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This  review covers some modern  applications of statistical methods in the analysis of 
complica~ed molecular spectra, obtained usually with laser excitation. Among the avMlable 
f luctuat ion measures, special emphasis is given to the nearest  nei$hbour  separation and 
spectral  rigidity measures, and a t ten t ion  is caUed to the power spect rum (or statistical 
Fourier-transform) raethod. 

From the high-resolution spectroscopic techniques used to obtain spectra of highly 
vibrationally excited molecuhs, the stiraulated emission pumping (SEP) scheme is very 
successful in simpIifying the high excitation regions. Examples of SEP applications are 
given, especia]ly to acetylene, in greater detaJls. Finally the tole of molecular rotation in 
molecular dynamical and statistical studies is stressed. 

1. I n t r o d u c t i o n  

In recent years there is ah increased interest in the interpretation of complex 
molecular spectra obtained usually with laser excitation. With high energy excita- 
tion ir is possible to reach large values of vibrational quantum numbers. Traditional 
spectroscopy deals with spectra wherein each transition can be assigned to valid 
quantum numbers and thus can be analyzed in a conventional fashion. With the 
coming of lasers and their applications in laser-induced processes it became evident 
that the common methods of spectroscopic analysis are not always easily applicable 
at high vibrational excitation where the energy level density is extremely large. On 
the other hand, e.g. chemical applications of lasers demand ah understanding of 
this energy region. 

In this review we shall cover some relatively recent techniques that  allow us to 
gain at least a partial  explanation of complex spectra. Such studies inevitably lead 
to basic questions concerning regularity in molecular spectra and involve problems 
about ergodic or cha~tic behaviour in quantum systems. We shall shortly summarize 
recent views on quantum ergodicity in molecular spectra. The relevance to laser- 
excited molecular processes shall occasionally be emphasized as it is this ~spect that 
provides the most important  impetus for such studies. 

Acta Phyaica Han9arica 73, 1999 
Atad› Kiad£ Bedapest 



96 L. NEMES 

2. A short  his torical  overview 

As we shall see the analytical approaeh to high energy density regions is 
mostly statisticM in nature. It is through a statistical study of energy level systems 
or even actuM spectral features from which we hope to extract information on 
regularity and dynamical behaviour. Such studies were pioneered by Wigner in 
nuclear physics [118,119,120,121] who proposed a form for the distribution of first 
neighbour spacings in highly excited nuclear spectra. 

This statistical approach is closely linked to the theory of random matrices 
(Bohigas and Giannoni [17], Brody et al [20], Carmeli [23], Mehta [84], Porter 
[102] because - -  as Wigner pointed out - -  the statisticM properties of spectra 
of complicated Hamiltonians ate similar to those of random Hamiltonians. The 
applications of random matrix statistics to atomic spectra have emerged in the 
last twenty years (Camarda ana Georgopulos [22], Rosenzweig and Porter [107]) 
with a rapid expansion to molecular spectroscopy (for NO2: HMler, Koppel and 
Cederbaum [56,57], Hardwick [59], Lehmann and Coy [75,76], Smalley et al [108], 
Zimmerman, Koppel and Cederbaum [117] - -  for acetylene: Abramson et al [1,2,3], 
Engel and Levine [37], Farantos [39], Holme and Levine [63,64,65], McIlroy and 
Nesbitt [86], Pique et al [94,95,97], Sumpter and Thompson [109], Sundberg et al 
[110], - -  for Ar3: Leitner, Berry and Whitnell [77] - -  for formaldehyde: Miller et 
al [87], Polik et al [99,100]. 

Following the simple applications of first neighbour spacing statistics, more 
advanced statistical tools have been worked out. Thus the spectral rigidity measure 
(A3) was intr'oduced by Dyson and Mehta [32], and Bohigas and Giannoni [16] 
to test long-range correlations among levels, the so-called F-statistics (Dyson [33]) 
to find levels in sequences to be eliminated from the analysis, and several other 
correlation and fluctuation measures (Brody et al [20]). 

For modern polyatomic applications not only the various spacing distributions 
and the A3-statistics became widely used, but additional fluctuation measures have 
been developed for spectral line strength (Alhassid, Levine [4], Brickman, Engel and 
Levine [19], Coy, Hernandez and Lehmann [27], Heller, Sundberg [61], Kommandeur 
et al [73], Porter, Thomas [101]), and for fluorescent lifetimes (Engel et al [35]). In 
this review we shall deal only with energy level statistics, occasionally mentioning 
spectral line strength distributions. 

An additional technique for testing long-range order or correlatedness in op- 
tical spectra is the statistical Fourier-transform of energy level sequences or experi- 
mental frequency spectra (Jost, Lombardi [69]), Leviandier, Lombardi, Jost, Pique 
[78], Levine, Kinsey [79], Lombardi, Labastie, Bordas, Broyer [81], Lorquet, En- 
gel, Levine [82], Pique, Joyeux, Manners, Sitja [98], Remacle, Levine [106]). This 
method provides information on the time-scale of various processes leading to the 
experimental spectra. Ergodic behaviour in spectra may also be quantified by the 
fractal dimension of the trajectories in phase space (Grassberger and Procaccia [47]), 
and by Kolmogorov entropy (Pesin [93]). Excellent examples for this approach are 
in the recent literature (Beck, Leitner, Berry [9], Berry [14]). 
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3. Regular i ty ,  e rgodlc i ty  and  chaos In spec t ro scopy  

One of the interesting questions of contemporary physics is whether chaotic 
phenomena in classical dynamics appear in some forro in the quantum mechanical 
description. The literature on this suhject is very extensive (e.g., Berry [10,11,12,13], 
Casati et al [24], Heller [62], Tabor [112]). 

It is characteristic of classically chaotic dynamics that it grows from the non- 
linearity in the governing system of dynamical equations. Chaos means the irregular 
and unpredictable evolution of a non-linear system in time. Quantum systems are 
not chaotic in the way classical systems ate. The Schroedinger equation that is the 
basis of the wave mechanical description is a linear equation in the sense that ir 
two different wavefunctions satisfy it then also does any linear combination of those 
functions. Thus a linear superposition is maintained inde¡ and the solutions 
are periodic and quasi-periodic. In contrast to classical dynamics, molecular systems 
do not have well-de¡ trajectories in phase space on time scales long relative to the 
excitation time of internal motions. Due to the Heisenberg uncertainty relationship 
it is not possible to prepare an individual spectroscopic state in which the position 
and momentum coordinates of the nuclei and electrons are sharply de¡ they 
have a ¡ distribution instead. While in classical chaos particle trajectories have 
an in¡ complicated substructure (Gutzwiller [55]), in the quantum mechanical 
description these trajectories are blurred. 

There are several terms that are frequently used in the discussion of the dy- 
namical behaviour; regularity, ergodicity and chaoticity. In addition one encounters 
frequently the quali¡ "stochastic". It is not attempted here to separate 
clearly the meaning of these terms (in relation to spectroscopic behaviour) but a 
few words are appropriate. 

A stochastic process is one that is a function of a random variable (in addition 
of being a function of time), and the random element is usually some external 
influence on the system. The irregular behaviour of a classical system, modelling a 
quantum system like molecules, is nota result of some random external influence 
but is due to the intrinsic properties of the system itself. Therefore, strictly speaking 
molecular systems cannot properly be regarded as stochastic. Still this term is very 
widely used. 

Ergodic behaviour is de¡ in statistical mechanics. When we have a clas- 
sical system where the trajectory of motion in phase space samples uniformly the 
latter, the time average of a given quantity cquals its phase (ensemble) average. 

Bohr's correspondence principle requires that in a high excitation state, like 
nearly dissociated or nearly ionized molecular states, where the encrgy density is 
very great, the molecular quantum system should correlate with the classical de- 
scription. Therefore one would expect some manifestation of classically chaotic 
behaviour in a quantum system, or quantum phenomenon, like molecular spectra. 
This manifestation is found in the statistical properties of molecular energy lev- 
els and in transitions among them. Ergodicity or regular behaviour, and chaotic 
limits shall in the following be studied from a statistical viewpoint. Regular spectro- 
scopic behaviour may be related to the regularity of the underlying classical motion, 
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whereas irregular (or chaotic) behaviour of the corresponding classical system man- 
ifests itself in a very different statistical behaviour in spectroscopy. The transition 
between regular and irregular (chaotic) classical systems is provided by the KAM 
theorem (Kolmogorov-Arnold-Moser) (Arnold [15], Kolmogorov [72], Moser [88]). 
It is possible to study the statistical properties of energy levels in the semiclassical 
limit; h ~ 0, as was shown by Berry [11,12] using Gutzwiller's method (Gutzwiller 
[48,49,50,51,52], see also: Bailan and Bloch [7]). In this way classical periodic orbits 
may be related to semiclassical energy levels. In the semiclassical description quan- 
tization is provided by the Einstein-Brillouin-Keller (EBK) quantization (based on 
Einstein's paper in 1917; [34]). This corresponds to 'old quantum the0ry' which 
was superseded by wave mechanics, but for the study of molecular chaos in the 
semiclassical limit has been rediscovered and widely used (see: Tabor [112], Section 
6, pp. 228-279). In terms of EBK quantization rules a regular spectrum corresponds 
to regions of integrable (regular) motion that can be quantized according to these 
rules, whereas irregular (ehaotic) spectra cannot be so quantized. As we shall see, 
one may model certain spectroscopic observations on this semiclassical approach 
that provides insight into speetral statistical eharacteristics. 

4. The  m a t h e m a t i c a l  a p p a r a t u s  of s ta t is t ical  spect roscopy 

Before applying most of the statistical probes to molecular energy levels or 
actual molecular spectra a procedure is needed to place those sequences on the 
same footing. For this purpose one has to separate the average density of levels from 
fluctuations about that average (Brody et al [20], Bohigas and Giannoni [17], Italler, 
Koppel and Cederbaum [56]). This is because we want to reduce different energy 
level systems to the same basis that then allows a comparison of the statistical 
behaviour of highly excited nuclear levels to those of molecular excitations. This is 
achieved by a suitable mapping of the original energy level system: E ---*/~. Taking 
N ( E )  as the cumulative density of the energy levels it is seen to fluctuate about a 
smooth average: N~v(E): 

"5 
E 
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N(E) /N~ 
/ 

E 

Fig. I. Cumulative energy level distribution 
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Now if 

/~i = Nav(Ei); i = 1 ,2 ,3 , . . .  

E 
N,,v(E) : ~o ~.v(E')dE' = ~o g.v(E')dE, = E, = �9 (1) 

The new energy level sequence Ei has a constant density; ~a~(/~) = 1, and it 
may be split up to a secular part (showing a smooth change with energy, that  is 
universal) a n d a  fluctuation part ( that is specific to the system): 

�9 = ~.,(~) + �9 = k + �9  (2) 

We shall be concerned only about the fluctuation part Nfl(E). This carries 
the statistical information on the energy level system. Taking into account the fact 
that  energies (eigenvalues) ate not continuous functions, Eq. (1) can be rewritten: 

f~ 

N.,,(E) = E O ( E -  E,), (3) 
i--1 

where e ( E )  is the Heaviside step function, and E can be given as: 

E, - b'~I[N~,,(E) - b0], (4) 

so that: 
�9  = bo + b~k,. (5) 

This procedure is called "unfolding" ("deconvolution" or "mapping") and 
might be a sensitive function of the choice for Nav(E), i.e. of the way we ap- 
proximate the average behaviour of the energy level system. There are various 
possibilities for this, one of these is the use of a polynomial expansion: 

Nav(E) = E akEk" (6) 
k = l  

Alternatively, one may use a cubic spline function smoothing (Press et al 
[103], Chapter 3), of apply a moving average (Wong, French [122], Venkataraman 
[115]): 

E,+I = E, + (2k + 1)(E,+I - E,)/(Ei~+I - Eh),  (7) 

where i runs over the energy levels, and i i  = max(1, i - / : )  and j2 = m i n ( n -  1, i+k) ,  
n is the total number of energy levels and k is the number of consecutive spacings 
between the energy levels over which averaging is done. 

All these unfolding methods produce level sequences of nearly unit local mean 
spacing (density). The fluctuation properties of spectra may either be stationary 
(invariant to translation along the energy axis), or not stationary. In the latter case 
one is interested in asymptotic propertie~ of energy level sequences. 
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~.I. Fluctuation measures 

With respect to the statistical nature of � 9  Eq. (2) there are two 
extreme cases, the case of a complete lack of correlation among energy levels, and 
the case of very strong correlations. There ate a number of mathemat ica l  techniques 
to test such correlations. Historically the first of these was suggested by Wigner 
(Wigner [118,119]) tha t  relates to the distribution of spacings among adjacent levels: 
P(S) (S stands for first neighbour spacing between unfolded energies: /~). This 
method relies on the absence or presence of repulsion between levels. 1 

For a completely random energy level sequence, the probabil i ty of a spacing is 
independent of the magnitude of the spacing and one has a Poissonian distribution 
law: (using first neighbour spacings (S) in terms of local spacing units. The local 
spaxing unit is 1 for ah unfolded energy level sequence): 

P(S) = e x p ( - S ) .  (8) 

On the other hand when there is (linear) level repulsion, the probabil i ty of a spacing 
is proportional  to the spacing magnitude: 

P(S) = 0 r / 2 ) S e x p ( - l r S 2 / 4 ) .  (9) 

There is ah impor tan t  difference between the Poisson (Eq. (8)) and Wigner (Eq. (9)) 
distributions; f o r a  r andom energy level sequence the mo,st probable spacing is zero 
(level clustering), whereas for the Wigner (strongly correlated) distribution zero 
spacing has zero probabil i ty (level repulsion). 

In order to model strong correlations among energy levels, which is the case 
for highly excited nuclear spectra, Wigner proposed random matr ix  theory (Wigner 
[118,119], Brody et al [20]). Random matr ix  theory is reminiscent of statistical me- 
chanics in the sense tha t  it deals with ensemble averages over stochastic quantities. 
These ensembles are formed ofmatr ices  possessing random structure.  Depending on 
the way such a r andom matr ix  is defined there ate three types of mat r ix  ensembles: 
the Gaussian orthogonal ensembles (GOE),  the Gaussian unitary ensembles (GUE), 
and the symplectic ones. If  the physical sys tem is invariant under time-reversal and 
under rotations the matrices are real symmetr ic  with random elements having in- 
dependent Gaussian distributions. The  ensemble must be invariant to orthogonal 
transformations and consists of matrices of identical dimension. The  GOE model 

IRepulsion between energy levels may be understood in terms of avoided crossings, or the 
"non-crossing rule" (Neumann and Wigner [89], Berry [11]). This ru]e applies only when we select 
energy levels possessing the same synunetry. In the case of vibronic energy levels this involves the 
same electronic state and vibrationaI quantum numbers (or combinations of vibrational quantum 
numbers that correspond to the same symmetry of the product of vibrational wavefunctions), 
the same total angular momentum quantum number (usually J) and the same parity (behaviour 
towards space inversion). In addition there is a need to study as complete as possible level systems 
in the given symmetry,  so that no (ora minJmal number of) energy levels should be missing, and 
no spurious levels should occur. AU the following statistical measures presuppose this kind of 
synunetry selection, the use of so-called "pure sequences". 
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represents the strongest possible level correlations and it is frequently feasible to give 
analytical formulae for this limit of the various fluctuation measures. The GUE limit 
corresponds to systems for which the Hamiltonian does not possess time reversal 
and rotation symmetry, such matrices have complex Hermitian structure. Finally 
the symplectic ensembles correspond to systems that  ate time-reversal invariant but 
not invariant under rotations, and if the system has half-odd-integer total angular 
momentum the matrices of the ensemble ate quaternion real. The importance of 
GUE and symplectic ensembles is little in the field of molecular spectroscopy. 

Random matrices also show ergodic property so that  their ensemble averages 
are equal to spectral averages ofa  member (Pandey [91]). A s a  consequence when we 
choose one member of the ensemble it will be representative of the whole ensemble. 
This ergodicity property shall be utilized in the application of the various fluctuation 
measures. 

We can now return to the discussion of.the fluctuation measures with these 
two limits in mind; the completely random Poissonian sequences and the strongly 
correlated GOE limit. 

The spacing distribution discussed previously does not include information on 
spacing correlations. This is obtained for two adjacent nearest-neighbour spacings, 
a s a  spectral average, by: 

c = Z ( S i  - 1)(Si+1 - 1)/~_,(Si + 1)2. (10) 
i i 

For the Poissonian case c = 0, while in the GOE limit the first-order spacings ate 
anticorrelated: c = -0.271 (Brody et al [20], Garrison [43]). 

Another very useful statistics is the spectral rigidity; A3(L ) (Bohigas, 
Giannoni [16], Dyson, Mehta [32], French et al [41,42]). Spectral rigidity mea- 
sures the least-squares deviation of the cumulative energy density �9 in Eq. (2) 
from the best straight line fitting it: 

q 
A3(a ;L)  = ( 1 / L ) m i ~  ,c  ' [�9 - A E  - B ] 2 d E ,  (11) 

where �9  is the number of levels below ]~, A and B are eonstants of the fitting, L 
measures the length of the level sequence, and c~ is the beginning of the L interval. 
The value actually used in the analysis is the spectral average: 

(Az(~, L)) - A3(L). (12) 

For analytical purposes sums are used instead of the integral in Eq. (12), 
such formulae are found in Bohigas and Giannoni [16] and Feingold and Fishman 
[40]. Spacing distributions and the A3(L ) statistics are independent fluctuation 
measures and ate complementary information; spacing distribution measures short 
range correlations, while A•(L) characterizes long-range ones. For a Poissonian 
level A3(L) = L I 1 5 ,  whereas for a GOE sequence: 

A--3(L) = (1/Tr2)(ln L - 0.0687). (13) 
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The meaning of these two limiting expressions is that for a random set of 
levels the variance of deviations from the mean behaviour is proportional to the 
number of levels, whereas for the strongly correlated case the increase is only log- 
arithmical. It is quite possible to find tases where spacing distributions indicate 
strong correlations, while spectral rigidity is low. It is often found that for actual 
level systems (theoretically computed or experimentally determined) the increase of 
~3(L) with L i s  slower than indicated by the GOE limit in Eq. (13), and saturation 
is observed (see e.g. Zimmermann et al [116]). It is possible to relate A3(L) to the 
sum over classical periodic orbits and find the general criterion for the saturation of 
spectral rigidity. This occurs when L �87 Lmax, where Lmax is given by semiclassical 
considerations (Berry [12]) as 

Lm~,x : h(d)/Tmln ~-- h -(N-l), (14) 

where (d) is the mean level spacing: (d)-:  ~_ h N, and N is the number of freedoms 
in the semiclassical system. Tmln in Eq. (14) is the period of the shortest classical 
closed orbit. 

In addition to these two most important statistical measures, there ate a 
number of others. One of these is the "number statistic"; n(L), which is a discrete 
variable counting the number of levels contained in the interval L. Provided the 
spectral sequence is unfolded, the average of n(L) is L. The useful measures derived 
from this quantity ate its higher moments, its variance ~2(L) ,  its skewness 7:(L) 
and its excess 72(L) (Pandey [90]). 

All of the.se (and previous fluctuation measures) are derivable from the level 
correlation functions. The k-level correlation function is defined as (Bohigas- 
Giannoni [17]): 

f f 
h ( E 1 , .  . .,E,) = (~!I(N- k)!) J... J P,(~,,...,E~)m+,...dE~, 

where PN is the joint probability density of the energy level Ei: 

(15) 

PN(Et, E2 ..... , EN) - CN exp(--(1/4a 2) E E~) I ~  lE, - Ei l , 
i 

(16) 

where CN is a normalization constant, a n d a  2 is the variance of the eigenvalue Ei. 
In Eq. (16) PN(E: . . .EN)  dE1. . ,  dEN gives the probability of having one 

level at E:, another at E2 . . .  and another at EN within the intervals {Ej, Ej +dE i }. 
When we unfold the energies Ei --~ Ei (see earlier) a new set of k-level corre- 

lation functions is obtained: 

Rk(EI,~:2 . . E N ) =  lim Rk(E: , . . . ,Ek)  �9 - - -  K-~,)-:. ~:~,) (17) 
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The functions Rk characterize the fluctuation properties of levels completely. 
Of central importance are the k-level cluster functions 
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m 

Y k ( F _ , i . . . P , k ) = 2 ( - 1 ) k - m ( m - 1 ) ! l ' I R a j  (E,,  w i t h t i n G j ) ,  (18) 
G j=l 

where G stands for division of the indices 1, 2 . . .  k into subgroups [G1, G2, . . . ,  Gm]. 
The most significant of the cluster functions is the two-level one: k -- 2, when there 
are two subgroups: m = 1 [(1,2)] ana m = 2 [(1),(2)]: 

Y2(E1,/~2) = -R2(/~1, E2) + Rt(/~I)RI(/~2). (19) 

Another possibility is to use the probability that in a sequence of unfolded 
levels (/~i) of mean spacing unity, a length L contains exactly k levels. This is given 
by 

in  out  
(20) 

where the first group of integrals is performed on the variables inside the interval 
[a, a + L] and the other group is an outside integral. The probability E(k; L] in 
Eq. (20) is simply related to various fluctuation measures, e.g. the nearest neighbour 
sp~ing dist¡  p(/~) in Eq. (8): 

p(E) = p(O, E) = (d2/dE2)E(O, F,). (21) 

Praetically it is better to use integrated quantities: 

yk(L) 

Using Yk quantities the various number statistics can be easily given as, e.g. the 
average number of levels in an interval L: 

n(L) = y,(L) = L. 

The variance of this number is: 

(23) 

E2(L) = (n(L) - L) 2 = yl(L) - y2(L). (24) 

Particularly important are the quantities related to the two-level cluster func- 
tion Y2(E,, E2) in Eq. (19) which will be called two-point measures. E.g.: 

1 - Y~(g) = ~_, p(k, ~), (25) 
k---O 
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so that all orders of spacing distributions are two-point measures. Using Y2(/~) we 
may write the variance of the number statistic ~ 2(L) as 

L 
Z 2(L) = L - lo (L - r)Y2(r)dr (26) 

and establish a relationship between S3(L) and ~ 2(L): 

~£ L S 3 ( z )  = (2 /L ' )  (L 3 - 2z~~ + ~3) ~ ~(r)d~. (27) 

F o r a  Poissonian spectrum of energy levels the relationships for the various 
fluctuation measures ate simple: For spacing distributions: 

p(k, L) = (Lk/k!) exp(-L) .  

For k-level cluster functions: 

(28) 

and also: 

YI(/~) = 1; Yk(/~l,/~k) = 0; k >_ 2 (29) 

Z 2 ( L )  = L and A3(L) = L/15. (30) 

In the GOE limit these formulae are considerably more complicated. Ana- 
lytical forms for the different cluster functions (Eq. (18)) were derived on the basis 
of Mehta's work [83]. Mehta and Pandey [85] gave relationships among functions 
related to spacing distributions, on the one hand, and the k-level correlation and 
cluster functions, on the other. 

The two-level cluster function Y2(r) is given for the limiting cases of small 
and large r values: 

and 

Y2(r)r--.o --" 1 - (1/6)Tr2r + (1/60)~r4r 3 + . . .  (3la) 

Y2(r)r-.oo -~ (1 /~2r  ~) -- (Z + COS ~ . r ) / ~ 4 ~  4 + . . . .  (31b) 

The quantity 1 - Y2(r) is 1 for the Poissonian case (see Eq. (29)), whi|e ir increases 
from zero asymptotically to unity for the GOE limit. 

The A3(L ) formula was already given in Eq. (13) while 

Z 2 ( L )  = (1/ah) lnL + 0.44 (32) 

for the GOE case. 
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4.2. The power spectrum statistics 

In addition to the above statistical tests in recent years another important 
fluctuation measure has been added to the arsenal; the statistical Fourier-transform 
(FT) technique. In their first paper on this topic Leviandier et al [78] introduced 
this robust method to detect long-range eorrelations in optical spectra�9 The method 
consists simply of taking the Fourier-transform of a set of energy levels, or directly 
spectroscopic data. There have been a number of theoretical papers describing the 
properties of this method (Coy and Lehmann [26]; Coy, Hernandez and Lehmann 
[27], Jost and Lombardi [69], Levine and Kinsey [79], Lombardi, Labastie, Bordas 
and Broyer [81]; Pique, Chen, Field and Kinsey [94,95], Pique, Joyeux, Manners 
and Sitja [98]; Remacle and Levine [106])�9 

The Fourier-transform of energy levels or spectral lines is denoted in many 
different ways, let us adopt here C(t), where t refers to time, and the abscissa may 
be given in dimensionless (t/~) units (# is energy density measured per frequency 
interval). The quantity examined is the square modulus of the Fourier-transform 
IC(t)l 2, or as it is usually denoted in signal processing: the power spectrum. This 
has to be spectrally or ensemble averaged prior to use. The power spectrum contains 
two main components, a fast a n d a  slow component. The fast component, whose 
amplitude is proportional to the square of the number of lines or energy levels, is 
the Fourier-transform of the overall spectral envelope, whereas the more significant 
slow component is the Fourier-transform of the shape of the spectral lines, and its 
amplitude is proportional to N only: 

(IC(t)l ~-) =N2A2E(t)(y)2{L(t, r ) )  ~ + N(u~)(L~(t, r ) ) .  

�9 [1 - G(t)b2(t)] | A~(t), (33) 

where | denotes the convolution operation (see: Pique et al [94]), and N is the 
number of lines in the spectrum, AE(t) is the Fourier-transform of the spectral 
envelope, L(t, F) is the FT of the normalized line-shape of individual fines (of width 
I'), y is the integrated line intensity, and the angle bracket (,) denotes averaging 
over all spectral features. The quantity G(t) is related to the distribution of line 
intensity y and line width F in the spectrum. For a Lorentzian line shape G(t = O) 
= ( u ) ~ ( r ) 2 / ( u 2 ) ( r 2 ) .  

When there are correlations in the spectrum (or within a set of energy levels) 
a "correlation hole" appears between the fast and the slow components of the power 
spectrum. The fast component that  depends on level density and not level spacing, 
is not important for the study of level statistics. In the case of a theoretical spec- 
trum of unfolded energy levels represented by sticks of equal amplitude, the fast 
component reduces to a very narrow channel. It is the slow component of the square 
modulus that  is proportional to 1 - b2(t), where b2(t), the two-level forro factor is 
the Fourier-transform of the two-point correlation function Y2(E) in Eq. (25): 

b2(t) = f + o o  Y2(r) exp(2~ritr)dr�9 (34) 
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When correlations exist among levels of spectral features (Y2 ~ 0), the ampli- 
tude of the slow component is multiplied by 1 -  b2(t), and since the latter difference 
is zero for the GOE limiting case for t /~  -- 0, and rises approximately to unity for 
t > ~ (average level density), a correlation hole is displayed. The correlation hole 
is "filled" for an uneven distribution of line intensities, as G(t )  < 1 for such a case, 
and this reduces the observability of the hole. Extensive noise of the spectrum leads 
also to the filling of the correlation hole. 

An enormous advantage of the power spectrum method is that  the correlation 
hole persists (but becomes narrower) when several pure sequences ate superimposed, 
as it happens in transforming actual spectral details. So the technique is capable 
of detecting correlations in any mixture of levels of different stretches of spectra. 

All this is true only for spectral of ensemble averages, or smoothed FT spectra. 
Individual level sequences of single lengths of spectra lead to total modulation, 
"speckle noise" is observed. This is analogous to diffraction of laser light from a 
rough surface. In the modulation there is a lot of information on the spectral fine 
structure, that  is, however, not needed for correlation analysis. 

Through the two-level cluster function Y~(/~t,/~~) in Eq. (19) the power spec- 
t rum is related to the spectral rigidity statistics (Lombardi et al [81]): 

f 
A3(r) - i i 1  - b2(t)]K(r ,  t )dt ,  

where K(r ,  t) is a kernel function: 

(35) 

K ( r ,  t) = (1 / (2r t )2 ) [1  - F ( y )  ~ - 3F'(y)2], (36) 

where, in turn 

F ( y )  = ( s in (y ) / y ) ;  y = ~rt .  

Equations (35) and (36) can be derived from Eqs (27) and (33) by invert!ng 
the order of integrations. It is then also seen that IC(t)l  2, A3(r) and ES(r) are 
all closely related and therefore all convey information on second order correlations 
between the location of two levels. The disadvantage of the power spectrum, viz. 
that  i t i s  very noisy, as opposed to the relatively smooth behaviour of the spectral 
rigidity Aa(r)  and �91 2(r) statistics, may be turned into an advantage, since one is 
then free to handle this noisy appearance by any noise reducing method chosen at 
will. 2 

Depending  on the nature of the quantum system to which the statistical 
Fourier-transform method is applied we have four well defined examples (see 
Lombardi et al [81]), these ate shown in Fig. 2 containing sketches of smoothed 
power spectra. 

2The author is �91 to Professor R› Jost, CNRS Service National des Champs In- 
tenses, Grenoblr France, for pointing out this property. 
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time ~ time 

b) N21 d) 

S ~'ime Tmi n ~ time 

Fig. 2. Power spectral  behaviour  

Cases a, b, c and d correspond to a Poissonian (random) spectrum, a GOE 
spectrum, the harmonic oscillator and finally a set of uncoupled anharmonic os- 
cillators. To understand the four typical forros in Fig. 2 we can apply the simple 
recipe in Lombardi et al [81] (based on Balian and Bloch [7,8], Berry [12]; Gutzwiller 
[48,49,50,51,53,54]). 

An understanding of the behaviour of IC(t)[ 2 may be obtained by a thought 
experiment. Let us start classical orbits from a phase space point (p, q) for the 
problem. At every time such ah orbit closes upon itself (returns to (p, q)) entera  
peak into the power spectrum. Then the harmonic oscillator yields regular peaks 
separated by the oscillator period T, whereas a set of anharmonic oscillators shows 
upa  flat hole, as nothing is found in the spectrum prior to the closing of the shortest 
orbit (Tmm). In strongly correlated systems the number of closed orbits decreases 
with time and that gives rise to the correlation hole. 

Before leaving the subject of the power spectrum fluctuation measure, it is 
very important to point out another approach or philosophy of power spectra. The 
calculation of the constant amplitude stick spectrum of energy levels is equivalent to 
the estimation of the time evolution of a molecular wavefunction. There is therefore 
a strong connection between the theory of statistical Fourier-transformation and the 
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theory of radiationless relaxation processes (Bixon and Jortner [15], Lahmani et al 
[74], Delory and Tric [31]). Another way of stating this is to point out that  the 
square modulus of the FT yields the survival probability of an initially prepared 
state 1r > after a duration of time t; 

IC(t)l 2 =  I(r162 (37) 

(see Levine and Kinsey [79], Pique et al [94]). 
Therefore the power spectrum may also be regarded as the spectral autocor- 

relation function (see also: a maximum entropy formalism of the autocorrelation 
function by Remacle and Levine [106], and the relationship to the rate of explo- 
ration of the phase space (Lorquet, Engel and Levine [82]). The connection between 
mode selective chemistry - -  a centrally important aspect of laser-induced chemistry 
- -  and the application of the power spectrum method described above was given 
by Levine and Jortner [80]. 

5. E x a m p l e s  f r o m  h | g h - r e s o l u t i o n  s p e c t r o s c o p y  

In spite of the obvious lack of molecular spectroscopic analyses about ten years 
ago (Bohigas and Giannoni [17], Brody et al [20]), in recent times there has been 
a surge of efforts to extend such analyses to high-resolution molecular spectra, as 
already mentioned in the Introduction. The greatest problem in applying the usual 
fluctuation measures to molecular spectra is the extraction of a statistically signifi- 
cant sample size of line or level sequences of definite symmetry and good quantum 
numbers from the very complicated structure of highly excited molecular spectra. 
It is characteristic of such studies that  when complete ro-vibronic (electronic ex- 
cited state) of ro-vibrational (electronic ground state) analyses ate available usually 
only levels with J = 0 (no rotation) ate included. This is meant to simplify the 
construction of symmetry-wise pure sets, and to reduce the number of features to a 
manageable size. However, when high vibrational excitation occurs assignment of 
the spectral features is frequently not possible, and, of course, this is exactly why 
one would like to use the statistical method described here. 

In such cases special experimental techniques are sought that  lead to spectral 
simplification, or the power spectrum method is used that,  as pointed out before, 
is comparatively insensitive to symmetry mixtures and spectroscopic resolution. In 
the following a number of recent examples shall be quoted. Special attention is 
devoted to the SEP (stimulated emission pumping) method developed in 1981 and 
applied since then. 

In their seminal paper Leviandier et al [78] applied the newly proposed method 
to the highly excited acetylene (C2H~) vibrational levels, and to singlet-triplet anti- 
crossing (ac) spectra of methyl-glyoxal. Acetylene vibrational spectra were obtained 
by the SEP method (to be described later). This was the first example of using 
the Fourier-transform method to a highly excited vibrational spectrum (at about 
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27900 cm - i )  and it gave an independent proof (relative to earlier statistical exam- 
inations) of strong correlations. The ac spectra of methyl-glyoxal were only taken 
at a vibrational excitation level of 3000 cm -1 and couplings in those spectra were 
known to be very small. 

Jost and Lombardi [69] used the optical-rnierowave double resonance data of 
Lehmann and Coy [75] to show the lack oflevel correlations in those spectra, and the 
SEP spectra of acetylene, taken by Abramson et al [2], to demonstrate strong corre- 
lations objectively (objectivity being provided by the independent power spectrum 
method). Their own singlet-triplet anticrossing spectra of methyl-glyoxal (CH3- 
CO-CHO) displayed strong correlations in the T1 electronic state. One of their 
main conclusions was that only two-step, state~to-state processes, such as optical- 
optical or microwave-optical double resonance, of the optical anticrossing technique 
can provide spectra with suf¡ spectral purity for statistical correlation studies. 
Molecular beam techniques may also help redueing spectral congestion prior to such 
an analysis. 

Among molecular studies one of the most interesting cases is that of nitrogen 
dioxide (NO2). This molecule has a very complicated vibronic spectrum between 
12000 and 25000 cm -1 (Hsu et al [66]). In this spectral region there ate four 
electronic states potential]y interacting with one another (Jackels and Davidson 
[67,68]; Gillispie and Khan [44,45]). The assignment and interpretation of the ob- 
served spectra have not yet been achieved. The molecule has been the subject of 
many statistical approaches (Haller, Koppel and Cederbaum [56,57]; Hardwick [59]; 
Lehmann and Coy [75,76]; Persch et al [92]; Smalley et al [108]; Zimmermann, Kop- 
pel and Cederbaum [116,117]). Hardwick conjectured in 1985 [59] that all selection 
rules based upon the rotational quantum numbers ate broken, and the spectrum 
is ah ideal example of total ergodicity. Lehmann and Coy [76], however, found in 
their microwave-optical double resonance experiments that although the intensity 
dist¡ of the spectral lines indicate perfect ergodicity (Heller's F parameter 
approaches 1/3, see: Heller [60]), the first neighbour separations and the A a spec- 
tral rigidity tests show regular classical dynamics (Poissonian behaviour). Their 
study involved not only vibronic band origins (J = 0) but rotational branehes of 
known J value as well. A similar study by Jost and Lombardi [69], using the power 
spectrum method indicated no correlation hole in the NO2 spectra. So, in spite of 
the fact that many more rotational transitions were found than expected with strict 
rotational selection rules, the statistical behaviour of levels did not display classical 
chaoticity signs. 

Many such problems may be approached, as we have already noted, by stim- 
ulated emission pumping, and before looking at further examp]es a short charac- 
terization of the SEP method is given. 

6. E x p e r i m e n t a l  s tudies  of  level  correlations by SEP spectroscopy  

There are several methods in spectroscopy to access high vibrational levels 
with great specificity and resolution. One of these is direct overtone pumping and 
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another important  tool is stimulated emission pumping. 
Direct overtone pumping utilizes lasers of appropriate fundamental  frequency 

or harmonics. An early example of this method was reported by Swofford et al [111]. 
A modern laser system for this purpose is the Ti3+: sapphire laser that  allows one 
to excite the range between 700 and 1100 nm (9000 and 15000 cm -1, resp.). Coy 
et al [28] reported the use of this laser in double resonance studies on ammonia. 
The measurement of overtones at high energy requires very sensitive modulation 
detection techniques, such as optoacoustic spectroscopy, as overtone intensities are 
usually very low. 

In 1981 Kittrell  et al [70] devised a double resonance method to obtain 
simplified spectra of highly excited vibrational states (between about  8000 and 
30000 cm-I ) .  The technique is capable of accessing specific vibrationally excited 
levels of the electronic ground state. Figure 3 is a simple sketch of this folded variant 
of optical-optical double resonance (OODR). 

0021 

1 

3 

Fig. 3. The scheme for the SEP experiment w2t : pumping; w32 : dumping; --- 4 fluorescence 

A laser is used to pump population from level 1 (of the electronic ground 
state) to level 2 (of an excited electronic state), and a second laser is used to 
force population from level 2 into a high excited vibrational state in the ground 
electronic state (3). Both lasers ate narrow bandwidth tunable pulsed lasers in the 
visible range that  ate frequency multiplied when necessary. The process may be 
monitored by using fluorescence (spontaneous side fluorescence or induced one by 
a third laser) to the ground state (indicated by levels 4 in Fig. 3) so the obvious 
requirement is tha t  there should be ah observable fluorescence from level 2. The two 
lasers involved in the experiment may be time shifted and used in antipropagating 
arrangement so that  Doppler broadening can also be eliminated resulting in highly 
resolved spectra. 

The selection of levels involved is controlled by Franck-Condon factors be- 
tween the two electronic states so an additional requirement for good SEP spectra 
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is that the two potential surfaces should be sufficiently different. This is automati- 
cally satisfied when electronic excitation results in major changes in geometry. The 
method was originally applied to the B *--- X system of iodine (I2). 

Other versions of the SEP experiment are also known with different detec- 
tion methods, such as polarization-labelling (Brand et al [18]). For a review see: 
Hamilton et al [58]. 

The SEP method has been used extensively on the acetylene (C2H2) molecule, 
and many statistical tests were performed (Abramson et al [1,2,3]; Engel and Levine 
[37]; Farantos [39]; Holme and Levine [63,64,65]; Pique et al [94,95,96]; Sumpter and 
Thompson [109]; Sundberg et al [110]). 

Acetylene has vibronic transitions A(1A~) ~ )~(1~+) that  were sampled 

both at about 9550 cm -1 above the vibrationless level of the S0()[ 1~+) state and 
about 28000 cm -1 above the vibrational origin. In the high energy region very 
unusual spectral features were observed; "clumps" of lines, with a clump width of 
about 1.5 cm -1, containing, in high resolution, about 70 individual components. 
An analysis of these features showed that  they all belong to the same J quantum 
number, and vibrational angular momentum quantum number I = 0 (a+). All 
clumps have very similar structure. The intensity distribution within and among 
the clumps showed a convincingly ergodic behaviour. As all other quantum numbers 
cease to be "good" at this high level of excitation, symmetry is completely defined 
by J ,  i and parity so that  appropriate statistical tests could be made. 

Pique et al [95], used the FT technique to deteet strong correlations among 
1500 cm-  1 long pure vibrational sequences in the SEP spectrum around 26500 cm- 1. 
In another work on the same SEP spectra of acetylene Sundberg et al [110] carried 
out both intensity distribution studies and applied statie fluetuation measures (such 
as P(S) and A3(L)). All these measures suggested a near GOE behaviour for highly 
vibrationally exr X levels, in accordance with the results of Abramson et al [3]. 

Pique et al [94] reported a more detailed analysis of the 26000 cm -1 range 
SEP spectra. The smoothed power spectra had time dependent features corre- 
sponding to the correlation hole, the recovery time from it, and recurrences. The 
width of the spectral clumps and that  of their fine structure lines define two time 
scales (te = 20 ps and 267 ps, resp.) that  could be related to the recovery time from 
the correlation hole (tr (3 ps for a single spectral stretch, 45 ps f o r a  spectral 
average). For a GOE-like spectrum the theoretical expectation is that tcorr = te, 
whereas for the HCCH spectra tr ~ t J 6  from which the conclusion was drawn 
that  several symmetry species or good quantum numbers exist even in this high ex- 
citation regime, ttowever, about 1400 cm -1 higher (at 27900 c m - l ,  see: Abramson 
et al [3]) the power spectra suggest fully chaotic dynamies. The works of Pique et 
al [94,95] showed that  the power spectrum provides more dynamical characteriza- 
tion of the statistical behaviour than the single number fluctuation measures (e.g. 
spacing and spectral rigidity). 

One more study on acetylene should be mentioned (Chen et al [25]) vŸ 
the SEP technique in the 11400-15700 cm -1 range above zero-point level. These 
spectra were rotationally resolved and allowed the examination of the coupling 
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of rotation and vibration. There are five vibrational normal modes for acetylene 
(ul,u2(~+), v3(Eª u4(Trg),vs(Tr~,)). The A *--- )�91 electronic excitation involves a 

large change of geometry (the CCH bond angle changes from 180 ~ in the 2�91 state 
to 120 o in the ti, state, and the C - C  bond length increases from 0.1208 nm to 
0.138 nm) so the strongest vibrational progressions ate those of u4 (trans-bending 
mode) and its combination with the C - C  stretch (u2) mode. Reduced term value 
plots showed a significant difference between l = 0 and l = 2 levels. (The 1 quantum 
number measures vibrational angular momentum from the two degenerate modes: 
I -- [14 + 15[). It was found that while the I = 0 levels were unperturbed,  the 1 = 2 
levels ate strongly affected by vibrat ion-rotat ion interactions. 

In spite of these strong perturbations the two-point correlation statistics did 
not exhibit level repulsion, the fluctuation measures were all close to Poissonian 
behaviour. The authors drew the conclusion that  the separation of vibrational and 
rotational degrees of freedom persists even at this high excitation regime. 

The SEP technique has become quite widespread in the study of near disso- 
ciaŸ vibrational behaviour, that is so important  for chemistry, and has enabled 
a number of very interesting molecular dynamic studies. Another well studied ex- 
ample is that  of formaldehyde (CH20),  from the George Harrison Spectroscopy 
Laboratory at the Massachusetts Institute of Technology, Cambridge, USA. 

In a series of papers (Dai et al [29,30]; Reisner et al [104,105]; Vaccaro et al 
[114]) very careful and extensive vibrational-rotational analyses were reported for 
the range 4500-9300 cm -1. In formaldehyde there are strong Coriolis and Fermi 
perturbations that  increase in strength with rising vibrational energy and level 
density. The SEP technique allowed a major simplification of the emission spectra 
and by its use it has become possible to state that molecular rotation is important  
in intramolecular vibrational dynamics. The interactions destroy the goodness of 
vibrational and K rotational quantum numbers, leading to ah increase of vibrational 
density over the usual anharmonic level counts (for such estimates see e.g. Toselli et 
al [113]). Such studies (Dai el al [30]) have, however, led to a surprising conctusion, 
viz., that  the increasing complexity of the spectrum with increasing J value (angular 
momentum) results in diminishing chaotic behaviour. This is ah explicable but 
intriguing finding. 

Among SEP studies on more exotic molecules the case of the Na trimer (Na3) 
(Broyer et al [21]) may be mentioned. A theoretical discussion of the SEP spectrum 
was given by Gomez Llorente et al [46] who concluded that  the SEP spectra may 
be fully interpreted, regarding vibrational dynamics, using a classical Hamiltonian. 

7. C o n c l u s i o n  a n d  o u t l o o k  

This overview paper strived to summarize, perhaps in a rather selective and 
superficial way, the modern use of statistical methods in the analysis of molecular 
spectra. Contrary to the original pessimistic predictions in one of the fundamental 
works in this field, in the review by Brody et al [20]: "Parenthetically ir should be 
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clear that, because of the limited amount of information contained in the fluctua- 
tions, highly detailed level-to-level calculations, as of-ten carried out especially for 
nuclei, should in many cases not be worth the great labor involved in making them" 
(see: p. 469 in [20]), the past ten of so years have displayed steadily growing activ- 
ity in statistical spectroscopy. (To be correct it should be mentioned that  Brody 
et al modified their previous conclusion for cases of interesting symmetry effects!) 
One of the most promising mathematical  techniques appears to be the power spec- 
t rum method, already casting contemporary studies into a framework much more 
interesting for the chemist who aspires to selective laser chemistry and therefore ap- 
preciates the connection between the methods of static spectroscopy and dynamical 
phenomena on the picosecond time scale extractable from the former vŸ Fourier- 
transformation. Let us quote here R. D. Levine in "Mode Selective Chemistry" 
([80]): "The exploration of phase correlation can be conveniently discussed in terms 
of time correlation functions. The simplest is the autocorrelation function of the 
initially excited region., This can be obtained from the experimental spectrum by 
taking its Fourier-transform. Dynamical computations can, of course, directly yield 
the correlation functions. Obtaining the information from ezperiment is however of 
obvious interest" (p. 549 in [80]). 

There is a close link between studies of classical chaos on simple systems rel- 
evant to molecular spectroscopy, and the type of statistical studies reviewed here. 
One aspect is especially interesting and could perhaps contribute to further de- 
velopments: the tole of molecular rotation. Although it is not simple to extract 
molecular levels of known rotational (and overall) symmetry from spectroscopy, the 
interest in such aspects is obvious. Most of the attention so far has been centered 
on vibrational behaviour with rotations eliminated. We know notwithstanding that 
molecular rotat ion has a very important  effect, some of its recognitions stemming 
already from its contributions to classical chaos (Fahrer and Schlier [38]). An even 
more significant aspect is the involvement of rotational dynamics in intramoleeu- 
lar energy redistribution (Knight [71]). Intramolecular state mixing is decisively 
important  for the unravelling of intramolecular photochemical and photophysical 
processes and it has become evident that  it is not enough to consider solely the 
vibrational Hamiltonian in accounting for time-averaged and time-resolved spectro- 
scopic experiments. Intramolecular energy flow is central to the understanding of 
the breaking of molecular bonds, so it is central in efforts to understand chemical 
processes both on the traditional level and induced with the help of lasers. 

The field of statistical spectroscopy is undergoing maturat ion but perhaps it 
has not yet won the battle among spectroscopists who still believe in completely 
assignable spectra, and any failure in obtaining such a full analysis is thought to be 
curable by more exacting studies. It is the hope of the present author that with ah 
increase of statistical activity on difficult assignment cases molecular spectroscopy 
will benefit from such approaches. 
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