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We enumerate the advantages of using the stochastic quantization method over the 
standard methods andas an example use it to quanti~.e para-Fermi flelds obeying trilinear 
quautum conditions. Final]y chiral anomaly for spinor flelds is obtained directly from the 
r Langevin equation which forros the basis of the stochastic approach for fleld 
quanti=a~ion. 

I .  I n t r o d u e t i o n  

Ever since the introduction of the stochastic quantization method by Parisi 
and Wu [1] in 1981, this method has been applied to a wide variety of physical 
systems [2] which leaves no doubt about its viabi¡ as an alternative to the stan- 
dard approaches to quantum theory, namely the canonical and the path-integral 
quantization. This new method of field quantization is based on the equation of 
motion rather than the Hamiltonian a n d a s  such bypasses many of the dif¡ 
ties associated with the other approaches. For examp]e this method enables us to 
quantize Abelian gauge fields without gange-fixing terms [3]. For the nonabelian 
gange fields the stochastic quantization method produces the effect of Faddeev- 
Popov ghosts in a natural way [4]. In addition to the above remarkable features 
the stochastic method being based on stochastic differential equation(s) (Langevin 
equation(s)) f~~ta tes  the nume~cal s~u~t ion  of correlation functions [5] s~n~~r 
to the Monte~Carlo method in the path-integral approach. Other than these the 
usefu]ness of the stochastic quantization method has been amp]y demonstrated in 
quantizing scalar fields and has also been extended to include fermion fields by Saki- 
ta [6]. In the framework of stochastic quantiJation of fermions, calculation of the 
chiral anomaly turns out to be much simpler as has been shown by many authors 
[7]. The quantization of para-Fermi fields which obey trilinear quantum conditions 
[7] becomes extremely involved in the standard canonical quantization. We show 
here that para-Fermi field quantization obtains a much simpler procedure within 
the context of the stochastic quantization method. Finally, to show the further use- 
fulness of the c-number Langevin equation which forros the basis of the stochastic 
quantization scheme we obtain the chiral anomaly in an obvious way. In the next 
Section we demonstrate the use of the stochastic quantizati0n scheme to calculate 
the Green function for para-Fermi fields and in the fnal  Section we obtain the chiral 
anomaly based on the Langevin equations for spinor fields. 
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2. Stor  quant iza t ion  of  pa ra -Fe rmi  fleld 

The speci¡ formalista suitable for the calculation of the two-point Green 
function for p�91191 field is described below. This is then utilized to calculate 
the same when the order of statistics pis different from 2. 

In the Euclidesn field theory the propagator of a p�91 ¡ [9] is given 
by the well-known path integral formula 

G ( x - y ) =  fd~d~~(z)-~(Y)e-sl~'~J- (2.1) 

Here r and ~ �91 p�91 va¡ and z, y are 4-dimensional Euclideaa 
co-ordinates, and S[~~] denotes the Euclidean a~tion in biline�91 forra. The stoch�91 
tic qu�91 method provides us with a simple procedure to ev.Muate G which 
is based on the L�91 equations: 

o~ ,~ (~ , t )=_o  + 6_s +G+,7(x,t) ' 

at~(x,t) =G +~" 6S 6~(- ,  t) + ~(~' t). (2.2) 

Here r t) ana ~b(z, t) are independent p�91 fields satisfTing: 

[r t), [~(z', t'), r  t")]] = 0, 

[~(~, t), [r e), r = 0, 
[r t), [~(~', t'), r t")]] = o, 
[~(~, t), [~(x', t'), ~(~", t")]] = 0 (~.3) 

snd G stsnds fora  suitably chosen operator which may be chosen unity o r a  Dir�91 
operator denoted by K which enters the expression for S: 

S= f d'xl[~(~),Xr (2.4) 

When the order of parastatistics p obeyed by the p�91 field is greater than 2, 
(2.4) gives the most general form for S [9]. We shall comment on the p = 2 case at 
the end of this Section. The statistical properties of independent para-Grassmsnn 
white-noise sources 17 and ~ are summ�91 in (2.14) and (2.15). 

Since (2.2) provides solutions of r and ,p ss a function of ~ and 7, the two- 
point Green function is obtained by the following ~7~averaging procedure 

G(- ,  t; x', t') = (r t)~(~',  t ') / ,~.  (2.5) 
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Here (f)n~ meaas the average over t / �91 fi given by 

(Ÿ = f dvd~f(v~) exp {(- ~) f d4xdt[V(=, t)fi(=, 0] } (2.6) 
f d~d-~ exp { (-�89 f d4~dt[V(x, t)~(x, 0]} 

Using the fa~:t that the equivalent Fokker-Planck equation corresponding to (2.2) 
leads us to stationary distribution exp(-S[~£ in the steady state ]imit t --, c~ 
w e  find 

Lt t; t). (2.7) c(=,y)=,_.ooc(x, y, 

Vtt~eB the �91 for the paz&fie]d ~s r191 r be of the form given in (2.4), ir is very 
convenient to decompose ~b and ~b in terms of Green components 

p 

r 

p 
~(=) = ~ ~ ' (= ) ,  (2.s) 

a=l 

where the Green components satisfy normM anti-commutation relations for equal 
Green indices 

[~"(=),r [r176 [~' ~ ' = = (=),r (=)]+=0 (2.9) 

and �91191 commutation re]�91 for unequal Green indices 

[~,(=), cb(=,)]_ = [~o(~), ~ ( = , ) ] _  = [ y ( = ) ,  ~ ( = , ) ]  = 0. 

In terms of Green components the �91 (2.4) becomes 

a 

The �91 Hami]�91 for the Fokker-Pl�91 equation 

6 [ 6  + 6si  6~(=) c+" ~ 6r 

corresponds to the fol]owing L�91 equations 

6S a,@"(x, t) = - G  + + G+ , l ~ ( x , t ) ,  6~ ' (= , t )  
6S 

a,-~(=,O = c +" 6r t~ + ~'(=' O. 

(2.10) 

(2.11) 

(2.12) 

(2.13a) 

(2.13b) 
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For a straightforward proof of this assertion we refer the reader to our earlier work 
[10]. In (2.13�91 �91 (2.13b) the noise sources T a and ~-~ which actas sources for ~b ~ 
and ~ satisfy the stochastic properties given by 

(~a(x,t)) = (~(x,t)) = o, 
( ~ ~ ( x , t ) ~ ( - ' ,  t ' ) )  = - ( ~ ( ~ ' , t ' ) ~ a ( ~ , t ) )  = 2 8 ( x  - ~ ' ) ~ ( t -  t ' ) ,  

(rla(Z, t)rla(Z ', t ')) = --(~a(Z',  t')lTa(=, t)) = 0, etc. (2.14) 

for equal Green indices, and 

(,7a(z,t)~b(z',t')} = (~b(z', t'(,f (x,t)} = O, 
{Wa(z , t )qb(z ' , t ' ) }  = (rlb(z ', t ' ) r f ( z , t ) }  = 0, etc. (2.15) 

for unequ�91 Green indices. 
In order to obt�91 the stochastic �91 of ~b(x, t )~(y ,  t ') we write this in 

terms of Green components, i. e. 

P 

a,#~=l 

and evMuate this average using the solutions of ,~a and ~ from (2.13a) and (2.13b) 

(#�91 t)~(y, t)},~ = pK -I (1 + O(e-2m')) (2.16) 

whose steady state limit yields the free pars-Fermi ¡ propagator for p > 2 which 
is equa] to p times the well-known propagator for Fermi ¡ 

The �91 for the p = 2 case which has been discussed in [9] may also be 
treated along similar lines. It is better, however, in this case to m�91 a Klein 
transformation which reduces the action to the direct sum of two Fermionic �91 
with dilferent masses m+ �91 m_. The resulting par�91241 propagator is the sum of 
two fermionic propagators corresponding to masses rn+ �91 m_. Here m• = rn+ 
where m and ~ ate coel¡ in the mass matrix which for p : 2 case is given by 
~m[~, ~b]_ + ~[~, ~b]+. Note that in the limit ~ ---, 0 the expression for para¡ 
propagator reduces to twice the fermionic propagator. 

8. Chira l  anoma ly  based  on Langevin  equa t ion  

In the previous Section we pointed out the computational ease with which 
the correlation function for an Euclidean quantum field theory may be calculated 
by ~~-averaging. An even more interesting application of the stochastic differential 
equations (2.2) is the calculation of chiral anomaly in a direct manner which does 
not even require a solution of the equations of the stochastic formalism. In this way 
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we rederive the results of our e�91 wc~k [11] in a much simpler wsy. Using the 
spinor equstions of motion we arrive st the following identity 

" " +  

= ~ , ~  ~,~ (.,,. a,. + ,.,,),~~ + ~ ~'(-. , .~-,.  + ,,,).,~176 = 
(3 (3 

= ~ ~'.y,(.~.g,, - ~ ~ . A .  + , , , ) ,r  + E l  ~ " ( - ' ~ , . ; . -  ~~.A, .  + ,,,)'y~ : 
G (3 

(3 (3 (3 (3 

The spinor equstions of motion used hexe �91 

which follow from (2.13) on setting G = 1 for simplicity's sake. 
Thus we hsve finally on taking the !/~ svexsge 

O~' ((~ ~"/s "/~"~(;) , + 2m(>-~~ ~'a~S@a' = a  --Ot(~~~s~ba'-a 

(3.2s) 

(3.2b) 

- 2pŸ (0)~,) ,  (3.3) 

whexe the last term is obtained through Novikov's theorem. The right-hsnd side 
in (3.3) consists of the sum of two terms: the first term is t-dependent and goes 
to sexo exponentially as t increases (see below) and the second term is cle�91 t- 
independent. In the limit t ~ co only the last term survives and the above identity 
reduces to the anomalous W�91 identity of the equivalent quantum field theory. 
This is our procedure for dexiving chiral anomaly from the equstions of motion. 
In the more general case when G is taken to Be different from unity the foUowing 
identity is still true: 

Q G G 

- 2pTr(5'(0)~/5), 
(3.4) 

whexe F(~b~) is �91 bilinear in ~(z, t) and ~b(z, t) whose forro depends on the choice 
of G. Now 

(F(~, #2)1 = / d~d~F(,p, ~)P(~,  ~b, t), (3.5) 
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where P ( ~ ,  ~b, t) is the Fokker-Planck d i , t r ibu t ion  funct ion which satisfies the Schr6- 
dinger  type equat ion 

atP(~, ~b, t) = - H F p  P(~, ~), t). (3.6) 
T h u s  we have 

~))  = - / d~bd~ F(~b, 42) HFp P(~,  4, t). a,(F(~, (3.7) 

In the steax]y-state ]hnit  t --+ oo the r igh t -h �91  side of  (3.7) �91  zero. Hence 
the  left-hand side of  (3.7) relaxes to zero and the anoma]ous  conservat ion l&w'fol]ows 
directly. The procedure we have outl ined is quite simi1�91 in spirit to  the derivation 
of  chira] � 91  given by  Namiki  et al 112]. In contras t  to  our  � 91  based on 
the  genera] results given by Novikov's  theorem,  the l �91  �91  is based on the 
e]egant I to ca]cu]us. However, the two �91 ate  equiv�91 
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