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A simple dynamical scattering potential  for electron ditfraction by a free surface of 
a solid s tate  sample is proposed. A few monoatomic layers parallel to the marŸ of the 
scattering sample are t reated a s a  thin film while the other par t  of the ~~mple is conaidered 
a s a  substrate.  The  scattering potential  of the sample is expre~ed in terrns of the mean 
square displacement oŸ atoms and  the electron denaity distr ibution a t a  scattering surface 
of the thin filra sample. The obtained formula for the scattering potent ial  in special casca 
lends to results of Dvoriankin's paper  [3]. The proposed surfaee sca t te ¡  potential  can 
be used to describe low energy electron diffraction (LEED) as well as high energy electron 
diffraction (HEED) experimenta. 

1. In t roduc t ion  

In the present paper we propose a simple dynamical scattering potential for 
electron diffraction by a solid state sample with a free surface. The sample is treated 
as a thin film evaporated on a substrate. We regard a thin film a s a  system of a 
few monoatomic layers parallel to the surface of the sample, while the other part of 
the sample is considered as the substrate. 

For such samples we have calculated a scattering potential including the ex- 
change of the incident electrons with the electrons of the sample. Including the 
exchange part of the scattering potential gives a possibility to use of the scattering 
potential to describe a polarized electron diffraction experiment in the cases of low 
energy electron diffraction (LEED) as well as of high energy electron diffraction 
(tIEED). 

The proposed surface scattering potential in its analytical form is a temper- 
ature and thickness dependent quantity and it is expressed in terms of the mean 
square displacement of atoms and the electron density distribution of the thin film. 
The division of the scattering film into the thin film and the substrate allows one 
to compute the dynamical parameters of the scattering potential by means of the 
field theories developed for thin films [2]. 
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2. The  sca t te r ing  poten t ia l  for e lectron diffraction 
by a sample wi th  free surface 

We shall assume that a spin polarized electron beam is incident on a perfectly 
clean, well ordered surface of a sample. Our interest will focus on the elastically 
scattering electrons, because they produce almost all the structure in the diffraction 
patterns. 

To construct the scattering potential we divide the scattering sample into a 
thin film and a substrate. By the thin film we understand n monoatomic layers 
parallel to the surface. They are numbered by v, starting with u = I for the 
free surface of the film and ¡ with u = n for the atornic layer evaporated 
directly on the substrate. Any monoatomic layer v we divide into two-dimensional 
elementary cells and the position of any cell inside the v-th atomic layer related to 
the cell chosen as the origin of the coordinate system is given by a two-dimensional 

"1/ "1/ *M vector jv = aj~ + b3u, where a and b are lattice vectors and Yx,Yy denote integer 
numbers. 

Let the z-axis of the coordinate system be perpendicular to the surface and 
directed into the inside of the film. A position of any atom in the film can be 
described by the rector 

(1) 

where p~ describes the position of an s-th atom belonging to the (~j~)-th cell related 
to the origin of the local coordinate system bounded with the (vjv)-th cell inside 
the film. 

From the point of view of the diffraction problem the thin film is regarded as 
a system of n �9 N 2 bounded atoms, where N 2 denotes the number of atoms in any 
v-th layer parallel to the surface. 

Such a system produces a suitable effective scattering potential Iocalized 
round about each lattice node of the film. In general case, the scattering potential of 
the (vj~s)-th atom of the thin film depends on the position ( r -  rt~j.,) and spin co- 
ordinates so of the diffracted electrons. Denoting this potential by V ( r - R ~ j . , ,  so), 
a total scattering potential on the position r inside the film and spin so V(r, so) can 
be treated in a first approximation as the superposition of the effective potentials 
of the individual atoms from which the film is built: 

v0",,o) = ~ V(r - R~j~,,,o). (2) 
vjv 8 

By the effective potential of the individual atom we understand the potential pro- 
duced by a given atom in the presence of other atoms of the thin film and the 
substrate on which the film is evaporated. This potential can be constructed by a 
modification of the scattering potential of a free atom. 

Now, let us consider the scattering of an electron by free atom. Denoting by 
ro and so the position and spin coordinates of the incident electron, and by r ls l ,  
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r2s2,. . .rNSN, the position and spin coordinates of the atomic electrons, where N 
denotes the total number of ehctrons in the atom, we should describe the scattering 
problem by means of a wave function ~ = ~(r0s0, r l s l , . . . rNs t r  which depends 
on all coordinates of the (N + 1) electrons. 

The many body function ~ has to satisfy an equation which we write in the 
forro: 

?~2 V 2 - Z e 2  + ~ = Et~,  (3 )  
=o -T~m r i .= ,=. 1 Ir,--r~l 

where (-h 2 V 2/2m) is the operator of the kinetic enegy of the j- th electron, so that 
~ ( - h  ~ g7 2/2m) describes the kinetic energy of the system of N atomic ehctrons 
plus an ineident electron. The term ~~,(-Ze=/rj) is the potential energy of al1 the 
eletrons in the field of nucleus, the third term in gq. (3) stands for the Coulomb 
interaction between electrons. Et denotes the total energy of the system and Ze the 
nuclear charge while j numbers the electrons of the system. 

The difficulty in Eq. (3) is that electrons influence one another via Coulomb 
repulsion and the incident electron may distort wave functions of the atomic elec- 
trons by its own electrostatic field correlating their motion with its own and changing 
the potential seen by the incident ehctron itself. 

Ir the free atom wave function is known, we can express the many body 
function by means of the free atom functions r162162 as 
follows [1] 

r = ~--~e,r162 Ct~(~Nsn), (4) 
P 

where ~(r0s0) is the incident electron's function. 
The sum is over permutations of the particle coordinates and cp takes the value 

of + 1 ir permutation p can be achieved by exchanging an even number of particle 
coordinates, - 1  for aja odd number. There are (N + 1)! possible permutations. 

Since the atom state part of �9 is known, we want to eliminate this part from 
our equations and concentrate on #b(r0s0) being the incident electron wave function. 

Multiplying Eq. (3) by 

X" = ~b~ (rl sl)r ( r 2 s 2 )  �9 �9 �9 r ( r / r  (5 )  

integrating over space, and summing over spin coordinates of X we obtain the equa- 
tion for r 

[ h2 Ir opr.] -2"mm ~7~ -Ze'~2 ~ / ~. ]ro _ r j  I .,j r 

f ~ ; ( r i s i )~(r js i )  ~ .  ,/, - e ' ~ .  ~ ~'~o : r--'~'[ ' - -r jv/j(r0s0)= Eo*(roso), 
j s i  

where E0 denotes the energy of the incident electron. 

(6) 
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The last equation is a one-electron equation for the wave function of the 
incident electron and it defnes the effective scattering potential of the free atom 
V0(r0s0) 

V0(r0s0) - ---eZe ~ / ~ , r  ,'o . F o - ~ j l  ds"+V~x~176176 (7) 

where by Vexc(ros0) we denote the so called exchange potential, which is defined by 
the equation: 

V,,r162 = ~ ~ f d% r (~~ ' j  )~(~~ '~) cj(~o,o) 
i ,, ]ro-r~l 

(s) 

The two first terms on the right hand side of the equation (7) have a simple 
interpretation as the electrostatic potentials produced by the nucleus and the elec- 
tron density distribution of the atom, respcctively. The exchange potential defined 
by (8) is non-local potential and it arises out of considerations of antisymmetry of 
the wave function under exchange of particle coordinates, because no two electrons 
can be in the same place at the same time, hence each electron is surrounded by a 
region depleted of other electrons and hence lower potential. 

Writing the one-electron wave function ~j(rj$j) as  ~ j ( r j s j )  ----- ~j(rj )xj(sj ) , 
where Xi(Si) is the spin coordinate dependent part of the wave function of the j-th 
atomic electron while r  is space coordinate dependent only, we can express the 
electrostatic potential of atomic electrons by means of the electron distribution in 
the atom pi (r) as: 

e~~_~�91 ]r (r, s, )__] 2 - E f d 3  r pi(r) 
j . ,  ]To-r~l e : I ~ - ; l  

(9) 

Analogically, writing r = r where r/(s0) is the spin wave function of 
an incident electron, the exchange potential can be written as 

Vexc(roso) = ~ ~ X~(sj)T}(sj)xj(so)~7*(so) 
J . ,  i~(,o)1 ~ �9 b_(~o) =_.~.o,.,(ro),)--~~xi 

( lo )  

where 
b (ro) - r (ro)r (ro) f darj r162 

I r  2 I-~o-Vj[ (11) 

and the sum is over the atomic electrons which have the same spin as the incident 
electron. 

In this way a full scattering potential of a free atom takes the forro: 

V~t (roso) = --eZro - e ~ .  Jf IroPJ(r)- rl dar + 5-'~ 6~o,,j Zi(ro ) . ( 12) 
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The above formula will be a basis to construct the scattering potential for the 
electrons scattered by thin fihns. 

It is known that  crystal lattice atoms at a given temperature take part in the 
tcmperature vibrations around their equilibrium position and the influence of the 
temperature on the scattering potential nmst be taken into consideration defining 
a dynamic scattering potential for an atom as [3, 7] 

f I I ~ 3 VT(r, so) = Vat(r , s 0 ) T ( r -  r )d r ,  (13) 

where T(r )  describes a distribution of the mass centrc of an atom in its vibra- 
tions around the equilibrium position. For the atom bounded in crystal T(r )  is 
determined by the lattice dynamics. 

Other thing we would like to stress is that placing an atom in a lattice site 
of ah infinite size sample docs not change the mean square displacement which 
characterizes the dynamics of the atom in the sample and it is the same for every 
atom. However, in the thin film crystal case the surface atoms of any solid body ate 
in a situation which is different from that  of atoms situated in the inside of the film. 
The surface atoms feel the changes in the geometry of the neighbours surrounding 
them caused by the missing neighbours, by the spontaneous deformation of the 
lattice near the surface. As a result, the scattering potential near the surface must 
be differcnt from that  inside of a bulk material. It is to be expected that  the changes 
of the elcctronic structure near the surface must cause some changes of the physical 
properties related to the surface. 

To take above into consideration we introduce the effective numbers of elec- 
trons per j - th  orbital of the (uj~s) atom in the film (n~j ,) which are the same for 
the atoms in the u-th monoatomic layer but they create a distribution in the direc- 
tion perpendicular to the surface. The redistribution of the electronic charge in the 
film creates some new boundary conditions for lattice vibrations which must influ- 
ence the temperature  dependence of the mcan square displacements of the atoms in 
other atomic layers parallel to the surfa~e. Denoting the mean square displacement 
of the (~,j~s)-th atom in the film by B~jv, we can write 

B~j,, -- ((61"l.vj.,) 2) = B~,, (14) 

as well as for the electron density distribution of the j - th  orbital 

<.{j.,) = (n{,>, (15) 

where the symbol ( . . . )  stands for the thermodynamical average, and the above 
relations ate the consequence of the translation symmetry of the film. 

By means of the above dynamical parameters B~, and (n~a I we propose the 
following modification of the scattering potential of the atom in the (uj~s)-th site 
of the fihn: 

/ ~ I,o-Rvjvo-/I 2 
v r ( ~ o  - R ~ j ~ , . ~ o )  - -  ( 2 ~ B ~ . ) - ~  ~ ~ ' V , , ( ~ -  - R ~ j ~ ~ . ~ o ) ~ -  ~~~. . (16)  
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12 where T(r ' )  = (2~rB. . ) - ]  exp ( - I r 0 - R . j . . - r  I /2B,,.) describes the distribution 
of the mass centre of the (vjvs)-th atom in its temperature vibrations [3] and in 

place of the free atom potential Vat given by (12) we take ~'at which we define as 

Vat(ro - R v j . , , s 0 )  -- Ze eZ(n(o)/p,(r,~~~~.)d3rj+ 
Iro - l 'L , j . ,  l i [ro 

+ e Z(n{,)Ij(ro - R,j.0)6,o0 ̀ . 
J 

(17) 

To obtain an analytic formula for the scattering potential of the spin polarized 
electrons scattered by thin filrns using the formulae (2), (16) and (17) we have to 
know the atomic orbitals of a free atom. By means of these orbitals the quantities 
Pi and Ii in formula (17) are expressed. For that we restrict our next considerations 
to the case when the free atom orbitals are spherically symmetric and we take them 
in the Slater forro [1, 4]: 

Cj ( r )  = A j r  ~'' exp ()~jr), (18) 

where pi,  Aj ate the numerical parameters given for all free atoms in [4], and Aj is 
the normalization constant. If we now write the incident electron wave function in 
the form of the plane wave: 

r = exp (ik r) (19) 

where k is the wave vector of the incident electron, we can insert expressions (18) 
and (19) into the equation (17) and calculate the static scattering potential of (vj~s) 

a tom Vat(r0 - Rvj~,,  so) of the film. We have: 

Ze 
V,,t ( ( ro - I 'Lvj~.), 8o) -- 

q I 
Iro-R~j~.l 

Aj(nv') Iro - R~j~,I Irj - Rvj~,12uJ+2e-2~jlrj-ltvJ~'ldrj+ 
J o 

o ~  

Iro-l%~~.l 

2 j +4~re ~ A i (%,)[ro - l"t~j~, I~'J e - (~ j+ i k ' ) t ' ~  
J 

Iro-Rvj~.l 
[ 1 

* Iro -- R . j . .  I 

o o  

I ro- rt~j~,l 

/ [rj - R.j.,[m+2e-()'i-ik')lri-R~jv'ldrj+ 

Ir -- Rvj~sl~J+ l e-(A~-ik' )lrj-R~j~~ . (20) 
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Integrating over r~ by means of the standard formulae [5]: 
u 

/ x v-1 exp (-#x)dz = #-"7(v,#u),  

0 
c o  

/ x " - I  exp  ( - s x ) d ~  = u - ' r ( ~ , s ~ ) ,  

u 

where 7(v, Su) and r(v, su) are so-called incomplete gamma functions, as the result 
we obtain 

Ze _ 47reEA~ (nSv.) 
v~' I r -  R.~~ .I  i (2~i)~"~ +~*  

* [ 7 (p j+3 ' I r~  ] 
Iro -- R~a~, 12Aj + F(#j + 2, Iro - R.j.o 12Aj) + 

1 

[ -, ] , 7 ( # j  + 3, ()U - ,k )[ro - R ~ j . , [ )  
. . . . . . . .  ~ + r ( m  + 2, (~ ,  - ik )1~o - r t . j~~  . 
1~o - rt . j~ ,  [(~j - ,k ) 

( 2 t i  

Next, the calcu|ation for the dynamical scattering potential by means of the formula 

(16) ana explidt form of Vat given by (21) leads to the expression 

~ (1/B~')2k V~)(B~,~ so), (22) VT(r-- R~j.,,so) = e- ,s. .  (2k + 1)! 
k=O 

where  

c o  

)(B.o,So) = (27rB.~ 47rr'2k+2e- ~-~-7~. �9 V~t(r ,so)dr = 
o 

---- Z e ( F o - 1 ) k  - -4we ~--~ Ai (n,~ + 1)! , (2,~i)2.j+2 * 
J 

[2Si + 2 2uj+2 ----~j(Fo - 1 ) k  - (2Si + 2) Z (2Ai)'~-1 (F2~~ m-~)~+ 
* ' r n !  ' 

rn----O 

~m+l (2~j).~ ] 

m = 0  j 

1 ~ ( b ~ Ÿ  * + X i  ~ (Fo;,'~+u,)J:i' * ( u j + ~ ) (  F ~ ; , . , _ , ) ~ N -  =o . . .  . ,  = 

(23) 
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where F~n = rne -xr and (Fz,.) stands for the following integral for the (vj~s) - site 
of the lattice 

(Fz,n)~ - (2~rBut) -~ [47rr 2k+~ exp ( - , ~ / 2 B . ) F . . ( , ) d ,  

J ~ 2 le�88 2k+n+~ )( - 4(2~rB,,)- (Bu,)a~-*'Ÿ + n + ). _( ) (xV/-~u, 
h) 

In the la.st expression Dn (x) denotes the standard function of the parabolic cylinder 
�9 , 1 . , . 

[5], whlle the quantxty flj whlch appears m (23) m defined as 

B j = 2 A j - i k ( l - e o s O ) = 2 ( A j - i k s i n 2 ( ~ ) ) ,  (25) 

where O is the seattering angle of the eleetrons and 13j = Aj - ik. 
The final result for the total seattering potential produeed by thin films for 

the spin polarized eleetrons takes the forro 

- " - " ' J " ?  ~ (1/b~t)2 ~'(~)(Bv,, So) (26) VT(r, so) = ~ e '"-. (2k + 1)! 
k---0 vi,, s 

and V~)(B, , ,  so) is given by expressions (23,24) and (25). 

3. Cone lus ions  

The formulae obtained for the scattering potential have interesting properties. 
At first this potential is finite at every lattiee point R~j~, eontrary to the effeetive 
potential of the free atom which is infinite at the middle of the atom. Another 
thing we point out is that one can obtain from it the forros used in literature [3,7]. 
Namely, if we ignore the exchange part of this potential and restrict a consideration 
to the high temperature limit, which means the high values of B~, the formula (26) 
can be approximated and for simple cubie lattiee it takes the forro: 

VT(") ~-- ~ e-"Ÿ ~ VT(~ (27) 
vj~ 

where V(T~ is given by 

V(T~ =Ze(Fo,_l)O - 41r Z eAj( us) (2pi + 1)! (2Ai)2uj+2 (Fo.-x)o- 
i 

2uj+2 2~,+I (2Xi),, ~ ] (2~~) ~-1 
- ( 2 p / +  2) Z m! (F2x,,,n-1)0 + Z m! (F2xs'm)~ = 

m = 0  rrl=0 
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=4~re E ~ j (2/Jj + 1)! j A j ( n v ) ( - ' ~ j )  T~~j''~* 

* (2/Jj + 2) E m! (r~:~~,m-,)o + E mi (F2x.,,.)0 
r n = 0  rn=.0 

393 

and 

~  "~~: - -  (2X~ V ~ - ; ) .  (28) (F2x, . ,~)o = 4 r r ( 2 7 r B , ) - } ( B ) ~ ~ ' ~ ' ( n  + z ) . e  LJ-(n+a) 

The  last two formulae in the hydrogen a tom case, for which the wave function has 
the simplest form lead to the result of  Dworiankin [3]. Ins tead of  the  Slater type of  
function by means of  which the electrostat ic potential  of  free a toms  is calculated one 
can use the electrostat ic potential  of  a free a tom in the St rand and Tietz form [6]: 

= - -  = - -  a x e - b x  r,  
r r X 

(29) 

where ax and bx are numerical parameters  given in [6]. In this case the formulae 
(27-29) give the results we have obtained in the papers [7, 8]. 

Let us remark  tha t  the surface scat ter ing potential  given by the formulae (26, 
23-25) due to its general and analytical  forrn can be very useful for the description of 
the L E E D  as well as of  the I I E E D  experiments.  Dur to including the exchange par t  
of  the scat ter ing potent ia l  it can be used to search the magnet ic  sample surfaces by 
means of  the spin polarized low energy electron diffraction, which introduces  a new 
dimension to surface physics. The  last problem is presented in our  recent paper  [9]. 
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