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In  t h e  l i t e r a tu re  a belief  is sp read ing  t h a t  t he  s t a t i c  e lect rovac c o u n t e r p a r t s  of  t h e  
T o m i m a t s u - S a t o  so lu t ions  are  known.  However,  as we show, t he  c o u n t e r p a r t  me t r i c s  have  
b e e n  ob t a ined  by  m e a n s  of  a wrong  m e t h o d ,  a n d  do no t  descr ibe  electrovac fields. In  th i s  
p a p e r  we give t he  t rue  s t a t i c  electrovac coun te rpa r t s .  

1. I n t r o d u c t i o n  

In this paper we construct the Bonnor counterparts of the Tomimatsu-Sato 
solutions. The Bonnor transformation connects a stationary vacuum solution of 
the Einstein equation with a static electrovac one [1], [2], [3]; the number of free 
parameters is the same in both solutions, except for a trivial duality rotation in the 
electromagnetic field (always possible in the sourcefree Einstein-Maxwell problem). 
The Tomimatsu-Sato  series is a 3-parameter family of axisymmetric stationary vac- 
uum solutions; the free parameters are the mass, angular momentum, a n d a  number 
influencing the oblateness. These solutions are asymptotically flat; in the central 
regions singularities and aeausalities are reported. The first member of the family 
is the Kerr solution, which is the unique black hole solution with regular horizon 
[4]. Therefore, the TS solutions seem to be the most important  stationary axisym- 
metric vacua available in the present state of art, and so their Bonnor counterparts 
may be important ,  too. Unfortunately, just in the time when the TS solution had 
been found some confusion occurred in the literature about  the form of the Bonnor 
transformation, so now different articles mention different line elements as Bonnor 
counterparts of the Tomimatsu-Sato  metrics. Here we are going to calculate the 
true Bonnor counterparts in a methodical way, and analyze their physical proper- 
ties. 

Section 2 gives the field equation of the stationary axisymmetric electrovac 
problem. Section 3 lists the TS solutions. The essence of controversies about  the 
Bonnor transformation is discussed in Sections 4 and 5. In Section 6 we perform 
the transformation and give the counterpart  metrics. Section 7 investigates the 
asymptotic behaviour of the new solutions, and Section 8 contains some observations 
about the possible sources of the metrics. 
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2. S t a t i ona ry  ax i symmet r i c  e lect rovac m e t r i c s  

Stationary ax:symmetric geometries can be written into the canonical form 

ds 2 = f (d t  + wd@) 2 - f- l[e27(dp2 + dz 2) + p2 d~12], (2.1) 

where no quantity depends on the symmetry coordinates (t, 9).  The Maxwell field 
can be represented by a complex potential ~, which is some combination of the 
time and spaee components of the rector potential A; for the details see [5]. Then, 
the Einstein-Maxwell equations can be rewritten in terms of 7, r f and ~, where 

is defined via 
grad ~ = - ( f ~ / p ) ( n x r o t  "~), (2.2) 

where n is the azimuthal unit vector. 
The general form of the field equations can be found in [5]. Here we ate 

interested only in two special cases. 
Case 1: Stationary axisymmetric vacuum. Then the equations get the form 

f A f  : (g rad  f)2 _ (grad ~)2, 

f 6 ~  :2(grad f * grad ~p), 

7,.  =(p/4f2)( f ,~  +~ ,  p2 - f,~ -~,~ ), 
7,z =(P/2f2) ( f ,p  f ,  z + 9',p W,z ). 

(2.3) 

Case 2: Static axisymmetric electrovac. A theorem exists for this case that 
for any such solution 

= [~[e ic, C = const. (2.4) 

[6]. Then by a trivial duality rotation first ~ can be made real, and henceforth this 
will be the convention. After this the equations read as 

f A f  =(grad f)2 -I- 2f(grad ~)2, 

f A ~  =(grad f * grad ~), 

7,p =(P/4f2)( f ,~  --4fO,~ --f,2 z +4fO,~ ), 

7,z =(P/2 f 2 ) ( f  ,p f ,  z - 4 fO,  a O,z ). 

(2.s) 

Having go t a  solution, the inverse of the original duality rotation, i.e. 

r --* Ce ic (2.6) 

still remains as a freedom (and this is always a freedom of any Einstein-Maxwell 
problem without sources). 

In both cases the background metric is flat cylindrical. The first two equations 
always separate and then there remains a quadrature for 7- 
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There is a tempting structural similarity between the two sets of equation, 
suggesting transformations between their solutions. The first such transformation 
wa~ found by Bonnor [1]. In the present language the transformation formally has 
the form [2], [3] 

f(static, el. v a c ) -  f2(station, vac), 

4~(static. el. vac )=  i~o(station, vac). 

(2.7) 

The symmetry can be verified by a simple substitution. However, by construc- 
tion, both ~ and ~ must be real, otherwise at some places complex conjugates would 
occur. So Eq. (2.7) cannot be taken in face value. The relation holds between com- 
plex analytic extensions of these field quantities. The method was demonstrated in 
[2], reproducing the Bonnor solution [7], which is the static electrovac counterpart 
of the Kerr metric. 

There is at leo.st a good chance that Transformation (2.7) keeps the asymptotic 
flatness. Namely, the first transformation keeps Schwarzschild asymptotics. Then, 
for ~ the asymptotic form is J cos O/r 2, which would lead to a dipole field, although 
the complex extension muy complicate the matter. As for the Bonnor solution, 
from outside the solution is a charged mass dipole. The internal region contains 
both singularities and acausal domains [7] suggesting a rigid support between the 
opposite charges. 

3. The  Tomimatsu -Sa to  series 

Until 1973 there was no other candidate than Kerr us the starting point 
of the transformation (henceforth called Bonnorification). In that year, however, 
Tomimatsu and Sato found ah infinite series with good asymptotics, whose ¡ 
member is the Kerr metric [8]. For later use here we briefly recapitulate the funda- 
mentals of the TS series. 

Consider the stationary axisymmetric vacuum problem, and introduce the 
complex Ernst variable ~: 

f + i~o -- (~ - 1)/(~ + 1). 

Furthermore, introduce the spheroidal coordinates z, y us 

(3.1) 

p ~ (x 2 - 1)1/2(1 - y2)1/21c, (3.2) 

z = zy / c ,  

where c is un appropriate dimensional constant. Then take un Ansatz 

= (eta + iqYa2) / (~ l  + iqY~2), (3.3) 
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where q is a constant and the small Greek symbols are polynomials with the struc- 
ture 

oq = a l ( P ~  (1 - q 2 ) l / 2 , q ~ ; x , f ; g ) ,  etc. (3.4) 

(�91 being a serial number labelling the solution). 
Now ir turns out that  the first two of Eqs (2.3) do have such solutions. The 

equations gire two constraints on the four polynomials; clearly a common factor 
caneels in ~, and then the remaining freedom leaves us with a series of one degree 
of freedom labelled by 6. The constraint equations ate rather complicated; [8] gave 
the first four members of the series of which here we recapitulate only the first two. 
(Remember that  6 gives the Kerr solution.) 

1 px  - 1  +1 0 
2 p2X4 "4" q294 _ 1 - 2 p x ( x  2 - 92) 2px ( z  2 - 1) -2(1 - y2) 

As for the meaning of ~ observe that 

limt~l = p6x62, 

z ~ o o  ( 3 . 5 )  

limfll = p~- lxz2 -1 ,  

X ----4 OO.  

Then, having a whole series of promising stationary solutions, it would have been 
natural to Bonnorify them. 

4. Towards  t h e  B o n n o r i f i e d  TS s o l u t i o n s  

This process, however, was misled by an accident, although some papers prop- 
agate the belief that  the Bonnorified TS solutions had been found. (Instead of 
the full review here we mention only [9]. It discusses a Bonnor-Misra-Pandey- 
Srivastava-Tripathi-Wang family of polarized eharge solutions, saying that  "the K- 
TS family of solutions and the B-MPST-W family of solutions are mathematically 
identical, though of course physically quite different" .) What  happened, had been 
initiated by a sign error. 

In 1973, Misra et al claimed to find a transformation between solutions of 
the stationary vacuum and static electrovac problems [10]. Ir is necessary to follow 
some steps of the authors in their own notation for elarity. 

They started from the static electrovac problem with 

g o o ~ e  2u (4.1) 
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and the electromagnetic field is obtained from a real potential C. (That is, in our 
notation, in Eq. (2.5) f -- e 2u and (b - C.) Then they introduced a complex 
quantity E: 

E -- e" + iC, (4.2) 

they perform a transformation to X as 

E - -  (X - 1)/(X + 1 )  (4.3) 

and then X satisfies the vacuum Weyl equations. Then based on this observation, 
they started back from a solution where X was one of the spheroidal coordinates. 
ttence a static dipole solution was obtained. In their Note added in proof they 
mentioned a similarity to the Bonnor solution. Later in an Erratum [11] they 
corrected a sign error in the energy-momentum tensor. The Erratum states that 
the error can be corrected by writing iC  instead of C and, in the specific example, 
le instead of e. 

In the meantime Wang reformulated their statement in the language of the 
Ernst equation, and applied the symmetry on the TS series to get electrovac solu- 
tions [12]. Unfortunately, she still started from the false energy-momentum tensor. 
The resulting solutions turned out to be some dipoles. Later Ward rediscovered 
the sign error [13], and gave prescriptions to correct them by multiplying the elec- 
tromagnetic potential, charge and dipole parameters by i. (For a review, see [14].) 
Still, 4 years later [9] still gave the counterpart solutions from the original transfor- 
mation. Now let us stop here with four remarks. 

1) It may quite be true that in special cases sign changes in the squared charge 
and dipole momentum suffice to get the solutions of the correct Einstein-Maxwell 
system from those of the false ones, but this is not necessarily so in general, for 
solutions of many parameters. The TS solutions contain a lot of parameters (mainly 
number constants), and Misra et al's Erratum did not deal with the TS series. 

2) The suggested corrections inelude imaginary values for parameters real by 
construetion. 

3) There is an uncertainty in the literature about the static electrovac eoun- 
terparts of the TS solutions. 

4) Even that is doubtful, if the Bonnor counterparts have already been manu- 
factured at all. To my knowledge nobody directly calculated them. Wang's solutions 
ate the false counterparts, and [9] regards the Wang line elements as the Bonnor 
counterparts. 

5. On the  c o n n e c t i o n  of  th e  B o n n o r  and  
M i s r a - P a n d e y - S r i v a s t  ava-Tr ipa t  hi t rans format ions  

[11] (the final Note) suggests a close eonneetion between the two generating 
methods and ir seems that [9] identifies them with each other. This is indeed so, 
except for the sign error. 
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Namely, consider Eqs (4.1-3). In the Ernst language they would mean simply 

f _.. f2, (5.1) 
~-- ,  r 

(Observe that e u stands for f ,  C for to and X for ~.) By performing the suggested 
r C ~ i C  we arrive to (2.7), which is Bonnorifieation. Of course, ~ must 
not be imaginary, but that problem was discussed in Seetio¡ 2. So by r 
the field equations the r symmetry of [11] and [12] is just Bonnori¡ 
Therefore the Wang series is the fMse Bonnor eounterpart of the TS series. 

Now, if one needs the true Bonnor r two possibilities exists. Ei- 
ther one may try to perform all the sign changes on the Wang line elements, con- 
taining a lot of constants in the polynomials ni,/3~, or one can calculate the correct 
formulae by the correct method ab initio. The seeond way seems to be safer. 

6. The  t r ans fo rma t ion  

We want to perform Transformation (2.7) on the TS solutions. Then first we 
need the original f and ~0. For them Eqs (3.1-4) give 

f = [Ot.12 __ ~12 _ir. q2y2(~~ __/~2'2)1/[(~1 ..[_ ,~1)2 + q2y2(Ot. 2 + /32)21, 
(6.1) 

~, = -2q~,(~,~= - ~=/3,)/[(~~ +/~,)= + q2v=(~= +/32)21, 

Now we need a complex extension of ~o in order to choose the imaginary 
special value for the transformation. The possibilities are restricted, because the 
coordinates must remain real and changes in the polynomials ni,/3i would generally 
complexify f a s  well. However, this does not happen if 

q --* iq, (6.2) 

with all the number constants in a, q unehanged. (This, as we shall see, is not at 
all a general rule, but is aceidentally true for the whole TS series beeause of the 
special structure of the polynomials.) Note that by eonstruction 

p ---* p* = (1 + q2)a12. (6.3) 

Then all polynomials ehange into their starred eounterparts aceording to the scheme 

a~ = al(p*, -q=; z, US; 6), etc. (6.4) 

Now we ate in the position to perform the transformation. Aecording to (2.7) we 
get 

f(,,. ,~) = v = / W  2, 

= 2 ~ot *~'* r ,~)  - qu~ lp2 - ~~/3~)/w, 
y _ ~~, _/3~~ _ q2u2(~;2 _/3~2), (6.5) 

w _= (~~ +/3r -q=u~(~~  +/3~)~. 
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The remaining two of Eqs (2.5) give the new 7- Since the coordinates are 
unchanged, and the polynomials depend on them in the old way except for the 
parameter values instead of p and q2, Wang's result [12] is valid, except that the 
polynomials must be starred. I.e. 

"fr ~ .c )  = ~ ~ 2  _ f~i~ _ q 2 y ~ ( ~ 1 2  _ Z~~)/v, 
V = p * 2 6 ( z 2  - y 2 )  6~. (6.6) 

Now we can reconstruct the metric tensor in the usual way [2], [15], [16]. The result 
is as follows: 

dF = (U2/W 2) di 2 - c - 2 { U Z W 2 f - s ~ ( z  2 -  

_ y2)l-462[(x2 _ 1)-1 dz2 + (1 - y2)-1 dy2]_k 

+ ( W 2 / U 2 ) ( z  2 - 1)(1 - y2) d@2}, 

(6.7) 

where U and W are given in Eq. (6.5), p* in (6.3), andc is the dimensional constant 
introduced together with the spheroidal coordinates. The potential ~ is given in 
Eq. (6.5); there it is real and then is equal to the only nonzero component Ao 
(pure electrostatic ¡ As told, still a special duality rotation (2.6) is possible to 
transform some part of the electric field into a magnetic one of the same forro. 

Of course, our line element differs from that of [12] due to the starring of the 
polynomials. It also differs from the formula given in [9]. Namely, there the original 
vacuum 7 appears in the line element, with a prefactor 4. Now, the prefactor is 
correct as shown directly by the second two of Eqs (2.5), but 7 must feel the effects 
of starring the polynomials a, /~ as well. At the same time, it turns out that in 
this special case the solutions might, indeed, have been obtained in the indirect 
way suggested in [14] in the following steps. First perform a transformation with 
the false energy-momentum tensor, resulting in the formulae of [12]; then change q 
into imaginary, and take this into account in p, and change no other parameters; 
finally change the now imaginary 4~ back to real. However, this possibility to get 
the solution in two ways seems to be the consequence of the special structure of the 
solution. Namely, observe that in Eq. (6.1) there is only one dimensional parameter 
in the two quantities f and ~; in addition f is ah even function of this parameter 
q while ~o is its odd function. This gave the possibility of making ~, imaginary and 
keeping f real by simply writing iq instead of q. For more complicated stationary 
vacua such thumb rules would not work and even now it was safer to go through 
the steps of the direct way. 

7. The behaviour of  the  solutions 

Now, we are going to investigate the behaviour and possible physical meaning 
of the Bonnor counterparts of the Tomimatsu-Sato solutions. In this we concen- 
trate on the asymptotic (r - .  c~) region. For the central one [7] and [13] report 
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singularities and acausal regions when �91 = 1. No doubt, such anomalies arise from 
the similar ones of the original TS solutions; e.g. Eq. (2.7) clearly shows that 
c o o r d i n a t e  singularities survive the transformation. 

In the asymptotic region Eq. (3.2) gives 

X ----+ cr~ 

y = Cos 9. (7.1) 

Therefore, the asymptotic region lies at x --* oo. There, neglecting the a(z  -2) 
terms, 

ds 2 ~(1 - 2�91 + q ~ c r ) ) d t  2 - (1 + 28/(X/Ÿ + q2cr)) .  

{ d r  ~ + r2(dfl  2 + sin 2 O d i2)} .  (7.2) 

So an asymptotically Schwarzschild line element has been obtained with the mass 
parameter 

m = �91  + q2) (7.3) 

and now one sees the physical meaning of the dimensional constant c .  

For the asymptotics of the electromagnetic potential �9 one gets 

= - - e i Q 2 m 2 q r  - 2  cos R(1 -k m / r )  -{- a( r -4) .  (7.4) 

(The leading term is the same as obtained by Wang [12].) 
We must confess that the asymptotic formulae (7.2-4) have been deduced 

only from the first four TS solutions, and no effort was made to prove their general 
validity Ÿ al1 �91 However, as seen, in the Schwarzschild coordinates {t, r, 0, q~} the 
obtained asymptotic formulae do not even contain the serial parameter aL 

8. C o n c l u s i o n s  

For the physical meaning of the Bonnorified Tomimatsu-Sato solutions we 
can deduce the following facts. For Q = 0 (no duality rotation) one sees a dipole 
electtic field. Since in �9 the r -3 term comes only from the Schwarzschild metric, 
the quadrupole momcntum is 0. This, together with the complete axial symmetry, 
implies a globally neutral system of collinear electric charges. In Minkowski space 
such a system could not be stable; here singularities in the central region may 
correspond to rigid supports for the point sources. So one can conclude that m2q 
is the net dipole momentum eR. The duality rotation may produce some magnetic 
dipole momentum as well. While its source may be a circular current, this is alien 
from a static solution, so a system of magnetic monopoles is more convenient. 
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For the mass, Eq. (7.3) gives a limiting value for vacuum (q = 0). Therefore 
it would be tempting to regard m a s  a result of the point masses + field energy. 
However, with increasing eleetric ¡ mis  decreasing. So it is more prudent to re- 
strain ourselves from contemplating on the origin of the mass~ maybe partly hidden 
in the singular region. 

So, the Bonnor counterparts of the Tomimatsu-Sato solutions describe the 
a.symptotically flat external metric of some globally neutral collinear structures of 
point electric charges with rigid supports. 
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