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The elementary quantum physical description of superconductors using 
only three elementary facts of quantum physics, Bohr's quantum principle, the 
uncertainty relation and Pauli's exclusion principle, can reflect the basic 
bulk propertles of superconductor$, the effect of temDerature and external 
magnetic fields. The same method for triplet superconductors gives that for 
every H @ 0 magnetic field the perfect conductor state is thermodynamically 
more favourable, than the diamagnetic state;the perfect conductor state will 
cease at H = Hc2. 

Introduction 

There is an interesting discrepancy between the generality of supercon- 

ductivity on one hand /more than 50% of metals is proven to possess a super- 

conducting phase/ and the theoretical complexity ~f microscopic explanation. 

Weisskopf [~ already has demonstrated that a partial but quite detailed 

understanding can be achieved by using full quantum mechanics but not quan- 

tum field theory. Here we build upa simplified description of superconduct~ 

vity; only elementary constants and the data of the lattice ions will be 

used, and, of course, the results are expected to be correct only up to num- 

ber constants of order of unity. 

EQP of ~uperconductor s 

Consideran ideal metallic lattice with positive ions anda free elect- 

ron gas. In first approximation these charges compensate each other. In se- 

cond approximation, the moving electron disturbs the ion lattice, causing an 

effective positive charge near to its path, which acts on a second electron 

moving collinearly by a potential U~-]~'e2/ r, where e is the elementary 

charge, Mis the ion mass and m isthe electron mass. If this were a classi- 

cal potential, there would be a bound state of the electrons with a charac- 

teristic energy 6OO K. Nevertheless the uncertainty principle gives a simple, 

correct estimation. There are momentum and position uncertainties, so the 

ground state energy of a pair can be written as 

3 (Ap) 2 m e 2 
e = ~ m M Ax' /i/ 

where 
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AP~x ~~/2. 
Hence, looking for energy minimum, one obtains 

2 

While the M dependence of this energy does not show the right isotope effect 

its numerical value is in the correct order of magnitude, 2 K for a metal of 

50 atomic mass. So one can conclude that, via lattice oscillations, two elec~ 

ron states may appear with a binding energy. 

Since the creation of such pairs is energetically favoured, one expects 

the sea of pairs in the T=O ground state. Elementary symmetry and quantum 

considerations yield that the Ceoper pair consists of two electrons being as 

collinear as possible, in order to maximize the attraction;but on the other 

hand it is a resonance with finite size /~ =2VFH/E b anda minimal momentum 

uncertainty /Po~Eb/VF/, which forbids exactly zero total momentum. The op- 

timal compromise is a state where the total momentum is Po' when itis grea- 

ter, the binding is weaker, and it cannot be smaller, for details see Refs. 

[2]D~ 
Consider now an external effect not disrupting but modifying the super- 

conducting state. It can only change the total momentum of the pairs, as the- 

re are no other parameters to be modified. The change of the total pair mo- 

mentum appears as an excess uncertainty. 

The disturbed quasiparticle posseses a greater size ~d' 

2 2 2 
Po = (AD=) + (h/~d) . /3/ 

The new binding energy is : 

E b = Ebo~l - (ADd) 2' /4 /  
p o  

smaller than Eb, so the thermal excitation energy is within the energy un- 

certainty of the pairs, so it seems that the Fermi distribution of the elect- 

rons does not influence the possible excitations, i.e. A Boltzmann approxi- 

mation can be used, so 

~t~~Tlvf" 15! 

The magnetic field can interact only with the individual electrons, as 

the usual Cooper pair, being a particle of 0 spin and 0 momentum, cannot 

feel the presence of the magnet field. The interaction via the momentum yi- 

elds: 

H 
ARHM = -D o ~ , /6/ 

�9 Hc2 
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o 
where Hc2 is the upper critical magnetic field, Hc2 2 2 " 

In case of interaction via the spin, the field c~~ produce a change 

in the s p i n  o r i e n t a t i o n ,  l e a d i n g  t o  a c h a n g e  i n  t h e  p o t e n t i a l  e n e r g y  

AV = 2 eh H ,  171 
mc 

while the kinetic energy of the Cooper pair changes by 

2 
AE = CAp) Im. 181 

They have to be in the same order of magnitude in dynamic equilibrium, so 

(ap) 2 p£ ~. 191 
"~ Hc2 

Combining the thermal and magnetic effects, the binding energy is as follows 

[2] : 

E b (T,H) = E b(O,O) 1 _ _ H . /I0/ 

Hc2 

For spin-i Cooper pairs the magnetic field can interact with the pair 

asa whole, and the released interaction energy can be transferred into e.g. 

lattice vibrations, which is an external heat reservoir for the electron 

gas, therefore this interaction will not change the binding energy. Then, 

repeating, mutatis mutandis, the above steps, one gets eq. /I0/ without its 

last term: 

~.~ ,~ ,~ ,  ~ ~.~ ~o,o, ~ _ ( ~ 1  ~ _( ~ ,~~, 

Thermodynamics of the superconductin~ state 

Since superconducting samples are handled at constant temperature and 

magnetic field, the actual state is selected by the minimum of the Gibbs 

potential G 

G = E - TS - BH/4H. /12/ 

The energy of the superconducting state can be approximated as [3] 

1 2 
E s = E n - ~ ~(EF)E b , 

where ~ is the state density, for a cold Fermi gas ~~E~/2 

/ii/ and the definitions 

2 
Hc = ~o/2Hl ~ q 1 mc = ~¡ --~ 

ne 

1131 

so ,  u s i n g  eq.  

I141 
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one gets 

(? ~~~ ~~i ~ ~~o )~ 1 1 - (~ - ES = En - 8--~ Hc - /15/ 

Again, this is true for spin-O pairs; for spin-i ones the last term is ab- 

sent. 

Now, let us indeed select the actual state by the minimum of G. For 

this one has to compare states of different structure~ The list at least 

contains the following ones; normal /E=En, B=H/; Meissner /E=Es, B=O/; mixed 

/E=Es~B), B< H/ anda "perfect conductor" /E=Es(B) , B=HI. 

For comparison the Gibbs potentials of the "usual" states /i.e. the 

first three ones/ can be found in Ref. 3. So we have to deal only with the 

"perfect superconductor" here. Its Gibbs potential can be directly obtained 

by using eqs. /12/, /15//with or Without the last term according to the pair 

spin/ and the definition of tha% state. 

After trivial calculations one gets for spin-O Cooper pairs 

Gp = GM + ~-~ [HclH + H2/M 2 - H2}, /16/ 

where ~is the GL dimensionless parameter. The Meissner state is below the 

normal one until Hcl, and in this whole range the bracketed term is positive, 

Above Hcl one could easi!y show that Gp> Gmixe d. This is just the standard 

result that the "perfect superconductor" state is not realised. 

However, consider the case of spin-i pairs. Here, according to eq. /ii/ 

the term linear in H is absent, s is 

H2 [i - iq 2~ 
Gp = G M- ~-~ . /17/ 

Now, obviously, this means that for the cases ~ > 1 the "perfect supercond~- 

tor" state is always preferred to the Meissner state. Thus, if this system 

has a superconducting state, then this state is a perfect superconductor 

until Hc2. 

Conclusions 

Here, we have demonstrated that fundamental quantum principles and 

thermodynamics do not rule out the possibility of a Derfect conductor state, 

i.e. superconduction without diamagnetism. In fact, such states are rather 

predicted, but only when the cooper pairs exist in sDin-i state. This is 

just the case of triplet superconductors ~] ,[5]. 
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