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In a previous paper [li we investlgated the general theoretical background of electron- 
positron pair creation in strong externa1 electrlc flelds. In this paper we apply the general 
formalism to calculate the positron spectrum for two types oZ time dependent separable 
potential: Lorentzian time dependence and potential jump. 

i. A model with separable potential 

A nonlocal potentlal of the form 

n 

v : ~ X~ l/3~ ><~~1 

is called an n-term separable potential. These types of potentials are, often employed, e.g. 

in scattering theory because thelr use permits one to replace the integral equation for the 

scattering amplltude by a system of algebraic equations. Moreover, from the point of vlew of 

the amplitudes local potentials can be well approximated by sums of separable potentials. In 

what follows we do not clalm reelistic calculations and confine ourselves to a sin81e-term 

separable potential 

v(t )  = ~ ( t )  v : ~(t)~'4~</31 = ( ]&+ A ? t ( t ) ) ~ >  <q = )~v + A v  , (1.1) 

where[/~ > i s  an appropriately chosen normalized state in the Htlbert-space 0s the single- 
part&cle D t rac -  Hamiltonian. In order to tncorporate (1.1) into our ear l ie r  Zormulas they 
have to be rewrit ten for  nonlocal potent ials.  

We have 
M(x,x') : < _x Iq ></31M(t, t '  ) Iq ~_f~ I x '  > , (1.2) 

where 

<f i l  M(t, t ' ) l /~>=~~, ' /~(t)  ~ ( t - t ' )  +&-a',]~(t)<q K ( t , t ' ) l ~ > =  

: ~d3x d3• x > K ( x , x ' ) < x ' l / ~ >  . 

• formuIas in ( 4 . 1 0 ) -  (4.11) of D l  we obtain the Ut i l i z tng  fol lowing integra] equations 

for<q M( t , t ' ) l ~  > : 

+oo 
</~l  M(t,t')J/~ > :L~~,./~(t) G ( t - t ' )  + ,t. '~.(t) ]" dt '~/~[  K x ( t , t " ) ~ : ~ l  M ( t " , t ' ) i ~ > ,  

- m  (1.3) 
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+ ~  

</31M(t,t')l/~>= A~'( t )  ~ ) ( t - t ' )  +f dt"~---~lM(t,t")lf~></~lK~ ( t " , t ' ) l /~>~~Y~(t  ') (1.4) 

Let us s u 0 s t i t o t e  0 . ~ )  in to  (~ .~ )o~ [Q ~o d  use <~.1~~ aod ( ~ . 1 ~ ) o ~  [13 ~o~ tho e i o e n -  

functions ~: 

Aj~ : 2~'i<X j(+)~ I ~> < ? l~[)o~t > ~" (E~+), E(),e ~ 

+ (-)in + ) i~~  (E~-) E(+) (1.5) (B>3�91 IF > < ~ ( x ›  , ) 
+- i  (+)out (+)in (W1)j�91 =< ~~ I r  > --2"17"&<X~+)~ +)' E(-)) ' 

(w~l)js = <  ~ j ( - ) in  I%&(-)out > + 2 1 F i ~ X ~ - ) i n l ~ ~ <  -)out ,v  (_) 

where the Fourier-transform o f<# t  M ( t , t ' ) l A >  is  defined as 
+ ~  

~(E,E') = @ I di di' eiEt<#l *<t,t') I#>e iE't' 
- o .  

Performing in (1.3), (1.4) Fourier-transformation, we obtain 
+ ~  

�9 = ~~(E-E ' )  + dE"A~(E-E '') F~ (E") �9 (E",E') , 

+ ~  

�9 =A~L(E-E') + I dE" �9 (E,E") F'~~ (E") ~~ (E" -E ' )  , 

where -~, + "  
A~(E)  = ~ f dt A X  (t)e q , 

+ ~  

~'~ (E) = I d t < # l  K x ( t ) l ~ > e  iEt , 

si~ce owing to the time-indepe~dence of X~><~l ,K~. ( t , t ' )  : K~ ( t - t ' )  

(1.6) 

(1.7) 

(i.8) 

(1.9) 

We see, that in the case of time dependent potent ia l  models with sepacable potent ia ls 
ate not completely solvable -- the scalar in tegral  equations (1.7), (1.81 remain to be solved. 

The potent ial  V w i l l  be assumed spherical ly symmetric. Then in any patria1 wave the 
Dirac equation can be reduced in a well-known manner [2]  to a two-component equation for  

U the two-component spinor (v), in terms of which the sclut ion of the Dirac equat ion~has 

the form 

(u(r) (i~ Yg%)Jm ) ~ v ( r )  
~ ~fJ)jPm(r) = (i~tl , 3 = ~tl/2 (i.i0) 

Y[tllr 

being a Pauli-spinor and 

Y~~ = Y~x �9 
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In working with separable potentials ir became customary to employ momentum represen- 

tation in whxch (1.10) takes the form 

( Up_~_ (Y6)~)jm ) ; 

(,~j~m(p) : ~ (Y~+I%)J m J = {-+1/2 , 

Y,.(~) where now YI~ = 

The Dirac-equation (2.5- (2.6) of [1]inagiven patria1 wave and asymptotic lndices 

suppressed yields the two component form 

T dP'< pi ~ I P ' >  ~ (P' , t )  = 0 , 
0 

where 
u(p) 

q)(P) = ( v ( p ) )  
and 

<pl B I p ' >  = < p i  B o I P ' >  - ~ o < P l  

(i.ii) 

v(t )  i p , >  , 

0 

1 -p -i ~ - m 

The state rector I/5>xn the separable potential (1.1) in the momentum representation 

has the components g(p), h(p), X.e. 

~%(t)[g(P)l <PI V(t) l p'> = A(t)<plq = [h(p)] (g(P')' h(p')) (1.12) 

In order to decide whether a given potentxal produces supercritical transitions of 

not we must first study the adiabatic states ~ , i.e. solutions of (l.ll) with time in- 

dependent coupling "~, which belongs to the range of ~(t). The eigenvalue equation is 

rdp '  < p i  H~ I p ' > ~ , ( p ' )  = E ~(p)  , 
where 

< P I  H~ I p ' >  = (P-P') + 'h~<P~><~IP '> ; ~ (p, t )  = $~(p) e iEt 
-p -m 

I r  can be formally wr i t ten in the form 

(1.13) 

(Ho-E)1%>= - ' N I / 5 > < ~ I X >  , (1.14) 
where 

< / ~ 1 ~ >  = J dp (gu + hv) = N 
0 

Let us f i r s t  inveetigate the bound state solutions of (1.14) which w i l l  be denoted by 

tO(B> of I B>. I f  N were equal to zero then (1.14) would reduce to the free eigenvalue 
equation which does not possess normalizable solutions. So, for  a bound state we must have 
N i O. I r  E i s  any complex number whose imaginary part does not vanish when ~Re E~~ m, 
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then the operator Ho-E has a unique inverse and the eigenvalue equation is 

where 
- k ~ ( E )  : o , 

lA > ,A+ +A-  ~(E) :</~l ~ : <#E_--=~--0#> - 

(1.15) 

Here 

[<~ A+(p)I/~> <#lA_(p)p>] 
= ~0 dp i~p2+m------ ~ + E + p2x~~+ m2J 

-+ ~ P 2+m2+m -p ' (  ) 
are the usual energy-projectors and 

~~. (p) l  g(p)/ A2 I g(p)l  < ~ l - / ~ + ( P ) I ~ >  = (g(p) ,h (p) )  + = (g(p) ,h (p) )  , ~+ (p )  
- ~h (p )  l - ~ h ( p ) /  

Q.t6) 

are nonnegative functions. The vanishing of e i ther  of these expresslons for  f t n i t e  values o[ 

p would mean the absence of coupling at these momenta, a nonphysical feature, which we 

exclude by assuming t h a t < ~ l  A +  ( p ) l ~ >  do not vanish a l  f i n i t e  values of the argument. 

As i r  can be seen, the energy eigenvalues ate real ,  confined to the ln te rva l  -m ~E<m, 
where ~(E) is a real decreasing funct ion, so ( t . tS )  possesses al  most a single solut ion.  

The c r i t i c a l  coupling constant ~'c i s  obvzously given by the expression 

1/kc : ~' (-m) 

Hence, ~(-m) must be f i n i t e  the conditton of which zs easi ly seen to be 

<~1 ]~  +(P)I/~> 
l im = 0 

P p--~o 

A further natural requirement is that the bound state energy be the lower the larger 

is IMI which is fulfllled if ~.~0 and ~(-m)~O. 

We recall now that the Dlrac equation when transformed to a second order form of a 

Schroedinger-equatlon possesses al E=-m a barrier which to some extent may be reflected in 

our model by making the coupling to the negative continuum su f f i c i en t l y  weak. The inequal l ty  

~(-m)<O is in conformity wzth th is  requirement. 
The existence of the bar r ie r  manifests i t s e l f  in the fact  that at the c r i t i c a l  charge 

a normalizable bound state s t i l l  ex ls ts .  The norm of the state B i s  

< ~ l  A+(P)[q > + </~l ~ _ (p)Im>] ' < B I  B > =  ~2N2 j 7 dp , (1.17) 
0 (E-- ~p2+m2) 2 (E+ p2~'~+m2) 2 ] 

which is  f i n i t e  at E= -m provided 
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<,�91 _ < ~ , l im 
p--)O ' 

1im </~1 "~" - (P )k  > =0 p--~O p3 

Al1 these requirements ate met, for example, by the form factors 

�9 3 / 2  2 

C = ~(8+0~~)'~ ; _ 2• < ~ � 9 1  0 

(1.18) 

(1.19) 

For I E l >  m Eq. (1.1~) has solut lons normallzed to de l ta - func t ion ,  hence the domalns 

E < - m ,  E > m  const l tu te  the contlnuous spectrum of our Hamlltonlan. The continuum elgen- 

funct lons ate 

( ,in 
)6k+)oUt(p ) = (~k(+)(p) 

x~-)loª :4)C-)(~) 
where 

+ ~Go(P,E~_IE )lJ><jPr > 

i n  

+ ~-Go(P'E~ iE')I/~>~YM%'k-)~ , - , -  K" > J 

( l . 2 0 )  

k•+m 2 Y~+(P) A (P) 
E = -+ , Go(P,Z) = + - , 

pV~+m 2 + ~/p2+m2 Z - -  Z 

2p 0 _ to 1 2 P O  
PO +m 1 

Let us lnvestlgate now the bound state energy E B asa function of the coupling 

constant ~. For negative values above ~c we have E B in the interval (-m,m). When ~ ap- 

proaches ~c EB tends %o -~. What happens to EB(~) when ~ becomes smaller than ~c? 

As i r  must be clear from our earlier considerations above equat~on (1.14) does not 

possess normalizable states, when~<~c and the continuum states %k- are themselves 

complete. In spite of this there exists a useful extension of the notion of the bound state 

energy E B below ~'c by deflnlng i r  as the solution of the equation 

I -  X~__(E) : 0 , (1.21) 

where ~_(E) is  the ana ly t i c  cont inuat lon from below of ~(E) through i t s  cut ( - -~ - ,  4 )  to  

the Riemann-sheet R . 

The fact  that  F(E) i s a n  ana ly t ic  funct lon of the complex var iab le  E wi th cuts ( - - ~  , 

-m),  (m, + ~ )  fo l lows from the in teg ra l  representat ion (1.16).  I r  in  the f i r s t  i n teg ra l  we 

replace the in teg ra t ion  var lab le  p by x = p ~ ,  in  the second by x = - ~ t h e n  we 

obta in -m f_(x)  + ~  f+(x)  

~(E) = I dx E _ x  + ~ d x ~ - ; ~  , 
m 
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where 
~+(x) : • . < ~ I A + ( p ) I ~ >  > 0 

I f  we deform the in teg ra t i on  contour in to  the curve C (see Fig. 1) then fo r  values of 

E between C and the rea l  axis 

- m  

A 

| 

m 

Fig. 1 

f - ( z )  ~ - -  f+(x)  
~_(E) = dz -~:--~ + dx -C-~- ~ = ~ (E) + 2~ i f_(E) 

C m 

i s  the required ana ly t i c  cont inuat ion of F(E) (we assumed that f (z) is  analy•  in  th is  

domain). As i r  can be shown (1.21) does have a complex so lu t ion E B even fo r  ~sma l l e r  than 

but close to ~~c" I t  seems i n t u i t i v e l y  c lear that  E i = ~E  B corresponds to the p e n e t r a b i l i t y  

of the bar r ie r  at E ~  -m in  the Dirac equation discussed ea r l i e r .  The smallness os s 

(see (1.18)) which is  the consequence of the no rma l i zab i l i t y  of the eigenstates wi th E B =-m 

leads to E ~ y  EBI i . e .  to small ba r r ie r  p e n e t r a b i l i t y .  We not ice that is ~+(E) is  the 

cont inuat ion of ~(E) through the cut ( - - ~  , --m) s above ( i . e .  in to  R+) then 1 / ~  = E (E )  

w i l l  be sa t i s f i ed  by E = E~. 

The kernel of the i n teg ra l  equation for  M contains the funct ion ~ ( E )  defined in (1.9) 

through the Feynman propagator K~(t).  I t  is  easy to ve r i f y  that  in  the p a r t i a l  wave under 
considerat ion 

I . 2 2  + p' > = - i  g ( t )  ( dk e -z k2~+m2t ~,(+)(p) ~~+)  (o ' )  + < P I  K, ( t ) ,  F K K 

+ e - i E B t < p l B  ) <B I p , > ) _ g ( _ t ~ T d  k ~  e Z ~ t % ~ - ) ( p ) ~ : - ) + ( p , ]  , (1.22) 

0 
where e i the r  in  or out so lu t ions can be subst i tu ted for  the ~ - e .  For~~1%c the term, cor- 

responding to the bound s ta te ,  i s  absent. The bound s ta te is handled in (1.22) on equal 

s with the pa r t i c l e  s tates,  so (1.22) corresponds to the unprimed descr ip t ion.  In the 

primed descr ip t ion we move the bound state term to the a n t i p a r t i c l e  states. Subst i tu t ing 

th is  equation in to  (1.9) we obtain 

(E) ~ d p  + - - -  . (1.23) 

0 p ~ : ~ +  i ~  E + ~p2 + m 2 _  i ~  E - E  B + i ~  

~ ( E )  d i f f e r s  s & (E )  only in  the sign of i s  in  the pole term. When ~ =  0 the las t  term 
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is  absen• and we observe that  the eigenvalue equatton (1.15) can be wr l t ten  as 

1 -  ?~~0(E) : 0 (1.24) 

Green Iunct ions,  corresponding to d l f f e ren t  constant values ~ ,  soy "A, 1 and 4 2 ,  ate 

connected vio i n teg ra l  equations of the type (4.4) -- (4.5) of [1 ]  from which the connection 

(E) and ~~ (E) zs between ~1 

2 ~&l (E) 

~2 (E) : (1.25) 
i - ( &2 -%i ) Fxl (E) - lE 

Ths choi~e o z - i E  is dictated by th~ pole ~erm in (1.23). F o ~ ~  : 0 a o e ~  = ~  this m~es 

1 ~ t E  (1.26) 
-% O(E) - 

Asa  consequence, for  values E near E B 

- -  F0(EB) 
~ ( E )  

%/dF0(E)I 

From th is  the constant in the pole term is 

N 2 : _ Fo(EB) = _ 1 

\T- I EB ~ ~E JE B 

In the ps descrip%ion -i~-. is replaced by + lE-. 

(E---E B) + iE 

(1.27) 

In the subc r i t i ca l  case the s ingu la r i t y  s t ructure o I i ( E )  ls  c lea r l y  seen from (1.23) 

bu• in  the superc r i t i ca l  regime the pole term is  absent and the inf luence o$ the pole on the 

R Riemann-sheet is  hidden in the in tegra l  over the lower cut (owing to the pa r t i cu la r  i ~  

prescr ip t ion ,  the poIe en R+ does not inf luence appreciab]y the behaviour of  F~(E)). How- 

evec, the unphysical pole on R mantlests i t s e l f  e x p l i c i t l y  in  the s of  F;t (E) given by 

(1.26).  Indeed~ for  rea l  values o l  E below -m Fo(E) = ~_(E) and we have 

F (E) 
F~(E) : 

So la r  as the imaginary par t  E~ ol  the so lu t ion  (1.21) is  smali, we have fo r  rea l  E-s 

near E B, 

- ~  (E B) 
F x (E)  : / d ~ _ ( E ) '  

{ ] ~  dE /EB (E- -  E B) 

which exh ib i ts  the pole s t ructure due to the unphysical bound store.  
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2. Model calculatton for Lorentzian time-depe~ence 
There is an essentially unique choice of the func t ion~~( t )  for which the integral 

equation (1.7), (1.8) can be transformed into ordinacy dtffes equations. I r  is the 
Lorentzian form 

~ ~ ( t ) : � 9 1  T2 
m 12 + T 2 

The Fourier transform of this expression 

~ ~ ( E )  = { ~ ~ m  T e -TIEI 

satisf ies the Green function equa• 

I02 - T2)~~(E) : - ~ , m  T2 ~(E) . 
dE2 " ~ 2  

- T 2 (1.7),~~-L,_ T2 to (1.8) we obtain Applying the operator~.~. 2 to the dt f ferent la l  
v t  

equations 

~ 2  T2 ( 1 - ~ X m  ~ (E) M(E,E') - & X  m 

~ [ ~ - T  2 ( l - A ~ m  ~k (E'))] ~ ( E , E ' ) : - A ~ m  1-2 ~(E-E') 

The necessary boundary conditions can be read off from (4.11)cE [1]: ~E,E') must vanish 

as eithec of its arguments becomes large in magnitude. Thls conditton conforms wtth the 

phystcal mean2nª of M(E,E') expressed in (1.5). 

Let us put ~= ~~, + A]~, m. Then from (1.25) we can write 

~ ( E )  
1 - A ~ t  m F% CE) : ~ (2.11 

F e (E) 

Therefore 

( ~2 _ T2 k (E) 1 FQ (E) ~ - - - ]  ~ (E,E') :-~~L m T 2 ~ (E-E') 

( rO2 T 2 ~~- (E') 1 
)J �9 (E,E') = - A ~ .  m "1-2 ~(E-E') 

These equations ate s;.tisfied by the Ansatz 

~(E,E') = 8 (E-E'),.~ 1 (E),.~ 2 (E') + 8 (E'-E) ~ (E').,~. 2 (E) (2.2) 

provided J~~ (E) (j = 1,2) obey the equations 

(2.3) 
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and the boundary condit ions 

J ~ ~ ( + ~ )  : ~ 2  (- ' * ' )  : o 
(2.4) 

W12 : ~ ~ 2 - -  ~ i lJ~t2 : - a ~  m T2 

We assume now that in  (2.3) the ra t i o  (E)/F~ (E) can be approximated by the tar ta  

of the pole contributzons (2.27) with the re la t ion  (2.1) preserved. Due to th is  las t  

re la t ion  the pole approximatlon incorporates the ef fect  on ~ of the moving po leas  wel l  as 
the-contr ibut ions Irom the v i r tua l  processes in which one of the members of the v i r t ua l  pair  

is in state 8 ( in  case o f ~ <  ~c this means a superposit ion of those continuum states which 

ate strongly disturbed).  
We wri te therefore 

(E)--~ ~#(E) : Z~ R(E) 
E-E B + i ~  ; R(E B) : i ,  

,~ ~p Z~ R(E) 
F9 (E)--> F~ (E) 

E-E~ + i ~  ' 

in which R(E) must be chosen so as to sat is fy  the equation 

~f(E) 
i -- A~m ~B'P(E) = ~P(E) 

When I• I <  I Ac I then Z~ , E v ate real ,  whenh2 I >1  ~,c I 

Z>. = N 2 

(2.5) 

E e~= E~ + &E~ ; E~ < -m , 

both are complex: 

E ~ > O  . 

In what fol lows the primed descr ipt ion w i l l  be pr imar i ly  employed in which the i ~  

term in (2.5) is  of negative sign. I% w i l l  be convenient to t reat  E asa  eomplex var iable.  

The unprimed (primed) descr ipt ion is obtained by approaching the real  axis from above (below). 

We have, therefore, in pole approximation 

( d2 -T2-Z~ E - E ~  ) J ~ j  (E) = 0 (2.6) 

z~ E E 8 

The solut ion, which sa t i s f ies  the desired boundary condit ions is 

~(E,E') = - 2�91 e - i i~a ~'(a) A~Lm T2 (E_s e-~-(E-EB ) 
D ' ( 2 - a )  

�9 e-~(E'-EB ) (E'-E B) . ~ (E-E') U(a,2,2a6(E-EB)) 

(e i t (a  r (2-a)  M(a,2,2~ (E'-EB)) + U (a ,2 ,2~(E ' -EB)) )  + (2.7) 

+ g (ELE) U(a,2,2e�91 

�9 ((-e i l~a r(2-a) M(a,2,2o�91 (E-Ea)) + U(a,2,2e�91 
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M and U are the two independent confluent hypergeometric funct~ons [3].a and ~ a r e  

e& 
a = 1 + ~  (E B -  E V ) , 

ZI_~_ TN = ~ '  i ~ "  O~ ~�91 T _ _  : V ~ V  + :1 ~�91 e i~ ; ) ~ / 2  

The Zunctlon U(a,b,z) is  a many vahed function with a cut along the negative real 

axis.  In the prlmed descrtpt ion the semlaxls a rg (~  - - ~ )  whs corresponds to negative reat 

values of E must be approached from below, so the cut need not be crossed. 

Now we are in a position to verify whether the condition (5.2)of[l]is satisfied of not. 

The last line of (1.5) gives 

(W~-I)B B = 1 + iN2.2~.�9 E B) 

From th is  we obtazn 

and 
(W~-I)BB = e-2f�91 ta 

I(W~-t)BB 1 = e4~C'Im a 

Using (2.6), a can be expressed as 

I r  i s  always true that E~ < E B. I r  E~>--m, no superc r i t i ca l  t rans i t ion  occurs, 

Im E~ = Im a= 0 and I(w~-I)BBI 2 :  t .  i r ,  o. the other hand, Ev~--m#~~~~~~m Ee> 0 an~L 

obviously Ima<O . In par t i cu la r ,  i r  EG/ (EB~~)<< I  then Ima = - ~ V ' E ~  E~ = - ~  T 

and " "I(w~-t)BBI~ 2 = e-~LT _~ O as T--~-~. 

The c r i te r ton  (5.2) of [1 ]  i s ,  therefore, sa t i s f ied .  The quant i ty ~'L can be in te r -  

preted as the decay constant of the vacuum. When the unphysxca] pole E~ is  close to the 

real  axzs ~'L ts proportXonal to Im E as expected. However, the propor t iona l t ty  factor  

Xs a non t r i v ia l  expression whtch re f lec ts  the ef fect  of the mov3ng pole. 

I r  the elec• of the pa i r  created is  bound then the spectrum of the accompanying 

posi tron is determined by the function M'(E B, -4<0!. I r  is  d t f f~cu l t  to calculate the Ias 

T l i m i t  of thxs q u a n t i t y -  and of the amplitudes M'(E,E') in genera l - -w i th  the aid of (2.7) 

s&nce thts would involve a simultaneous l tm i t  in both the argumen& and the parameter of the 

functtons M and U. However, since T -2 plays a role s imi la r  to the cole of dfi 2 in a Schr6dinger 

equatton a quasiclassical  treatment is  avat lable. 

Let us introduce a new var iable x = EB-s anda new function 

which sa t l s f les  the equat&on 

2 ~  i N 2 �9 (EB,E) y(x) = ~  

~�91 y " ( x ) -  c ~  = 0 , (2.8) 
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with the boundary conditions 

y(-~) = 0 , y(O) = 1 , 
where Z~ 

i b = E~-  E B : b' + ib" ; c =~-~- ; ~= T 

Since the tmaginacy pact of E# ts small wc have b"y b'l and in the domaxn 

I b'J >>x �87 can be neglected as compared to b. We have, therefore, 

xy" b__s Y = 0 
+4�91 

The general solution of thls equation can be written asa superposltion of Hankel-functlons: 

y(x) = ~" lA H~l) ( 2 ~  ~/'x) �9 B H~2) ( 2 ~  4 (2.9) 

the coeffictents of which ate subject to the constraint 

i = y(O) = (B-A) ~ 1 

In the domain I xl �87 look for the solution of (2.8) in the Iorm 

y = e ~  S , 

S = S 0 + ~ S 1 + "~2 S2 + . . .  

(2.10) 

Applylng the usual procedure of the quasiclassicaI calculations we obtaln to terms linear 

in T -1 : 

y ( x ) ~ K  e { #  # ( x(~~-b)-b ln( ~ r ~  + vr~) ) {x x_---~? 1/4 exp (2. i1) 

The coefficient K can be dete[~nined from matching the solutions (2.9) and (2,11) in 
the demain of overiap I b ' l ~  x ~ � 8 7  ~here they take the form 

y(x) ,~~ �91 Ae-i4}~~ ei2 --~~ ~/~ + B ei�91 e-i2 ~r~ V~x } 

y(x) ~ K(-b) 

respectlvely. These expressions together with (2.10) lead to 

The asymptotic formula (2.11) with thZs value of K determines the large T l im i t  of M'(EB,-ko), 
lhe positron spectrum was computed numerically andas ii can be seen from Fig. 2 and 

Fig. ). -which ate typicai spectra for sub- and supercrlticaI processes -- there is not any 

chacacteristic line stcucture which was expected on the basis of our intuitive notion. The 

reason for this dlsccepancy needs further ciarificalion. 
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Fxg. 2. The subcri%ical positron spectrum for Loren• time dependence, 
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Fig. 3. The supercritical posttron spec%rum s Loren~zian time dependence, 
E B =-0.9, E~ =-i.05+0.0018i, T = 20 

3. Potential jump in pole approximatzon 

A potential 3ump of duration T is described by the coupling function 

: [ATtm is --T/2 < % < T / 2  , 

A%(t) 

to otherwise 

Then, accordZng to (l.2),~~/~J N(~,• = 0 unless both t and t' are wi• ~he interval 

(--T/2,T/2). Therefore, equations (1.3), (t.4) in the prLmed description take on ~he form 

+T/2 

<DJM'(t,t')lq =A~ m O(t - t ' )  + A~t m ~ dt"<Jl K k (t-t")l/~><#lM'(t",t')l/~ >,  ().1) 
-T/2 
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+T/2 

~ ( t - - t ' )  + A~ m I dt"</~ I M~t,t")l~x#l K~ ( t " - - t ' ) l # > -  (3.2) 
-T/2 - T / 2 < t , t ' < T / 2  

The kernel K' given in (1.283 is a highly complicated [unction which makes the 

analytic solution of (3.2) hopeless, but the pole approximatxon applied to the LorentzXan 

time dependence in the previous section leads agatn to a soluble problem. 
At f i r s t  sight one might suppose that the pole approximatton consists in neglecting 

al1 contributions to <#l K~ (t) l /~> except for the pole tez~ iN2g(-t)e-tEB t .  In such an 

approximation, however, equations (3.1), (3.2) would certatnly be unable to account for the 

complexness of E9 , the unphyslcal blnding energy at V=  ~ +A)~m>~c since the imaginary 
part of E v originates from the coupllng to the continuum whose contribution to </31K~(t)l#> 
has been cofapletety neglected. In the pole approxtmation suggested by the example of the 

precedtng sectlon we actually take into account, beside the pole term, ah addit ional contr i-  

bution also, which is just suff ictent to locate E v at the r lght poslt ion. From (1.93 and 

(2.13 we have 

Akm<q k (t)l#>:~-~ ~ dE e- iE t / \~m F~ (E) 

--. ~ (E) 

[n pole approximation, accos to (2.5) 

Z~. 
AT~~ </31 K~. (t)l#.~ p = 6 (t) -- 

+ ~  

1 [ iEt E - E~, 
dE e E - E B - i  E. 

Z k Z~ 
= (Z-~~--V) ~ ( t )  - I T ~ -  (E8 -  E~ ) g ( - t )  e-iEB t , 

which, ustng (2.6) and the equality ZX= N 2, can be casi %nto the form 

</�91 K~ ( t ) l ~ ~  p Z~ - z~ = AT~m Zv ~(t)  + iN 2 9 (--t) e-iEBt 

Substliuting this kernel into (3.1), (3.2) and multiplying by eiEB t and e-iEB t, we obtain 

Z---~-X eiEBt </31 M'(t,t')lq : A~ m eIEB t ~(t--t ') + 
ZV 

T/2 
+ A~ m iN 2 I di" eiEB t g4~ M'(t",t')l#> , 

t 

~--~-~~ <q M'(t,t')I#~ e-IEB t '  = ~~m e-iEBt' ~ ( t - - t ' )  + 

Y + AX  m iN 2 dt"<q161 e-iEB t' ' , 
-T/2 

-T/2< t,t'~T/2 

(3.3) 

(3.4) 
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In the f i r s t  equationin which t is  a parameter we introduce lhe notation 
T/2 

f ( t )  =/ dt" iE~t"--~, M' (t",t ') l#> e ~ ~'-q 
t 

Since 

eiE8t</Jl M' ( t , t ' ) J ~ >  = - f '  ( t )  (3.5) 

equation (3.3) • on the form 

~3~ f ' ( t )  +A~m iN 2 f ( t )  = -  A)~ m eiEBt ~ ( t - t ' )  Z# 

The solution of this d i l f e ren t i a l  equation, subject • the condition f(T/2) = 0 is  easL]y 
found to be 

Z~ 
f ( t )  = -Z~--& Z~Xm ei(EB+ Z~~mZ9 ) t '  e - i A & m Z # t  O ( t ' - - t )  

Using (3.5), we obtain the solution to (3.3): 

Z~ 
</31 M ' ( t , t ' ) l / $ >  :7~-~ A)tm 6 ( t - t ' )  + i 

which sat&sfies (3.4), too. 
Now, ~rom (1.6) we have 

Z# A~m J / 2  
= dt e i (E-E ' ) t  + 

�9 2--~---~-- _T/2 

~ Z~A~m)2 [ +T/2 

+ 1 2~Z--------~- J 
-T/2 

(Z#~m)2 ei(EB-:-AZmz w ) ( t ' - t ) g ( t , t )  
Zk 

dtdt '  g ( t ' - t )  ei(E-EB--Z~&mZ# ) t  ei(E'--EB~-~&~mZ v ) t ' .  (3.6) 

In order to verify criterion (5.2) of [1] we calculate ~' (E8, E B) with the result 

ei(E~ -~B)T 
M' (E B,E B) = 

2~ i N 2 

Irom which we obtain 

(W~-I)BB = ei(E~, ' -EB)T , 

I 12 e-2ZmE'T ( W ~ - I ) B  B = = e-"#'3 T 

which is again the expected result. A comparison wtth the Locentzian time dependence shows 

that though the crtterion (5.2) of [I] is lulfilled in both cases but the decay constants of 

the vacuum ~'L and ~j ate dilferent. 

Performing in (3.6) the integrattons, we obtain 
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�9 : A~mZ~ - { (E+E' )T  ~~~LmZ ~ eiE~ T 
e L(E-E~ )(E'-E-~ ) + 

1 lE- EB iET E ' - E  B e iE ,T ]  } 
+ ~ L--~--~-~~ e - 

Accocdlng to (1.5) the positron spectrum is essent ia l ly  given by •'(EB,E) (the othec terms 
are only kinematic factors) :  

i E~ -E B j(E~ -EB)T (E~--E)T ~--~(E'~-E) 

M'(EB'E) = 2~Ÿ 2 E# 

Ir we considei subcritical processes then E# is reaI and 2 

I�9 I 2 = 1 (EQ szn t - - -~T- - - -  J - ~  --EB)2 EQ -- E 

as E--~-~ th is  funct ion tends to zero as E -2 for  f ixed T. As T--~~ i r  is a more and more 
rapid ly  osc i l l a t i ng  funct ion of E: 

i �9 (EB,E) I 2 i T'-~'~;" �9 (E~, -- EB )2 { ~ (E~, -E) 

The positron spectrum has a threshold at E = -m, so in the physically relevant region E~~< -m, 

thus E never coincides with E# . 

In supercritical processes E# = E~ + iE'~ is compIex and 

. 2 

I~,(Ea,E)j  2 ~ 1 (E~ -EB)2 + E~ e-2E~ T (ch 2E~ T -  cos 2(E~--E)T) 
: - ~ N 2 ~  (q ,  -E) 2 + E~ 2 

In the E - -~~ l im i t  zt goes to zero as E -2 again, andas T--~-~ i t  has a Lorentzian form 

_EB)2 ,, 2 
Im,I'~"(EB,E)I 2 ~ 1 (E~ + E~ 

T----*'~ 21~2N 4 (E~-~ -E) 2 + E~ 2 

As ir can be seen from (3.7) and (3.8) characteristic difference shows up between sub- 

crllical (Fig. 4) and supercrttical (Fig. 5,6) spectra which is in agreement with our 

qualitative picture. 
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Fig. 5. The supercritical positron spectrum for potencial jump, 
E B =-0.9, E v =-1.05+0.0018i, T = lO0 
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