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A simple dynamical approach to the description of the Iow energy electron diffraction 
(LEED) intensity is presented using the quantum field methods developed in thin film theories [1, 2, 
5]. The scattering amplitude of the electrons scattered by the metallic thin film is expressed in terms of 
the surface electron density modulated by lattice vibrations of the atoms at the surface. 

The influence of the temperature on the thin film dynamics and then on the LEED intensity is 
treated in pseudoharmonic approximation [4, 5]. The pseudoharmonic approximation brings ah 
essential correction to the temperature behaviour of LEED speetra, and the approximation can be 
useful to study the change of the lattice parameters of the film, in particular near the surface. 

1. lntroduction 

Until now the chief motivation for the study of LEED intensities has been the 
possibility of determining crystal surface structure by intensity analysis in a way 
analogous to the determination of crystal bulk structure by X-ray diffraction. A 
common feature of any method of structure determination by diffraction is the 
possibility to calculate the diffraction intensity for a known structure. This problem, 
however, in the case of LEED is very difficult that has not yet been treated with the 
accuracy necessary for structure determination. The difficulties stem mainly from the 
circumstance that low-energy electrons in crystals suffer very strong scattering, bot 
elastic and inelastic. 

Most attempts to account for the regularities in the energy dependence of the 
LEED intensity curves involve the calculation of the multiple scattering of electrons 
between atoms and between atomic layers of the crystal. The general theory of LEED 
which includes all orders of multiple scattering is called dynamical theory and is 
practically synonymous with band theory. The results of the dynamical theory of 
LEED are presented with reference to the band structure of the crystal. One approach 
to the dynamical theory of LEED intensity which is currently in wide use is nearly free 
electron treatment due orginally to Bethe [3]. In this theory the scatte¡ power of a 
crystal is represented by Fourier components Ug of its potential. The zeroth term Uo, 
the inner potential, causes an overall shift of the band structure to lower energies, while 
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the higher order terms, U t are responsible for the band gaps. Apart from the general 
displacement by Uo, the top edge ofeach band gap for an attractive potential coincides 
with a Bragg condition and the width of the gaps 2U m, where g is the reciprocal lattice 
vector included in the Bragg condition. 

Recently considerable progress has been made in the understanding of the origin 
of the major features in LEED intensity data and the required dynamical theory has 
been developed to a point where it can make predictions that may be tested by 
experiments. However, in addition to being quite complex, the theory is still 
incomplete, andas  a result ir has not yet become a practical tool that can be used 
routinely in the interpretation of structures from experimental data. 

In the present paper we give a modified approach to the description of the LEED 
intensity by means of the methods developed in thin film theories [1, 2]. A scattering 
sample is treatcd asa thin film evaporated on substrate. In this way we introduce into 
consideration of the LEED in a natural way the free surface of the sample which plays a 
very important role in the problem. We describe the temperature dependence of the 
surface effects considered in the Iow energy diffraction introducing a dynamical 
scattering potential which is a temperature and thickness dependent quantity. The 
dynamics of the thin film latticc particles ate described using the anharmonic model of 
the thin film crystal in the pseudoharmonic approximation elaborated for bulk crystals 
in [4] and for thin films in [5]. Using the pseudoharmonic approximation one can 
explain the tcmpcrature dcpcndence of the energy shift of the Bragg peaks, which ate 
duc to the change of the lattice distance between aforos and layers, as well as the 
temperature behaviour of the LEED intensity. 

2. Heterogeneity of the scattering potential of a sample with a surface 

Wc shall assumc that the experiment has been sufficiently well prepared to 
considcr a monoenergctic, collimated beam of electrons incident on a perfectly clean, 
well ordered surface of the sample. Our interest will centre on the elastically scattered 
electrons, because they produce almost all the structure in the diffraction pattern. We 
divide the scattering sample into a thin film anda substrate. By the thin film we will 
understand n monoatomic layers parallel to the surface and we number them by v 
beginning with v= I for the free surface of the film and finishing with v=n for the 
atomic layer which is lying directly on the substrate. We denote the atomic positions 
inside a v-th layer of the film by the two dimensional vector J and the distance between 
two atomic sites in the thin film by vector Rvj. 

The physical motivation of the model we chose is as foliows. The surface atoms of 
any solid body are in a situation which is different from that of atoms situated in the 
inside of the material. The surface atoms feel the changes in the geometry of the 
neighbours surrounding them caused by the missing neighbours, by the spontaneous 
deformation of the lattice near the surface. Asa resuit the scattering potential near the 
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surfacr must be different from that inside ofa bulk material. It is to be expectcd that the 
changes of the electronic structure near the surface must cause some changes of all 
physical properties related to the surface. The redistribution of the electrons near the 
surface creates some new boundary conditions for lattice vibrations which must 
influence the temperature-dependence of the Iow energy electron diffraction intensity, 
because the low energy electrons in LEED experiments are mainly scattered by a field 
near the surface of a sample. 

To describe the scattering potential V(r) for LEED we suppose that in a static 
case it can be written asa  sum ofatomic potentials Vo(r- Rq) produced by all atoms of 
the considered film in the presence of the substrate, that is, we suppose that 

V(r)= ~ Vo(r- R,j ) . (1) 

We consider the atomic potentiai a sa  sum of the potentials produced by the electrons 
at the free atom orbitals K, where K denotes a set of the quantum numbers for Ÿ atom 
electrons. The potentiai of a free atom at test V0(r ) can be expressed by 

Vo(r) Ze2 "-" ~'e2p~ =--7-- + ~ J - ~  d~r'' t2) 

where (Ze21r) is the Coulomb potentiai of the nucleus, po denotes the electron density 
distribution of the K-th orbital, which can be taken f o r a  free atom in the form [6]: 

p~ = ~t,~e -p' ' ,  (3) 

where a. and ti. are the numerical parameters which can be found by means of the 
method presented in [6]. 

In thin films, however, different atoms are in different circumstances, as we 
mentioned above, so the electron density distribution of the x-th orbital may change 
from one atom to another, particularly, in the direction perpendicular to the surface of 
the film. Taking into consideration the above statement we propose the following 
expression for the electron distribution in the (vj)-th atom of thin film, namely 

p~ R,j) = ~ (n,j~)p~ R,j), (4) 

where (n,l~) denotes the effective numbers ofelectron~ at the K-th orbitais of the vj-th 
atom, which can be found in a seif-consistent way in wmch the boundary conditions at 
the surface are taken into account [2]. In this way the static scattering potential for the 
electrons diffracted by thin film can be written in the general forro [6] 

Vo(,l:- ~ Z< e ' < . . >  a ' , '  = 

e # "  Ir - I lv j l  

= - - Z e 2  vjE, ~*(nvJ Ir I r -  R,il ' (5) 
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where e stands for electron charge. It is known, however, that even at zero temperature 
the atoms of the sample take part in their temperature vibrations around their 
equilibrium position, and the influence of the temperature on the scattering potential of 
the real sample must be taken into consideration. In the present paper the influence of 
the temperature on the scattering potential we take into consideration defining the 
dynamic scattering potential Vr(r) for (vj)-th atom in a thin film as 

( 1 ,~3/2 f .._.ej_.,, 
Vr(r- R,j) = \2-~ ,~]  V~ R'~ 28.j d3u, (6) 

where R, ~ denotes the equilibrium position of the atom under consideration, B, i 
denotes its mean square displacement from the equilibrium position and the function 

T(r)=(2nB,j)-3/2e - 2nvj is used as the temperature-dependence distribution of the 
mass centre of the atom in thin film during its vibration around the equilibrium 
position I-7]. Then the full temperature-dependent scattering potential for the film can 
be taken in the forro [9] 

Ir - i l o j  - a l 2  

V r ( r ) = - Z e 2 ~ \ 2 - ~ ~ j ]  i n -  ROi d3u+ 

I. I ~ j - , ' l  ~_ 
f /" / 1 \3/2 e-#~l,'-m.Jle- 2s.j 

4 ~e2<n,j.> a.< ja.~i~ ) .. ,.'-.,,-r'i (7) 

After the integration [9, I0] we obtain the following useful expression 

o{.<n,j~) O_Ÿ . aOjl), (8) Vr(r)= + Z e  2 2.~ ~ e 2 r ,  l l r -  
vl~ la--a~vjl 

where 

and 

F~(ir_ROjD=e-O.),-=%l[l_r V~ Ir- R~ I 
JA 

(9) 

x 

O(.,--~fe ",, ,lO, 
O 

This forra of the scattering potential has interesting properties. At first this potential is 
finite at every lattice point R,~ contrary to the effective potential of the free atoms 
which is infinite at the middle of the atom. An other thing we point out is that for B~j = 0 
it comes back to the static form (5). In the next Section we use this form ol the dynamical 
potential to calculate the temperature dependence of the Iow energy electron 
amplitude. 
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3. Determination of the scattering amplitude for the LEED expe¡ 

The scattering potential in the heterogeneous system derived in the last Section is 
used now to calculate the amplitude of the scattering of the electrons by thin film for the 
LEED experiments. To obtain an expression for the scattering amplitude there ate 
possible approxithation schemes which are essentially reduced to two alternatives. One 
consists of a power series expansion in the strength of the potential which can be 
generated as follows, starting from the integral equation for the wave function of the 
diffraction problem 

/ i \s/2 ! ( ' e+ik ( r - r  ') 
I _ _ |  e i t ,_  I Vr(r')$~(r')d3r'= 

= (Pi, + ~ Go(r, - r') Vr(r')~b ~ (r')dSr ' (ii) 

and soiving it by iteration for the Vr(r') potentiai we thus obtain, omitting the index + 
for brevity, r = (Pk, where k denotes the wave vector of the incident electron and (Pk is 
simply its plane wave. Using this on the right-hand side of Eq. (I i) we have: 

~,[I )= r + S Go(r, r') Vr(r'){pk(r')d3r ', (12) 

which, used again on the right-hand side of Eq. (I 1) yieids 

(pŸ = (Pi, + S Go(r, r') Vr(r ')q)k(r ')d3r'  + (13) 

+ ~ Go(r, r') Vr(r') Go(r', r") Vr(r"){pk(r")d3r"d3r ' + . . .  

and so on. 
The power series thus obtained is the Born series. It is obvious that using ~,Ÿ 1) 

in the following equation II0]  

mŸ 
f =  ~ e-ik'r'Vr(r')Okd3r, (141 

which defines the scattering amplitudefk(f2), we obtain n-th order approximation for 
this quantity. In particular, the first Born approximation is 

m re+i(k_kmrVT(r)dSr, (15) A(o) = 2-~ j 

where 0 stands for the scattering angle m for the electron mass and k~ denotes the wave 
vector of the diffracted electron in the place of detection (I R I--"oo) �9 

An alternative approach consists of analysing the problem in separate partiai 
wave components [ I 0]. I n the present paper, however, we do not discuss this approach, 
limiting ourselves to pointing out only that in this approach our temperature- 
dependent potential Vv(r) can be very useful because it has the properties required for 
the partiai wave analysis method. 
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In this paper we would like to concentrate our consideration on the scattering 
amplitude calculated by means of the first Born approximation for the temperature 
dependent potential Vr(r ). lntroducing the scattering vector k = k ' - k  and taking into 
consideration the spherical symmetry properties of the scattering potential Vr(r) we 
can write 

Z e m  , , p~n~j ['F~(]r-R,.jl) ik,d3r - 

,,j~ J I r -  R,jl 

where 

Z e 2 m  p~n~j 
- 2rch 2 ~. o~k(n,q~)e + - - T -  iKII2JI~(K), (16) 

V|K 

l , , ( K ) = f  d3r FAIŸ e i "  (17) 
r 

Using the explicit form of the integrand function F~ (Eq. 17) the integral can be 
calculated and the result is 

I~(K)= K 2 + ,,~ z 2 (18) 

Then the scattering amplitude takes the form 

f ( K ) -  112 , .  ~ (n,)u)e 
K 2 Bvj 

iKa~j 2 (19) 

now taking into the mind the properties of the thin film we can use the equations 

and 
( n , , j ~ ) = ( n , , ~ )  (20) 

Bq = B,,, (21) 

which are the result of the fact that in the plane parallel to the surface the translation 
boundary conditions arc fulfilled. Then we can write 

.f(K)=/-', y..li.(K)e ,,'v, (22) 
v [ 

where the quantities v, 1;,, and 14Ÿ are defined as follows 

Fil : ~. e iK1ri, (23) 
J 

2 m e 2 Z  ( n , . ~ )  K ,.a (24) 
.1;: L h2- :" K-'-+li~:" ' 

I I 
�9 ~)R,,i) ) ,  (25) W, . . . .  :~. K 2 B , . =  .~ ((K - o 2 
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where 3Rvi denotes the displacement of the (vj)-th atom from its equilibrium position 
(,~~~~= ~v,- R,o,). 

In the above equation a denotes the lattice constant, a N  = L i s  the normalization 
length in the plane parallel to the surface of the film, while K)I and KI are the 
components of the scattering vector parallel and perpendicular to the surface plane of 
the film, respectively. 

It is easy to see from Eq. (22) that the scattering amplitude of the filmf(K) is sum 
of the partial scattering amplitudes of the monoatomic layers f~ defined by Eq. (24). 
Each of the last amplitudes is multiplied by its own factor e -wv which we name the 
Debye--Waller factor, on the analogy of the bulk theory. 

4. Electron density distribution Ÿ thin films 

In the previous Section we have seen that our calculation of the LEED amplitude 
involves the determination of the electron density distribution across the thin film 
<n~,>. In this Section we consider this problem in detail. To describe a behaviour of the 
electrons in thin films, usually one supposes some boundary conditions for the wave 
functions on the surfaces. These boundary conditions depend on the nature of a 
concrete problem chosen to be considered. The boundary conditions for thin fiims have 
been discussed in the case of magnetic [2-1, superconducting [15], and semiconducting 
problems [16-1. In these discussions thin fiims have been treated mainly in the effective 
mass approximation. There are other papers [1, 2, 5] where the boundary conditions 
are introduced in the natural way by means of the second quantization method. In this 
case a Hamiltonian describing the behaviour of the electrons in thin films has the 
general form [2] 

H = S ~ ta~d2~a,~ + 1 + a~.p -~ l~,,p,,aa a + apa,,,  (26) 

where the indices 2,/z, p, x represent the sets of the quantum numbers of the wave 
functions by means ofwhich the matrix elements ta,, and/a~,p~ are calculated. By means 
of this Hamiltonian one can obtain any model used up to now in the theory of thin films 
[2]. Because of the complexity we expect, however, that the electron density 
distribution in thin films <n,> can be in the first approximation sufficiently described by 
the following simplified forro of Hamiltonian given by 

~,/~, + ' (27) H = t~j~v,j',,cvj~ cv,j,~,. 
v " 

The form of the latter thin film Hamiltonian means that we suppose as the sets of the 
basic second quantization function the iocalized atomic orbitals of the free atom 

12 > = [ vjx, j> = [ vi/c > , (28) 
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where vi determine the position of the atom in thin film and xvj its orbital quantum 
numbr of the free atom. The Hamiltonian (27) has been used many times in the theory 
of thin films [-2]. We use it here, however, in its temperature-depr forro modified 
by the crystal potential Vr(r). In this case the matrix elcments tv~~,,j,~ are changed by 

T t~~,,j,~ and we define them as follows. The diagonal elements t,~~,~~ are of the form 

t,r~,j~ = E~ + Ar(v), (29) 

where 
A~(v) = (vjr  [(Vr ~')- Vo(r- RCj))l vjx), (30) 

but nondiagonal elem•nts are given by 

t~~~ ,,j,~ = - B~(vv ' )  x = x' (31) 
and 

B~(vv' )  = (vj~cl { V r ( r ) -  Vo(r- Rv,r)} I v ' j ' x ) .  (32) 

In this model we are dealing with the matrix elements for the difference between the 
temperature-dependent crystal potential Vr(r) and the static atom potential Vo(r- R,j) 
localized at the vj-th site of the thin film lattice calculated by means of the two atomic 
orbitals of the free atom localized in the same site vi (30) and by means of the two atomic 
orbitals localized in the different site (32) of the crystal lattice. The other quantity which 
appears in Eq. (29) i.e. free atomic orbitais energy E ~ are the eigenvalues of the equation 

[~-m2 + Vo(r-R,,)][vjr)=E~ vj'>. (33) 

Now we can use the Green function method to calculate the electron density 
distribution in thin films the Hamiltonian of which is 

H =  ~ ~" + t v j ~ v . i . g . c v j ~ e , . i . K .  . (34) 
qK , ' | '~ '  

The procedure is known from the the static potential case [2]. Defining as usual the 
following set of Green functions 

G,j~ *'1'~' = ( (c*l~ I c~r.' > ) (35) 

and setting for them the equations of motion one has to solve the following sets of the 
equations 

EG~j,~ ,,j,~, = 6,j~ v'j'," + ~"~~" t,Ÿ r G,,,|,,~,, ,,j,~, �9 (36) 

The method of the solution of these equations is given in [2] for the Hamiltonian 
(27) and we do not repeat it here. The only difference for our temperature-dependent 
Hamiltonian (34) is that the matrix elements are now temperature-dependent. Using 
then the method presented in [2] for the sought solution of Eq. (36) one obtains the 
following Green functions for the present problem 

Gvj**,j,,. = ~ l~,Ÿ -Jj 6x*' (37) 
E -  E,b' 
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where coefficients F~~ are the solutions of the following sets of equations 

where E,b . are given by 

(t~~~~r~~- E,.. 6~~6~~ r~O = 0, (38) 
VK 

~ , r  rhZr:~~'_r rh,  r.~~' (39) 
VK 

r - X-", . , i "(J-J) (40) t v~~e-  /~ "vjTi~~ 
d 

and can be generally written in the form [l-l: 

f,h,c __ A hK (0t/V + fl~). (41) v~' - - ' ' r  COS 

About the coefficients Fv~ ~ from now we suppose that they do not depend on the 
quantum number x, i.e. we put 

F~~' = F~, = Ah COS (~tŸ v + flŸ (42) 

where A~ is the normalization constant and coefficients ~~ and fl~ are the temperature- 
dependent quantity which can be calculated numerically only. We suppose, however, 
that they can be used in the same analytical formas in the static potential case. The 
other relations between ~t r and flr are dependent on the crystallographic structure and 
the orienation of the sample and are the same as between ct, and q (see [1]), 

By means of the Green function Gvj~ v,j,~, thus determined we can simply express 
the electron density distribution across the thin film, namely, we have 

( n v K )  = ( n v j , )  = , ( c ~ j . c , j . )  - 

f ' x" G,=,(E + i e ) -  G,hK(E- ie,) h 2 
i lim dE �91 E-E;. (F~~) - - ~ (Fhv,)2f(E,hK) (43) 

2n~~o e kr +1 ~h,, 

wheref(E,h,) is the Fermi distribution function 

I 
f(E,h~) = E,hv-EI~" (44) 

e k,,T + l 

There E,h ~ denote the energy of the electrons in the thin film and Ee stands for the 
temperature-dependent Fermi energy of thin film, in x-th band. The energy of the 
electron in thin crystal films is actually given approximately by the following 
expression 

E , h  K ---- E~~ + A~ + 2B~r ( c o s _  h~a + cos hya + cos ~t,a) . (45) 

This equation describes the temperature-dependence of the band structure of thin 
films. This temperature-dependence of the band structure corresponds to the low 
energy electron diffraction spectra calculated in the dynamical theory of LEED. 
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Using Eq. (45) one can calculate the Fermi energy for each band which is created 
by the given free atomic orbitals x. Now we limit our consideration to the one band 
approximation, i.e. we suppose that all free atomicai orbitals x in thin fiims are 
sufficiently iocalized in the energy space except the valence orbital which creates the 
film conduction subbands numbered by index r. In this simple case the electron density 
distribution can be written by 

{U (46) 

where p denotes the number ofelectrons for •-th orbital ifit is no t a  valence orbital (~: 
includes the degeneracy of the orbital due to the spin o). For the valence orbital we then 
have (n~.,), which we can write as 

ff-~(T~,)2Sf(E~)d2h= <n~). (47) 
r ~/17 

The Fermi energy for the valence band can be calculated by means of the normalization 
condition of the Fermi distribution 

2 E f ( E r h )  = n N  2, (48) 
rh 

where factor 2 stands for the spin degeneration of the electrons, nN 2 denotes the 
number of the valence electrons in the thin film, and the energy 

h 2 h  2 

E,h = 2~m- +e~ (~= I' 2 . . . .  ) (50) 

is counted from the low energy edge of the valence band. 
The normalization condition (48) leads to the equations 

E t:or 2 kT~_, In [ � 8 9  + e - - W - , J -  nnh--~2Oma 2 (51, 

( \.2 
M = Integer ~E:,:0) (52) 

which must be solved numerically for energy E. Then for the effective number 
distribution of the valence electrons in the direction perpendicular to the surface of the 
film we obtain 

2mk Ta 2 ! u 2 COS2 (~tl"V + [ff ) i -~~- ) |  
(mvw)= nh 2 ¡ ~ ( sin(~rn)cos[~~.(n+l)+2fl~r])ln ~ - ( l + e  

A 

n + sin ~~" (53) 

(E, . f  :2 
M = I nteger (54) 

\~;o / 

Equations (51) with (53) and (54) determine the electron density distribution in thin 
films in the case of the one band approximation. 
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5. Distribution of  the Debye---Waller factors for thin films 
in pseudoharmonic approximation 

The calculation of the scattering amplitude for the LEED cxperimcnts 
interpretation by means ofour formula (22) involves not only the dctermination of thc 
electron density distribution in thin films, which we considercd in the previous Section, 
but it also involves the calculation of the distribution of the Debye- Waller factors in 
thin fiims. This calculation can be done by means ofa method presented in our previous 
paper 1-9] where we have discussed the Debye--Waller factors for thin films in 
harmonic and pseudoharmonic approximation, and for that rcason in this Scction we 
give only the essential relations and definitions which ate necessary for future 
numerical caiculations. 

At first the Debye--Waller factor Y, for a given monoatomic layer vis defined by 
the equation y~=e w~, (55) 

where the Debye--Waller coefficient W, is given by 
1 

Wv= ~- ((K �9 6Rvj) 2) (56) 

and K denotes the scattering vector K = K ' - K ,  while 3R~j denotes as usual the 
displacement vector of the vj-th atom. 

The phonons theory elaborated by Wojtczak and Zajac 1- ! ] allows to express thc 
displacement 6R,j by means of creation aŸ u and annihilation operators aq;.u and 
phonons amplitudes Tqa as follows 

3R,I= ~2MN2~--¡ /.~,~~~,~_Tvae (aqau+aq~~,). (57) 

coqa~, are the frequency eigenvalues of phonons, N 2 denotes the number ofatoms in each 
atomic layer, n denotes the number of the atomic layers parallel to the surfaces of the 
film while eqa~, denotes the polarization vector of the phonon in (q).,u) state. By mcans of 
Eq. (57) the Debye--Waller coeflicient W, (Eq. 56) can be expressed as 

hK' cth (h,.o,,,,, "~ { \ 2KT] 
W~- ~ T2~ sin 2 0 cos 2 tŸ + 

4MN'n O.) q ,�91 1 

cth cth\ 2KTjl 
+sin 2 0 sin2~ +cos 2 0 A 

Ogq,~ 2 �91 ) 
(581 

where the frequencies ~oqat =toq~ 2 and COqa 3 in the pseudoharmonic case are given by 
_ O coqx i - ~r O~qa i ,  (59) 

0 
s = ~ T O ) q 2 3  (60) 
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and r denote the harmonic frequency and we approximate tlaem oy 

o =m,n sin 2 + sin 2 (61) tOq~ t + s in2  , 

a3s/sin 2 N/ qxa B' ctx 2 -  +sin 2 -2-  + B - q y a  sin2 --2 ' (62) (DO�91 

4/~ 4N/C ~ 
com = ; o3,, = , (63) 

where A, A' and B, B' denote the force constants by means of which we describe the 
interaction between two atoms inside the film and on the surface. The renormalization 
coemcient a r which is temperature-dependent and is defined by the rate of the 
pseudoharmonic and harmonic force contstants, can be calculated by means of the 
Sikl£ method [4, 5, 9, 8]. Supposing that it is the same for all branches/~ one obtains 

36Fla2 L2n ~ ] ot2= 1 -- ,., ( ( t ~ R ~ j - 6 R , + , j ) 2 + ( S R , j - 6 R v _ , i )  2) . (64) 
v = l  

The sum over q, due to the periodic conditions which are fuifilled in the direction 
parallel to the plane of the film, can be replaced by an integral using the relation 

H H 

sii ( . . . )  = ~ d q x d q r ( . . . ) ,  (65) 
q 

li  li  
a a 

thus Eq. (58) becomes 

W~-  h K 2 k T  
4 M N 2  m ~=j {I I (2) sin 2 0 + 13(';,) cos2 0}, (66) 

where 

s h ( h ' ~  -T /2+eAs in2~  -) 
4 N 2 k T  \ z r t  N 

I~ (2)  = ~ In 
~ht'omOtT h [ht~176 

s ~ 2- ~ NfeAsin2~ -) 

, (67 )  

4N2k T s h \  2 k T  2 +en sin 
I3(2) = _ ~ ~  In , (68) 

sh \ 2 k T  en sin2 

A' B' 
eA -- -~  ; ea-- B (69) 
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and we have made the use of the fact that in our model taja1 =tOq 
following quantity ~2 

I s T2aln 
r/,.(n) = n ~ = l 

_ ( h ~ . ~ r  / _  �9 2 
s n t  2~ ~ ~/2+eAs'n 2 )  

sh f ht~ \ 2kT ~/eAsin2~)  

. fhdmar 1 2  �9 2 ~~ "~ snk-~-k~ ~/ +,:ns,n ~ - )  
1 2 y , (n )=-  ~ T,aln 

sh~ 2kT ~/'" 2 /  

then we can rewrite Eq. (66) in the form 

E 2 ] K2kTrlv(n) co m y~(n) 2 
W~- 2 2 sin20+ _ 2 - - c 0 s  0 = 

nMcomot  T r m rln(rl) 

�9 lntroducing the 

where 

(70) 

(71) 

K 2 k Ttl~(n) 
- 4nA0t2 [ l+~.(n)cos 2 0], (72) 

to 27*(n) 1 -  A ?,(n) 1 (73) 
�91 = ~ ~  ,Mn) B ,1,(n) 

and be called the anisotropy coefficients of the Debye--Waller factor for the v-th 
monoatomic layer of the film. 

From the last form for the Wv-coefficient one can see the anisotropic character of 
the Debye--Waller factor as well as its position and the thickness-dependence. 

6. C o n c l u s i o n  

In this paper we have presented the theoretical modei of the description of the 
low energy electron diffraction by thin films using the field theory methods known in 
the literature. In the paper the expression of the scattering amplitude for the electron 
scattered by the film into the component amplitudes of the given monoatomic layers is 
a natural consequence of introducing the dynamical scattering potential which 
depends on temperature as well as on the position of the scattering atoms in the thin 
film. Using the field theory method allowed us to calculate the approximate electron 
distribution across the film as well as the distribution of the Debye--Waller factor of 
thin film, which are involved in the calculation of the component amplitudes of the 
electron scattered by the particular monoatomic layers. 

Due to the pseudoharmonic approximation by means of which in our model the 
lattice dynamics of thin film atoms is treated, one can use this modei to search for the 
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low energy electron diffraction problem in the harmonic as well as in the anharmonic 
case of thin films. In particular, it can be useful to study the effect of the change of the 
surface lattice constants, which, as is known from LEED experiments, changes the 
Iocation of the suitable Bragg's peaks on the energetic scale. 

Concluding we would like to point out that the theoretical approach to the 
LEED problem presented here is sumciently complete to be treated numerically. We 
have done such a numerical investigation and present the results in a supplementary 
paper [17]. 
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