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Gauge problems arising in recent multiphoton ionisation computations are discussed.
The recent results of Reiss [18],[10] based on his earlier formulae [20] are queried.

Nowadays the problem of multiphoton stripping of atoms including the above-
threshold ionisation phenomena is intensely investigated both experimentally [1]-(8]
and theoretically [9}-[{16]. Some of the experiments [7] can be fairly well explained
by the theory of Keldysh [17).

In two recent articles [18],(19] the spectrum of emitted atomic electrons origi-
nated from multiphoton ionisation of xenon was analysed and qualitative agreement
was found with above-threshold ionisation experiments [6], [8]. Both articles [18],
[19] are based on an earlier work of Reiss [20], where the effect of intense radiation
field on weakly bound systems was discussed in a great detail using Volkov [21]
solutions as final states but contrary to Keldysh [17], who used the electric-dipole
(Goppert-Mayer, xE) gauge, Reiss [20] worked in the radiation (Coulomb, pA)
gauge. It was claimed by Reiss {20] that the approximation used was equivalent
to that of Keldysh [17]. However, differences in the formulae for the S matrix el-
ements and transition probabilities per unit time appeared, although these must
be invariant under gauge transformation. We think that these differences are the
consequence of an incorrect use of the radiation gauge in Reiss’s paper [20].

In order to discuss the situation we show that the S matrix element computed
by Keldysh [17] in the electric-dipole gauge remains unchanged under transforma-
tion into the radiation gauge if one carefully carries out this transformation [22],
[28], i.e. the S matrix element is gauge invariant as it is expected. Doing this we
point out those steps of [20] which lead to formulae different from that of [17]. As
the recent articles [18], [19] are based on the criticised formulae of [20] the results
of these papers are also questioned.

The S matrix element, which describes the photodetachment, can be derived
from formula (3) of [20]

(S-1)p= —%/dt/dsr $7 (r,8) Po(r,¢) ¢ (r,t), (1)

where 11:;' is the final state of the free charged particle in the presence of the electro-
magnetic field and 47 is the initial, unperturbed bound state, which is well known.
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P9(r,t) stands for that term which will be considered as perturbation in the time-
dependent Schrodinger equation. The index g notes that the wave functions and
the operator P depend on the choice of gauge.

Expression (1) is evaluated by Keldysh [17] in the electric-dipole gauge and
by Reiss [20] in the radiation gauge. Therefore, first we briefly summarize those well
known results which we need in order to treat the gauge transformation problem
(22], [23].

The Schrodinger equation is written in the following form

{e°(t) + F7(t)} ¢9(x,t) = 0, (2)

where €(t) is the time-dependent instantaneous energy operator of the system
1 e 2
=2 (p-F% As
o) = o (P~ 5 A1) +V(r) (3)
and F9(t) is defined as

Fo(t) = eU9(r, 1) ~ ih - (@)
Here p is the operator associated with the momentum of the particle, which has a
gauge-independent form p= —iAV, U, and AY are the scalar and vector potentials,
respectively, describing the electromagnetic radiation and V (r) stands for the atomic
potential. If we transform the electromagnetic potentials from a gauge g to another
one ¢ as usual, then the operators (e.g. operator O) and the state vector of a
physical system are also transformed by a unitary transformation T'(r,t) as

0% =T(r,t) 0% T*(r,t), (5a)
¥ (r,t) = T(r,t) ¥9(z, 1), (5)

with
T(r,t) = exp (se x(r,t)/hc). (6)

Here x(r,t) is an arbitrary function, which governs gauge transformation. The
function

Xer(r,t) = A(t).r (7)
corresponds to that gauge transformation which transforms from the electric-dipole
gauge into the radiation gauge. Here and throughout the paper the long wavelength

approximation (LWA) is used.
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Only those operators can correspond to physical quantities which have gauge
invariant eigenvalues. The instantaneous energy operator £7(t), the operator F¥(t)
and the mechanical momentum x¢ = p — e¢/c A7 all represent physical quantities.
In the LWA the eigenvalues of €9 are time-independent and in the electric-dipole
gauge e£ = H, with Hy = p?/2m + V (r), which is the unperturbed Hamiltonian
and represents a nonphysical quantity. Thus the eigenvalues of £ in all gauges
are equal to the eigenvalues of Ho which are usually known. Furthermore, the
eigenstates of the two operators are also identical in the electric-dipole gauge.

Now in order to reconstruct Keldysh’s calculation we consider the Schrodinger
equation in the electric dipole gauge. In this case AF = 0 and UZ = —1.E 50 (2)

reads
{Ho —ih 8/8 t — er.E(t)} & (r,t) = O, (8)

where we used the ¢f = Hj, and the FE = —ih 3/ t — er.E(t) equalities. The
index E refers to the electric-dipole gauge. If we start the solution of (8) with the
time dependent wavefunction

¥y, (r,t) = exp (—1Ent/h) &z}, (9)

which satisfies the [Hp — ik 3/9 t] ¢F (r,t) = O equation, then the —er.E(t) term
can be considered as perturbation in (1), i.e.

PE(r,t) = —er E(t). (10)

The wave function ®,,(r) is that eigenstate of Hy which has an eigenvalue E,,. Thus
YE(r,t) of the form (9) corresponds to the initial state in (1). Before obtaining the
final state we restrict ourself to the linearly polarized case investigated by Keldysh
{17]- Then the electric field sirength is given as E{t}) = E cos{wt). As final state
we use the wavefunction of a free electron in this field (|17}, formula (6))

t/)f: (r,t) = exp %{ (p + %‘:— sin(wt)) ‘r—

_/t% ( + % sin(wr))zdr}- (11)

If we use in (1) the initial, final states and the perturbation PE given above (for-
mulas (9), (11) and (10), respectively), then we get

(S - 1) = -% / dt/ &r pE* (x,1) PE(r,t) vE(r,1) (12)

and from (12) with the usual procedure the transition probability per unit time of
the multiphoton detachment process can be obtained. This is Keldysh’s result.
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As a next step we show that if one evaluates (1) in the radiation gauge then
the result is also (12). Using the rules of the gauge transformation (5a,5b) and
formulae (6) and (7) we obtain the initial and final state wave functions and the
operator of perturbation in the radiation gauge as

¥ (r,t) = Ter(r,t) ¥* (r,?) (13a)

and
P®(r,t) = Tgr(r,t) PE(r,t) Tag(r,¢) (13b)

with
Ter(r,t) = exp (ier.A(t)/hc), (14)

where the index R refers to the radiation gauge. As the operators Tgr and PE are
commuting, i.e. Tgp PE = PE Tgp and Tgp is unitary

PE(r,t) = PE(r,1). (15)
Putting (15) into (1), using(13a) and again the unitarity of Tgr the equivalence of
the result with (12) becomes obvious.

Finally, in order to point out the inconsistencies in the calculation of Reisa
[20] we discuss the problem once more in detail.

We start with the problem of what kind of state can be considered as a bound,
initial state of definite energy in the radiation gauge. In view of the considerations
given at the beginning of this comment it seems obvious that the eigenfunctions of
the instantaneous energy operator (3) are appropriate for this. Their eigenvalues

are identical with the eigenvalues of Hp and the wavefunctions in the radiation
gauge can be obtained from (9) applying transformation (13a) with (14)

Vs (r,t) = exp (ser.A(t)/he) ¥y (r, ). (16)

These wave functions obey the equation
e (t) ¥z (r,t) = En 97 (r,8). (17)
However, in the radiation gauge Reiss [20] uses an incorrect initial state of the form
¥i(r,t) = Pn(r) exp (—sEnt/h), (18)
which is exactly the initial wave function ¥Z in the electric-dipole gauge given by (9),
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Applying again transformation (13a) with (14) on (11) we obtain the final
state in the radiation gauge which is of Volkov type [21]

: ! 2
1/);2(r,t) = exp% pr— / ZLm <p+ %ﬂ_ sin(_wr)) dr p. (19)
0
This is used also by Reiss [20] as final state. Thus the initial and final states of
Reiss are inconsistent as they are taken at different gauges.
The incorrect use of the initial state wave function by Reiss results in a per-
turbation term [20]

eA(t).(—1hV)  eZA(t)?
_+.
mec 2mc?

PE(r t) = -

(20)

which is also incorrect. This can be shown in the following way. In the radiation
gauge UR = 0 and AR = A(t), thus the Schrodinger equation (2) has the form

{”(t) —ih 8/8 t} ¢F(r,t) =0, (21)
with
eR(t) = 2_1”-1 (p- EA(t))z +V(r). (22)

We make a formal modification of this equation adding to and subtracting from it
the same quantity er.E(t). Then (21) can be written as

{[e®(t) —1h 3/3 t + ex .E(t)] - er.E(t)} ¥ (r,t) = 0. (23)
Substituting (16) into (23) and using (17) and
E(t) = - - A(1), (24)

we can recognize that the effect of the square bracket on the wave function (16)
gives null. Thus, contrary to Reiss [20], the last term in (23) has to be considered
as perturbation in the radiation gauge

PR = —er E(t), (25)

which, in accordance with (15), is the same as in the case of electric-dipole gauge
(10). This follows from the correct choice of the initial state (16).

Summarizing, our statements are as follows:

Reiss [20] uses improper initial state wave function and improper perturbation
term (Eq. (20) in this note) in the radiation gauge.

As a consequence, formulae (11), (12) and (26), (42) for (S — 1)s; and the
transition probabilities per unit time (31), (32) and (45) of Reiss [20] are not correct.
Formula (45), which describes the case of linear polarization, significantly differs
from the correct result of Keldysh [17], [18].

Finally the results of recent calculations [18], [19] are also questionable because
these are based on the formulae criticized above.

The author is indebted to A. Téth for valuable discussions.
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