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We enumerate the advantages of using the stochastic quantization method over the
standard methods and as an example use it to quantize para-Fermi fields obeying trilinear
quantum conditions. Finally chiral anomaly for spinor fields is obtained directly from the
c-number Langevin equation which forms the basis of the stochastic approach for field
quantigzation.

1. Introduction

Ever since the introduction of the stochastic quantization method by Parisi
and Wu [1] in 1981, this method has been applied to a wide variety of physical
systems [2] which leaves no doubt about its viability as an alternative to the stan-
dard approaches to quantum theory, namely the canonical and the path-integral
quantization. This new method of field quantization is based on the equation of
motion rather than the Hamiltonian and as such bypasses many of the difficul-
ties associated with the other approaches. For example this method enables us to
quantize Abelian gauge fields without gauge-fixing terms [3]. For the nonabelian
gauge fields the stochastic quantization method produces the effect of Faddeev-
Popov ghosts in a natural way [4]. In addition to the above remarkable features
the stochastic method being based on stochastic differential equation(s) (Langevin
equation(s)) facilitates the numerical simulation of correlation functions [5] similar
to the Monte-Carlo method in the path-integral approach. Other than these the
usefulness of the stochastic quantization method has been amply demonstrated in
quantizing scalar fields and has also been extended to include fermion fields by Saki-
ta [6]. In the framework of stochastic quantization of fermions, calculation of the
chiral anomaly turns out to be much simpler as has been shown by many authors
[7]. The quantization of para-Fermi fields which obey trilinear quantum conditions
[7] becomes extremely involved in the standard canonical quantization. We show
here that para-Fermi field quantization obtains a much simpler procedure within
the context of the stochastic quantization method. Finally, to show the further use-
fulness of the c-number Langevin equation which forms the basis of the stochastic
quantisation scheme we obtain the chiral anomaly in an obvious way. In the next
Section we demonstrate the use of the stochastic quantization scheme to calculate
the Green function for para-Fermi fields and in the final Section we obtain the chiral
anomaly based on the Langevin equations for spinor fields.
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2. Stochastic quantization of para-Fermi fleld

The specific formalism suitable for the calculation of the two-point Green
function for para-Fermi field is described below. This is then utilized to calculate
the same when the order of statistics p is different from 2.

In the Euclidean field theory the propagator of a para-Fermi field [9] is given
by the well-known path integral formula

_ [ aydiy(2)P(y)e= SV o
[ dpdge-SW .

G(z—y)

Here ¢ and ¢ are paragrassmannian variables, and z, y are 4-dimensional Euclidean
co-ordinates, and S[1)y] denotes the Euclidean action in bilinear form. The stochas-
tic quantization method provides us with a simple procedure to evaluate G which
18 based on the Langevin equations:

58

agiﬁ(z, t) =- G+m + G'+r;(z, t),
— r 68 _
at'/’(z’ t) =G+ W + ’7(3, t)' (2'2)

Here y(z,t) and ¥(z,t) are independent para-Grassmann fields satisfying:

[¥(z,t), (', '), (=", £")]] = O,
[E(I: t), ["p(z'! t'), ¢(z"a t")]] =0,
[¥(=, 1), [$(=', '), (=", 2")]] = 0,
[J(z’ t), [E(z', t,)’ ;ﬁ—(z",t")]] =0 (2.3)

and G stands for a suitably chosen operator which may be chosen unity or a Dirac
operator denoted by K which enters the expression for §:

5= [ @230, Ko(a)l. (24)

When the order of parastatistics p obeyed by the para-Fermi field is greater than 2,
(2.4) gives the most general form for S [9]. We shall comment on the p = 2 case at
the end of this Section. The statistical properties of independent para-Grassmann
white-noise sources n and % are summariged in (2.14) and (2.15).

Since (2.2) provides solutions of ¢ and ¥ as a function of 1 and 7, the two-
point Green function is obtained by the following n7-averaging procedure

G(z,t; 2", t') = ($(z, t)P(7', ') ) (2.5)
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Here (f),7 means the average over n and 7 given by

v _ _ Jdndnf(n7) exp {(~12) [ d*zdt[n(z, t)7i(z, )]}
M = g exp (- 31 ] et Ot} )

Using the fact that the equivalent Fokker-Planck equation corresponding to (2.2)
leads us to stationary distribution exp(—S[v,¥]) in the steady state limit ¢ — oo
we find

G(z,y) = t_I:EOG(za t;y,t). (2.7)

When the action for the parafield is taken to be of the form given in (2.4), it is very
convenient to decompose t and ¢ in terms of Green components

¥(z) =) ¢*(a),
E(z) = Z Ed(z)) (2'8)

where the Green components satisfy normal anti-commutation relations for equal
Green indices

[¥%(2), 9% (')l+ = [¥%(2). ¥ (=')]+ = [¥" (), ¥" (=) ]+ = 0 (2:9)

and anomalous commutation relations for unequal Green indices

[4°(2), ¥*(2)]- = [¥°(2), ¥ (2')]- = [¥"(2), ¥ ()] = O. (2.10)

In terms of Green components the action (2.4) becomes
§=)" / dzy” (z) Kv°(z). (2.11)
a
The appropriate Hamiltonian for the Fokker—Planck equation

5 5 58
Hre = Z/ “ipm [w"(z) ’ a?b"m} )
-2 e [ J o8 } (2.12)

— +
59" (2) §ye(z)  b¢%(z)
corresponds to the following Langevin equations
3% (z,t) = -Gt _fS + Gtn%(z,t), (2.13a)
5¢ (z,t)
38 (5,t) = G+ —25 4 0(a, ). (2.13b)
’ §¢9(z, t) !
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For a straightforward proof of this assertion we refer the reader to our earlier work
[10]. In (2.13a) and (2.13b) the noise sources 5 and 7* which act as sources for $°
and ¢ satisfy the stochastic properties given by

("a(z) t)) = <ﬁd(zs t)) =0
(0 (2, 7% (&', £)) = —(7 (&> ) (22 8)) = 26(z — 2)3(¢ — £),
(n°(z, t)n*(2', ")) = ~(n*(«, t')n"*(z,t)) = O, etc. (2.14)

for equal Green indices, and

('l“(z; t).ﬁb(z')t’)) = (ﬁb(z': t’(ﬂa(zs t)) =0,
(n®(z, t)n°(#',t')) = (n®(a", )n(2, 1)) = O, ete. (2.15)

for unequal Green indices.
In order to obtain the stochastic average of ¥(z,t)¥(y,t') we write thls in
terms of Green components, i. e.

($(z,t)P(y,t") Z (9% (2,009 (4,t' a7

a,f=1
and evaluate this average using the solutions of $® and ¥ from (2.13a) and (2.13b)

($(2, )8y, t))n7 = K~ (1+ O(e*™)) (2.16)

whose steady state limit yields the free para-Fermi field propagator for p > 2 which
i8 equal to p times the well-known propagator for Fermi field.

The action for the p = 2 case which has been discussed in [9] may also be
treated along similar lines. It is better, however, in this case to make a Klein
transformation which reduces the action to the direct sum of two Fermionic actions
with different masses m, and m_. The resulting parafield propagator is the sum of
two fermionic propagators corresponding to masses m, and m_. Here my = m+tk
where m and & are coefficients in the mass matrix which for p = 2 case is given by
%m[t/), Y- + g[% ¥]+. Note that in the limit x — O the expression for parafield
propagator reduces to twice the fermionic propagator.

8. Chiral anomaly based on Langevin equation

In the previous Section we pointed out the computational ease with which
the correlation function for an Euclidean quantum field theory may be calculated
by n#j-averaging. An even more interesting application of the stochastic differential
equations (2.2) is the calculation of chiral anomaly in a direct manner which does
not even require a solution of the equations of the stochastic formalism. In this way

Acta Physica Hungarica 67, 1990



APPLICATIONS OF THE STOCHASTIC QUANTIZATION METHOD 385

we rederive the results of our earlier work [11] in a much simpler way. Using the
spinor equations of motion we arrive at the following identity

3y (Z; 75“'75'7,"#“) + 2mza:$“qs¢a =

= 2?76('1”5; +m)y® + EW’(—W& +m)ysp® =

= E P06 (1B — it Ay + m)y° + pr (~ VB — i Ay + M)769" =

= ‘Z'ﬁ 15 0:9° — Zawﬁ 15¥° + Zv/: Yn® + Z" ys¥°. (3.1)

The spinor equations of motion used here are

8y = — ['1“(8_; —1gA,) + m] v* +n%, (3.2a)
3&“ = "’Ea [7#(_‘5:! - ’:yAn) + m] +7%, (8.2b)

which follow from (2.13) on setting G = 1 for simplicity’s sake.
Thus we have finally on taking the n# average

A (Z Ea%'tu'/’“) Y +2m(d_ 9% = - (D ¥ ) -
— 2pTr(6*(0)s), (3.3)

where the last term is obtained through Novikov’s theorem. The right-hand side
in (3.3) consists of the sum of two terms: the first term is t-dependent and goes
to sero exponentially as ¢ increases (see below) and the second term is clearly ¢-
independent. In the limit ¢ — oo only the last term survives and the above identity
reduces to the anomalous Ward identity of the equivalent quantum field theory.
This is our procedure for deriving chiral anomaly from the equations of motion.
In the more general case when G is taken to be different from unity the following
identity is still true:

3u(D_ ¥ 15 1mu®) +2m(d_ T remay®) + 2m(d_ P s v®) = — 8:(F(¥, ¥))-

— 2pTr(64(0)s),
(3.4)

where F(y) is a bilinear in ¥(z,t) and ¥(z,t) whose form depends on the choice
of G. Now

(F@ ) = [ 4FFF 9 PF.0.0, (3.5)
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where P(¥, ,t) is the Fokker—Planck distribution function which satisfies the Schro-
dinger type equation _ _
agP('ﬁ, 'ﬁ, t) = —HFPP(¢1 '/’s t)' (3'6)

Thus we have
3¢(F (¥, %)) = - f dydPF (%, ¥)Hrp P(¥, ¥, t). (3.7)

In the steady-state limit ¢ — oo the right-hand side of (3.7) approaches zero. Hence
the left-hand side of (3.7) relaxes to sero and the anomalous conservation law follows
directly. The procedure we have outlined is quite similar in spirit to the derivation
of chiral anomaly given by Namiki et al [12]. In contrast to our approach based on
the general results given by Novikov’s theorem, the latter approach is based on the
elegant Ito calculus. However, the two approaches are equivalent.
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