail take the solution to 
equation (26) in the form xc= 1 +Ag, Ag<~ 1. This gives 

3 

Xiic = 1 + ~ pCp.q -2p/3. (27) 
p=l  

Putting (27) into Eq. (23) we have 

.~i=~ i+~ +l~g) +Q,, (28) 
where 

Q#= I + ¡ + -~ g ~ pcpg - 2p:3 
p=l 

Now, using (25), we can write the real expression for the instability temperature, T~, 

where T A = 2D/ke is the instability temperature of the lattice without taking the relative 
transversal correlations [ 18] into account. The contribution to the critical values of the 
correlation functions which is bound with the second and the third term in relations 
(27) and (28), respectively, is negative at g > 2  and the modulus of its magnitude 
decreases with increasing .q. The inequality T~_< TA is valid for g_<.q0~2.6 where go 
is determined by the equation Te(g)= TA. For ali the other values of ,q the reverse 
inequality is valid. 

| t  is mentioned that the estimation of the parameters xll,., xic, T~ is 
mathematically equivalent to the problem of the estimation of the conventional 
extremum of the function F=F(xlI, x t) if the coupling equation x •  is 
available [17--19]. 

4. Topology of the virial surface and the evolution trajectory 

In Fig. I the virial surface of the square iattice F = F(Xll, xi) is shown. The radius- 
vector r ofany point Iocated on this surface and the unir tangent vector ~ of the surface 
can be represented in the form 

r = ixll +jx• + kF(xpl, x• (29) 

dsdr �91 _( . . dx• k -~xll '~, x=  = i + j  d-~l I + (30) 

where the parameters xi change within the range from 0 to xjc(j= II, _1_); at the given 
dependence x• = X l.(Xfl) S is the length of the part of the trajectory on the surface from a 
certain fixed point to the given one; r +(dxi/dxll)2+(dF/dxlt)2] 1q 
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The curve DA (Fig. 1) is describr by the radius-vector (29) at x l r~l  - x ~ g  -2 
( 1 -  2xlo-2) - , ,  F.=(1-2x• At 02�87 1 this curve turns into the nearly plane 
parabola F ( x • 1 7 7 2 3 7  -1 located on the suffacr X l l = l - - x Ÿ  -2 
perpendicular to the plane XIIOX • . 

At the values x~l= l - x Ÿ  - x Ÿ  2) -~ s , x• = 1 - g 2 / 4 - ( 1  -g4/4)1/2 the curve has 

a minimum corresponding to the saddle-point of the surface with which the existente of 
the virial well is bound. At g2 �87  1 xŸ I = xŸ = I, Fa= e -1 ( I  - g -  2). Here and henceforth 

Z ~ 
D C 

IL 

0 1.0 X ii 

Fig. 1. Vir ial  surface of the square lattice (z = F(Xll, x• 

alphabetical symbols corresponding to the points on the virial surface are used as 
indices. 

Putting x• = 0  into (29) we get the virial for a square lattice with longitudinal 
displacements. It completely coincides with the virial for the one-dimensional lattice 
with the interaction between the nearest particles each having one degree of freedom 
along the crystalline axis. The evolution trajectory of the system is a plane curve - -  it is 
the part 0A of the virial where the point A = x~l = 1, x~ -- 0, F A = e- t corresponds to the 
maximum of the virial over which the radius-vector moves as the tempr changes. 
The vr ~ determined by relation (30) is directed to the virial increase over the whole 
curve except point A. At point A the situation is changed and vector ~ takes the 
direction of the virial slopr 

At xa ~ 0 the evolution trajectory of the lattice state is the part of the curve of the 
intersection of the viriai surface F(Xll, xi) and the surface corresponding to the 
coupling equation x x  =f(xiI ). Vector ~ has positive components for points of the latter 
surface and it indicates that the system has a tendency to change state with increasing 
temperature. 
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5. Importance of longitudinal and transversal displacements of partieles 
in the formation of the structurai instability 

In Fig. 2 the temperature dependence of the functions xll and x• for different 
values ofg are shown. From the Figure it is clear that xli and x i  are less dependent on 
the temperature in systems where the potential is of more long range order. For the 

dXll dX~ 
dT 

10 

JX• 
dT 

dXH 
dT 

0 0.2 0.4 0.6 0.8 1.0 T/T c 

Fig. 2. Dependence of the correlation functions of the displacements xii and x• on T/T~ at different values of 
parameter g. The dotted line is the range of xii- and x• Iocated beyond the hump of the virial surface 

fixed value of g the range of change of x• exceeds significantly that of xll and the 
unequality 

s g = X •  + x i / 1 / 3  > 1 (31) 
XII 

is fulfilled at any temperature T< T~. 
From Fig. 2 and unequality (31) it follows that the x• are more 

developed than the x li-ones in the high temperature range of the crystalline state. This is 
also confirmed by the fact that the growth rate of the x• exceeds the 
corresponding growth rate of xll-fluctuations as temperature increases. 
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Differentiating Eqs. (25) and (23) with respect to temperature we get 

dxl, k ( dF ~-  ~ 

dT  = 2---D \d-~xHJ " (32) 

d - T - 2 D L 3  \ + 7  + 7 ~ , 7  o) x i '  \~ lX l l , ]  " 

Since at T~ Eq. (26) is fulfilled identically, then from (32) it follows that at T ~  T~ dXllq 
dxi/dT--* oo. Hence, the approach to the instability point is accompanied by the sharp 
growth of the xtt- and xi-fluctuations of the displacement or particles from the 
equilibrium position. The instability of the lattice is due not to one vibrational 
movement but to XII- and xz-oscillations simultaneously. However, each of them plays 
a different role in instability formation. 

To substantiate the latter statement we consider the temperature dependences of 
the force constants r and r (Fig. 3) obtained on the basis of relations (19) and (20). 
According to Fig. 3a, r is a decreasing monotonic function of the temperature. Such 
a dependence is due to both xi  and Xll leading to a decrease in the value of q~ll(T ) as the 
temperature increases. The xll-correlation functions give the main contribution to the 
process of the lattice softening over the longitudinal force constant. 

The dependence r shown in Fig. 3b differs essentially from ~II(T). As the 
temperature increases the growth of r occurs first, then this function reaches its 
maximum value and starts decreasing in the pre-transitional range. It follows from 
Eq. (20) that such behaviour of the function r is linked with the temperature 
competition of the stabilization and destabilization processes due to the temperature 
evolution of the xii and X L correlation functions, xii correlation functions give a 
destabilizing contribution both to the longitudinal and transversal force constants. 

Preliminary ealculations show that the functions r for simple cubic crystals 
are similar to those shown in Fig. 3. According to [13] the relation between the elastic 
modulations cu~ ~ and the force constants of the lattice is determined by the relations 

2C'ijkl = CUUI + r 

For the cubic crystals we have 

Ciijj ~..L Ciiii iŸ " C 12 = = - -  �9 

c " =  2~~~~ = - T '  ~ / 

Specificaily, these equations allow one to interpret the anomalous growth of ct2 and 
the sign change of the derivative de 12/dT[20]. We note that in cubic structures of NaCI 
type the elastic moduli change with the tempr in accordance with the 
dependences obtained above [21]. 
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~,,10~ 
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5 

�91 

3 
..L, 102! 

5 

�91 

g = 2 ~  a) 

0 0.6 0.8 1.0 T/T c 

g =4 b) 

i t i i 
0.2 0.4 

Fiq. 3. Dependence  o f (a )  longi tudinal  and  (b) transversal  force constants  of  the square latt ice on  the given 
temperature  T/T~ at different va ues o f  parameter  ,0 

Let us consider the mechanism of the formation of the system instability more 
thoroughly. We write the infinitesimal change of the kinetic energy of the degree of 
freedom and of the viriai in the form 

KdT= dF = dF~f~ + dF~~ 
where 

CF CF 
dF~jI = Oxll dXll' dF~l = Cx-~~ dxz  . 

Since F(xll, xi)  is a function of x i  that increases monotonically up to point C on the 
viriai surface, then dFxl > 0  over the whole of the evolution trajectory. The second 
differential dF~~~ is positive up to the crossing point P only. It changes its sign at P so the 
x• accepts the thermal energy at any point of the evolution trajectory up to 
the instability point, and the xll-subsystem up to point P only. Beyond this, the Xll- 
subsystem transfers a part of its energy to the x L-subsystem - -  which also accepts the 
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thermal energy from the thermostat in this range of the evolution trajectory since 
dF >0. The condition dF,q~ = -dF~,~ corresponds to the extremum of the evolution 
trajectory which is reached at temperature T~. At this temperature the increase in the 
kinetic energy of the iattice does not occur since due to the latter equality the xi- 
subsystem is notable to accept the thermal energy of the thermostat which has already 

(dE dK dU 
been used for the destruction of the lattice ~-~ - dT + - ~  -- '~'  at T--,T~; E is the 

internal energy). Further tempr increasr is not possible without structurai 
K 

/ 

change of the system because the Xll-Subsystem is not able to transfer to the xi- 
subsystem the energy excr destroying it (dFxl I > dFxi). 

Thus, the existence of the crystalline iattice derives from the presence of the 
connection between the Xll and xi  subsystem at T > Tp and the re-distribution of the 
kinetic energy in this tempr range. The instability of the lattice relative to the 
longitudinal oscillations of particles due to the limitation of the energy capacity of the 
Xll subsystem and to the impossibility of the re-distribution of the kinetic energy 
between the Xll and xi  subsystems at T >  T~ is the main cause of its structural 
rearrangement. 

6. Conclusion 

The first approach to the study of the structural instability of a crystal was 
outlined on the basis of the virial theorem of statistical mechanics in [ 1 ]. This approach 
is general enough. If the virial of the system could be calculated exactly merely fora  
cr type of interaction, then it would indicate an exact solution of the problem of 
the phasr transition. The difficulty is that, as in the case of any other approach, the 
calculation of the viriai relations can be carried out in certain approximations only. 
Therefore, the application of the pseudo-harmonic approximation to the analysis of 
the stability conditions, i.e. a cr procedure of the uncoupling of the multidimen- 
sional correlation functions of displacr is nota  matter of principle in qualitative 
considerations. Without restriction of the generality, it allows us to write a virial of the 
system in the real analytical form and to determine a complete set of the correlation 
functions describing a crystal in this approximation. Each of these correlation 
functions can be calculated by the use of the spectral theorem. Such a procedure allows 
one to add a system of virial equations up to the closed one for any number of variables 
in the system. The virial relations are valid for any aggregated substance since 
suppositions about the structurai arrangement of the neighbours ate not used in their 
de¡ But they undergo a destruction of the change typr at the boundary of the 
temperature range of the existence of the given state. The latter is due to statistical 
averaging which accounts for the main structural-dynamic peculiarities of a state 
investigated in the description of the system with the given arrangement of particles. 
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In principle, due to its generality, the virial theorem allows one to describe not 
only an old state but also a new one arising beyond the point of the structural 
instability, and to build up a multiphase theorem. On its basis the model ideas about 
the microscopic mechanisms of the phase transitions for systems with different 
interatomic interaction can be consistently developed. Up-to-date achievements in the 
application of the virial equation of state to the interpretation of experimental data 
from the point of view of the interatomic interactions for macromolecules, polymers 
and dense gases I-3, 22-1 suggest that the virial approach may be utilized for 
investigating the properties ofdifferent states of a substance including a crystalline one. 
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