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In a previous paper [;] we investigated the general theoretical background of electron-
positron pair creation in strong external electric fields. In this paper we apply the general
formalism to calculate the positron spectrum for two types of time dependent separable
potential: Lorentzian time dependence and potential jump.

1. A model with separable potential

A nonlocal po‘te tial of the form
nz

is called an n-term separable potential. These types of potentials areroften employed, e.g.
in scattering theory because their use permits one to replace the integral equation for the
scattering amplitude by a system of algebraic equations. Moreover, from the point of view of
the amplitudes local potentials can be well approximated by sums of separable potentials. In
what follows we do not claim realistic calculations and confine ourselves to a single-term
separable potential

VD) =AM V= NDIB> <8 = (A AN B> <81 = o+ Av (1.1

where VS >is an appropriately chosen normalized state in the Hilbert-space of the single-
particle Dirac — Hamiltonian. In order to incorporate (1.1) into our earlier formulas they
have to be rewritten for nonlocal potentials.
We have

M(x,x") =<5]/3></3|M(t,t')l/8>§/3|5'> s (1.2)
where

<AIMCE,EIA> =AND) D (t-11) +LADSAIK(E, tOBZLNE B K(t,t)1B> =
= Idjx d3x'<ﬂl x>KGxD< x> .

Utilizing these formulas in (4.10) — (4.11) of [}] we obtain the following integral equations
for <Al M(t,t)IB > :

. +00 )
<AMCEEDIB > =D et + IND [ dt< Al Ky (4Bl M, 113>,
-0 (1.3)
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4o

<pl M(t,t1p>= DA (1) St +J' It <BIMCL, tDIA><BlKy (T, EDBSAX() . (1.4)

—-

Let us substitute (1.2) into (4.9)of[1]and use (2.16) and (2.18) of [1] for the eigen-
functions %

Ay - ‘2“’1<Xg+)OUtH5>< B [X(;)out> va<E§+)’ Eé—)> ,
(B+)j$ - i <x§—)in‘[3>< B Xé+)1n>?4’(E§-) CE™) (1.5)
(WI_l)jq, - < x§+)outlx(+)in> _ Z,H,i<xg+)out!(3>< P‘Xr(z,+)in>?4/(Eg+)’ £y
wh,, =< Xg')i” ot > 2w s N e < @%-mut;g/(%-), £y

where the Fourier-transform of< g} M(t,t') |/5> is defined as

490
MEED = o2 [ ot ar eFt<piuce, 1 gttt (1.6)

Performing in (1.3), (1.4) Fourier-iransformation, we obtain

+o0
MeEED = AANE-E) + J ge DM e Fy (EM W (EmEY | 1.7)
~ il ~

R, E'y = AN(E-E") + J dE" M (E,E") P (EM) OAGgr) (1.8)

where —o f” £t

\. ) i
AR®) = o ] ot AN ) e

+oo )

Bo© = [ dt<plin (0Ip>ett (1.9)

since owing to the time-independence of 7\,V5></3I Ka (4,17 = Ky (2-t').
We see, that in the case of time dependent potential models with separable potentials
are not completely solvable — the scalar integral equations (1.7), (1.8) remain to be solved.
The potential V will be assumed spherically symmetric. Then in any partial wave the
Dirac equation can be reduced in a well-known manner f?] to a two-component equation for
the two-component spinor (3), in terms of which the solution of the Dirac equationgphas

the form ()
ulr K
ONMED o (le N, Ly (
Aol = vy 40 , 3=1=1/2 1.10)
J vrr (i nglX)jm
being a Pauli-spinor and
r
(Y'L‘X')Jm = 7\2/,,<{(7\'1/2Ml Jm >Y£N‘x¢"' 5 YZX = le('%‘) .
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In working with separable potentials it became customary to employ momentum represen-
tation in which (1.10) takes the form

U—(E—(YX)

9 (p) = ; M ALY
‘szm V(E) (Y{*’ ‘x)
B
where now Y{/w = Y,L,“'(
The Dirac- equatlon (2.5 —(2.6) of [l]m agiven partial wave and asymptotic indices
supprecs:,sed yields the two component form

_[ d'<plllp>Pe,=0, (1.11)
0
where )
( B
Y e =(ps)
and
<pl Bip> =<pl BHlp> - Tp<lpl VO | p'>
)
e —m p 1 0
<pl Bylp'> = Dppr| O A :
-p —i_fsT —m -1

The state vector I/3> in the separable potential (1.1) in the momentum representation
has the components g(p), h(p), i.e

9(p)
<pl )1 p™> = AW<GIBocple'™> = AD AN IRCCRRLCR N (1.12)
h(p

In order to decide whether a given potential produces supercritical transitions or
not we must first study the adiabatic states"l , i.e. solutions of (1.11) with time in-
dependent coupling )\ , which belongs to the range of 7\(t). The eigenvalue eguation is

fdp‘ <pl Hy 1 p>X(") =& X(p) (1.13)
where
L F Y iEt
<plHyIp'™> = (p-p") +7\<py5></3|p'> ; Tp,t) = X(p) e
- -m

It can be formally written in the form

(Hg-E)| X>= —)\1/3></3|x> , (1.14)
where oo
<AIX>-= J dp (gu + hv) =
0

Let us first investigate the bound state solutions of (1.14) which will be denoted by
l'X,B> or | B>. If N were equal to zero then (1.14) would reduce to the free eigenvalue
equation which does not possess normalizable solutions. So, for a bound state we must have
N # 0. If E is any complex number whose imaginary part does not vanish when |[Re E{ > m,
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then the operator HD—E has a unigue inverse and the eigenvalue equation is

1-AFE) =0 (1.15)
IA+ /\-

where

FE) =<pl E_H Ip> = <gl'c B> -

T <PLA PIA> < IA_)Ip>
J dp A s A /5 (1.16)
0 —Jp2n? £ oyp? + ml
Here + p2+m2+m -p
Aoy = —2—

[ 02 2 :
-2y pT+m -p + ’p2+m2—m

are the usual enmergy-projectors and

g(p) g(p)
<PLA,®Ip> = ©e,ne) A () ACONCHIRC
: RS INE) : h(p)

are nonnegative functions. The vanishing of either of these expressions for finite values of
p would mean the absence of coupling at these momenta, a nonphysical feature, which we
exclude by assuming that<:,3|/\+ (p)b@2> do not vanish at finite values of the argument.

As it can be seen, the energy eigenvalues are real, confined to the interval -m <E<m,
where EkE) is a real decreasing function, so (1.15) possesses at most a single solution.

The critical coupling censtant ?\C is obviously given by the expression

1N = F (m

Hence, F(-m) must be finite the condition of which is easily seen to be

<Al A +()ip>

13
im p

p-»0

n

A further natural requirement is that the bound state enmergy be the lower the larger
is | \] which is fulfilled if <0 and F(-m)<0.

We recall now that the Dirac equation when transformed to a second order form of a
Schroedinger-equation possesses at E=-m a barrier which to some extent may be reflected in
our model by making the coupling to the negative continuum sufficiently weak. The inequality
F(—m)<:0 is in conformity with this requirement.

The existence of the barrier manifests itself in the fact that at the critical charge
a normalizable bound state still exists. The norm of the siate B is

<BlB>- XZNZJ 4 <AA,P1B> <,3]A (p)|/5>1

0 i (E—\/l:>2+m2)2 \];n) _I ,

which is finite at £= -m provided

/!

(1.17)
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lim <ﬂ,|/\+(p)[,5> < w s (1.18)

1im <A - <p>|/g>

p—>0 p

All these requirements are met, for example, by the form factors

1/2 3/2 2
o =t BB . ne =¥ A (1.19)
pe o+ A (p +,u,)
2
_JeraO)R 2
=\ 5 s - <@< o

For |El> m Eq. (1.14) has solutions normalized to delta-function, hence the domains
E<C-m, E> m constitute the continuous spectrum of our Hamiltonian. The continuum eigen-
functions are

Ok in
T oty D) + Noylh,EE B >< A out >
(yin " (1.20)
X0ty = D) + NGy E BRI X 0wt >
where
AP A
E =t k22 s Bylp,2) = L - —
2 22

p2+m z +ypm

1 _b_
oy = Seeeay y| PO ey Seeo) 8™ [ B
O @ = Otk-p) \l i . O @ =dkp : o

Po*m ol

Let us investigate now the bound state energy EB as a function of the coupling
constant )\ . For negative values above )‘c we have EB in the interval (-m,m). When A ap-
proaches A Ey tends to —m. What happens to Ex( ) when A becomes smaller than 7\0?

As it must be clear from our earlier considerations above equat‘ion (1.14) does not
possess normalizable states, whenp < ')\C and the continuum states 7(,‘((_) are themselves
complete. In spite of this there exists a useful extension of the notion of the bound state
energy EB below Z,C by defining it as the solution of the equation

1- AF@® =0 , (1.21)

where F_(E) is the analytic continuation from below of Fe through its cut (—ee, —m) to
the Riemann-sheet R_.

The fact that 'I:"(E) is an analytic function of the complex variable E with cuts (—ee
—m), (m, + eo) follows from the integral representation (1.16). If in the first integral we

replace the integration variable p by x = p2+m2, in the second by x = —\jp~+m~ then we
obtain F -m £ (x) P (%)
(E)—Idx deEH(,
—on
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where

>0

.2 2
p = VX —m

.
fr(x) = —=2_ . <Al As(p))p >
B 2 2 Al

If we deform the integration contour into the curve C_ (see Fig. 1) then for values of

E between C_ and the real axis

A
C_
] {
-m m
Fig. 1
A ( )
F(E)—sz I F e« 2% 1 £ (B)
C m

is the required analytic continuation of F(E) (we assumed that f_(z) is analytic in this
domain). As it can be shown (1.21) does have a complex solution Eg even for A.smaller than
but close to 7\c It seems intuitively clear that E" ]mE corresponds to the penetrability
of the barrier at E= -m in the Dirac eguation dlscussed earller. The smallness of f_(E)
(see (1.18)) which is the consequence of the normalizability of the eigenstates with EB = —m
leads to E§<<<ZIEB] i.e. to small barrier penetrability. We notice that if ?;(E) is the
continuation of F(E) through the cut (—ee , —m) from above (i.e. into R+) then 1/7, = ?;(E)
will be satisfied by E = Eg. . .
The kernel of the integral equation for M contains the fumction Fy (E) defined in (1.9)
through the Feynman propagator K,(t). It is easy to verify that in the partial wave under

consideration

<pl Ky (O] p'>= -1 [em I ok e [ X X 0 4
0
)

o et 1YKZm tx( )(p)x( )" ;] , (1.22)

where either in or out solutions can be substituted for the X-s. For?\,<:}\,C the term, cor-
responding to the bound state, is absent. The bound state is handled in (1.22) on equal
footing with the particle states, so (1.22) corresponds to the unprimed description. In the
primed description we move the bound state term to the antiparticle states. Substituting

“Eatep ey <B| p'>)- 8-t

+ e

© —f

this equation into (1.9) we obtain

~ < Ix(+) <X.(+)l > < IX( )><X( Ip> N?
B () = J dp A > ﬁ /i l/j

+ -l (1.23)

0 E - p2+m2+1€ E + Vp +m ~1€ E—-%-ﬂﬁj

EQ(E) differs from E;(E) only in the sign of i€ in the pole term. When A= 0 the last term
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is absent and we observe that the eigenvalue eguation (1.15) can be written as
1- NFy® =0 . (1.24)
Green functions, corresponding to different constant values N, say 7\1 and 7&2, are

connected via integral eguations of the type (4.4) — (4.5) of [l] from which the connection
between £, (E) and ?‘7« (E) is
2

A
1 A, ©®
1
A, B)= = . (1.25)
2 L= (A -Ap By (B -k
The choice of -iE is dictated by the pole term in (1.23). FOl??\.1 =0 and’x.Z A this gives
R ® o® (1.26)
g —— .26
r 1-NFy(e) - i&
As a consequence, for values E near EB
~
— Fo(ER)
B e~ N thei - . a.2m
dF . (E)
Pl (E-£5) + 18
dE -
From this the constant in the pole term is
~
2. ol . 1
o () 2 [ (E)
A2 g
dE dE
Eg Eg

In the primed description -'1& is replaced by + iE—.

In the subcritical case the singularity structure of T:;L(E) is clearly seen from (1.23)
but in the supercritical regime the pole term is absent and the influence of the pole on the
R_ Riemann-sheet is hidden in the integral over the lower cut (owing to the particular iE
prescription, the pole on R# does not influence appreciably the behaviour oi T’%(E)). How-

ever, the unphysical pole on R_ manifests itself explicitly in the form of Y (E) given by
(1.26). Indeed, for real values of E below -m 'I:"O(E) = ?_(E) and we have

¢ 0 F®
fE) = ———————
A 1 - AF ()
So far as the imaginary part EE of the solution (1.21) is smali, we have for real E-s
near EB-
F_ (g
FA_(E) = Y H
dF_(E)
(E—Ep)
I B
B

which exhibits the pole structure due ta the unphysical bound state.
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2. Model calculation for Lorentzian time-dependence
There is an essentially unique choice of the function A)\.(t) for which the integral
equation (1.7), (1.8) can be transformed into ordinary differential equations. It is the

Lorentzian form
TZ
Ax @ -=-4x
m .2 2
t°+ T

The Fourier transform of this expression
I ~
AXE) - %A?\m T e_T'E]

satisfies the Green function equation

iz -2 A - ~A, T 3

dt
2

2
Applying the operator =— — 12 10 1.7, s = 72 1o (1.8) we obtain the differential
Cl3 D¢

equations

2 2 v ~o 2 .
[’5}7_ 12 a-AN_E (E))] MEED = AN 12 DeeEn),

[%57' 2 a-AN, f (E'))} Fie,E') = AN, T D€

The necessary boundary conditions can be read off from (4.11)cf [1]: ME,E’) must vanish
as either of its arguments becomes large in magnitude. This condition conforms with the
~
physical meaning of M(E,E') expressed in (1.5).
Let us put V=M + Al’m Then from (1.25) we can write
~ NG
1O\ Fo@®) - —=— . 2.1
m » ~
Fy (B)

Therefore

2 E @y .
R iy Wil M(EE) = —AX 29 &€

D¢’ B ©®
2 e EDY .

’@05_7 - Tz—,;—(?')— M (E,E") = —A?\n T2 6(E—E')
L} 0 L} [l

These equations are sztisfied by the Ansatz

MCEED) =8 (BED M, BV M, ED + 08 E-D) M EVM, © (2.2)
provided M% (EY (3 = 1,2) obey the equations
2 £ ()
12X M. ® =0 2.3)
dE o ©f
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and the boundary conditions

MNGo) =M, Cer =0,

M = My - MMy = AR, T

We assume now that in (2.3) the ratio F): (E)/F:, (E) can be approximated by the ratio

(2.4)

of the pole contributions (2.27) with the relation (2.1) preserved. Due to this last
relation the pole approximation incorporates the effect on ﬁ of the moving pole as well as
the ‘contributions from the virtual processes in which one of the members of the virtual pair
is in state B {in case of A < HC this means a superposition of those continuum states which
are strongly disturbed).

We write therefore

v ~ Zy R(ED , )
RE—> BE - ——k R(EG) = 1, Zn =N
E-Ep + 1E
(2.5)
w Zy R(E)
BE)—» BPE - ——m—
EEp +1&
in which R(E) must be chosen so as to satisfy the eguation
)
P » ,
1= AA BPE) = e
AT e

when 1V < |7\C[ then Z, , E, are real, whenlv | =] 7\,0' both are complex:
Ep = Ep+1E) ; Ey<-m, Ep>0.

In what follows the primed description will be primarily employed in which the '18
term in (2.5) is of negative sign. It will be convenient to treat E as a complex variable.
The unprimed (primed) description is obtained by approaching the real axis from above (below).
We have, therefore, in pole approximation

2 7, £—€
i e A IV NG (2.6)
dE 7y E- iy J

The solution, which satisfies the desired boundary conditions is

MEED = — 20 eia _[(@) AX_ 12 (k£ eV (E-Ep)

M2-a)
% (E'-Ep) GEN [’9 (E£") U(a, 2,200 (E-Ep))
(™2 Poza) M(a,2,20 (E'€g)) + U (8,2,20 (E'—£p))) + (2.7)

+8 (ELE) U(a,Z,ZDL.(E'—EB))

.((_eiTL‘a [(2-a) M(a,2,20 (E-E)) + U(a,2,2°b(E—EB)))]
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M and U are the two independent confluent hypergeometric functions [3]-a and 04 are

a=1+F(Eg—Ey) ,

N N i3
=T |- = = 0 4 i =] o] &P
Zy Zy

; U</$ 2772

The function U(a,b,z) is a many valued function with a cut along the negative real
axis. In the primed description the semiaxis arg(/‘.’, — W) which correspands to negative real
values of E must be spproached from below, so the cut need not be crossed.

Now we are in a position to verify whether the condition (5.2) of[l]is satisfied or not.
The last line of (1.5) gives

g = 1+ N2 2B (e,

BB ~ B)

From this we obtain

(w.—l)BB _ 8—21’6 ia

and €.
-1 Al-Im a
‘(“‘ >Bi31 .

Using (2.6), a can be expressed as

=lag N ‘{IAkml JEB—E\,

It is always true that £y < E If E\, >-m, no supercritical transition occurs,

ImE, =Ina=0and | (W} l)aa‘ 21 . If, on the other hand, Ey<-m Ep> 0 and
obviously Ima<<0 . In partlcular if E\)/(E —Ep) <<1 then Ima = — Ig,’ lE———Enl",_ E) = — —,‘% T
and I(W"l) | 2 e W T 5 gas Toree. B

The crlterlon (5.2) of {1] is, therefore, satisfied. The quantity T can be inter-
preted as the decay constant of the vacuum. When the unphysical pole Ey is close to the
real axis ’U'L is proportional to Im £ as expected. However, the proportionality factor
is a nontrivial expression which reflects the effect of the moving pole.

If the electron of the pair crea'ted is bound then the spectrum of the accompanying
positron is determined by the function M (EB, —k ) It is difficult to calculate the large
T 1limit of this quantity — and of the amplitudes M (E,E') in general — with the aid of (2.7)
since this would involve a simultanecus limit in both the argument and the parameter of the
functions M and U. However, since T-2 plays a role similar to the role of 412 in a Schrodinger
eguation a quasiclassical treatment is available.

Let us introduce a new variable x = EB—E and a new function

>
_2W i N
y(x) = ?W_l M (EB’E) ’

which satisfies the equation

’722 y'(x) — c—x~;9 =0 , (2.8)
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with the boundary conditions

y(-o0) =0 , y(0) =1 ,
where
b=E,—E; =b" +1ib" ; c =

Since the imaginary part of Ey 1is small we have b"<<<| b'}] and in the domain
| b'}] >> x>>0,x can be neglected as compared to b. We have, therefore,

xy"+b—(2:y=0
K4

The general solution of this equation can be written as a superposition of Hankel-functions:

y() = ¥k [A WD 2 ;,;LE Vo + 812 2 % \/I)] 2.9

the coefficients of which are subject to the constraint

y(0) = (B-A) =1 . (2.10)

i
ftybe
In the domain |x|>>"l we look for the solution of (2.8) in the form

L1
y=e"ls )
2
+'rlSl+l|l 52+

Applying the usual procedure of the quasiclassical calculations we obtain to terms linear
in T°

1/4
y(x) ruKg exp {}1— V& ChGrbint Vb ) (25) - 21D

The coefficient K can be determined from matching the solutions (2.9) and (2.11) in
the domain of overlap | b'|>> x >>Nl where they take the form

4 12 Yec Voc
y(x) ~ ﬁf;‘ﬁf Ae'l— c'r+3eln e 12 ﬁg Vx

ane L (D) VE - & e
y(x) no K(-b)[ﬁ ”] (174 12 ,'-19 Vx ’

respectively. These expressions together with (2.10) lead to

T

x=e_i7v%'i F(-m[ ﬁ_(_b)r]

The asymptotic formula (2.11) with this value of K determines the large T limit of q'(EB"kO)‘
The positron spectrum was computed numerically and as it can be seen from Fig. 2 and
Fig. 3. — which are typical spectra for sub- and supercritical processes — there is not any
characteristic line structure which was expected on the basis of our intuitive notion. The
reason for this discrepancy needs further clarification.
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0 1 I | o
10 11 1.2 1.3 1.4

E,mc?

Fig. 2. The subcritical positron spectrum for Lorenmtzian time dependence,
Eg = -0.9, Ey =-0.987, T =120

=
]
I

0 ] | ! [
10 11 1.2 13 14
E,mc?

Fig. 3. The supercritical positron spectrum for Lorentzian time dependence,
EB =-0.9, Ep =-1.05+0.0018i, T =20

3, Potential jump in pole approximation
A potential jump of duration T is described by the coupling function

AX, it 2< t<T/2

AN(1) =

0 otherwise

Then, according te (1.2),</3 M(t,t')b&) = 0 unless both t and t' are within the interval

(-1/2,7/2). Therefore, equations (1.3}, (1.4} in the primed description take on the form
+1/2

<Blwct, 1) |p> = AN, D(e-t) + AA | stn<Al ki B> AN A >, G
-T1/2
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+T/2
<pIMt,t)p>= AN Dty + AN [ atr<p] MGt Asql Ky (tDA>. (5.2
-1/2 /2, 11<T/2

The kernel K' given in (1.28) is a highly complicated function which makes the
analytic solution of (3.2) hopeless, but the pole approximation applied to the Lorentzian
time dependence in the previous section leads again to a soluble problem.

At first sight one might suppose that the pole approximation consists in neglecting
all contributions to <A Ks (DIA> except for the pole term iNZQ(—t)e'EBt.
approximation, however, eguations (3.1), (3.2) would certainly be unable to account for the

In such an

complexness of Ey , the unphysical binding energy at ¥ = s +A>\m>7\,c since the imaginary
part of Ey originates from the coupling to the continuum whose contribution to <931Ki(t)03>
has been completely neglected. In the pole approximation suggested by the example of the
preceding section we actually take into account, beside the pole term, an additional contri-
bution also, which is just sufficient to locate Ey at the right position. From (1.9) and
(2.1) we have

+ as

A<ple WIB>- 55 _Lus eEAN_ By ) -
CSw-i J g e-1Et R (B
v B ®

In pole approximation, according to (2.5)

Z +o0 . E-—E
: P_Sy_x 1 iEt v
AN, <Blk; WP =0 - 1% _L dE e TTRoE
z, z g
= (-7 6(t)—1%(EB—EV )8 () etfpt |

which, using (2.6) and the eguality Zy= N2, can be cast into the form

Zy -1,
m v

<Bl K WIS P - Sty + iN? @ (~t) e lEgt

E 1E,t

Substituting this kernel into (3.1), (3.2) and multiplying by e'Egt and e7B , we obtain
Ir aEgt . 1Bt ety
7, €8 <BIM DA = AQ e BT O(t-t') +
T/2
3 2 n i " 1] " 1
+ A N f at" Bt Bl Mt tg> (3.3)
ot

z N -
%qjl wtt)]ps et = AR, e 18 J(i—t) «
y G.9)

+ AX, N 7/ AR KR IDI] N L —T/2< 1,11 < T/2
1/2
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In the first equationin which t is a parameter we introduce the notation

172
) = [ ot efBt<pl e (g
1
Since
ettt M, 1) A> = — £ (D) (3.5)

equation (3.3) takes on the form

z .
T:‘— £+ A N £ (D) = - AX e'fet Dt

The solution of this differential equation, subject to the condition £(7/2) = 0 is easily
found to be

Z ; . .
£(4) = 'z';:— AN, g DA 2yt AN 2yt g (o
Using (3.5), we obtain the solution to (3.3):

Zy Gl e A 7, )
< Al M (1,t)|p> e A, St + 1 — e R Y B(t'—t)

which satisfies (3.4), too.
Now, from (1.6) we have

/2
v 80, i(E£')t
M (E,E') = et dt e’ +
WL i)
2 +1/2
(ZvON ) . R ,
+ i _.;’%:— dtdt' 8 (t'-t) el(E'—EB-AlmZV )t el(E —EB—A)mZV . (3.6)

-1/2

In order to verify criterion (5.2) of [l] we calculate ' (EB, EB) with the result

~ ei(Ev —£B)T
M (Eg,Ep) = =
2Wi N
from which we obtain
-1 _ i(Ey -EDT
(w4 )BB = e B

2
-1 L 2ImEyT
|("’4 )BBl = Ve T

which is again the expected result. A comparison with the Lorentzian time dependence shows
that though the criterion (5.2) of [1] is fulfilled in both cases but the decay constants of
the vacuum 7YL and J; are different.

Performing in (3.6) the integrations, we obtain
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M (EE) = AN Zy - FEEDT (AR Zv et T

€8 =7 °© TFy ey *
Lt Bt aer _E - Fp eiE'T]}

13 A | e e

~
According to (1.5) the positron spectrum is essentially given by M'(EB,E) (the other terms

are only kinematic factors):
1 By £y A(Ey —£)T [i—(Ev BT~ XEv-6)T
ﬁ'(EB,E) = . e2 8 92 —e z
2%-iN Ey —€

If we consider subcritical processes then £y is real and

_ (T(E‘, —E))
sSin —_—
R E,e)l 2= —2— By —£0)2 2
B poa B P—

as E—>ee this function tends to zero as E'2 for fixed 7. As T-»ee it is a more and more
rapidly oscillating function of E:

IM'(E ,E)l 2 e 1 (E, — E )2 I 6(E -£)
B 5 SV B’ 72 v
R ) N

The positron spectrum has a threshold at € = -m, so in the physically relevant region EX -m,
thus E never coincides with Ey
In supercritical processes £y = E} + iE}, is complex and
2
- (Ey —E5)° + EY )
| (Eg,E)) 27 = L 8 Y &2 T (ch 265 T = cos 2(E) —E)T)

2w Ay - v By

In the E—>»limit it goes to zero as E—2 again, and as T—»e it has a Lorentzian form

' 2 A\ 2
(E"_EB) + E)’

[ #(E,E)] 2 > 1
M'(Eg, N 7 2
T—>s0 27N (E";\ —-£)° + EY

As it can be seen from (3.7) and (3.8) characteristic difference shows up betwesen sub-
critical (Fig. 4) and supercritical (Fig. 5,6) spectra which is in agreement with our
qualitative picture.
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