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Using the method of differential forma a Kerr-like metric is derived aa ah exact 
solution of Einstein's field equationB corresponding to & perfect fluid distribution plus a 
pure radiation field. The solution ia interpreted aa a Kerr-like radiating metric in the 
cosmological background of an expanding universe. The radiating Kerr metric and the 
radiating ~ssociated Kerr metric are derived aa particular cMes. The details of the solution 
are also discussed. 

1. I n t roduc t i on  

Vaidya [1] has discussed a metric which reduces to the metric of an exl,anding 
universe in the absence of the source and beeomes the well known Kerr metric 
(Kerr [2]) in the absence of the expansion of the universe. The source for Vaidya's 
solution is an imperfect fluid (i.e. the pressures in three spatial directions are not 
equal). Guha Thakurta [3] has also discussed the Kerr metric in the background 
of expanding universe. He has used the field equations corresponding to a peffect 
fluid with heat flow for his discussion. 

Kerr metric describes the exterior gravitational field of a rotating body. Many 
people have tried to construct the non-static generalization of Kerr metric. Vaidya 
and Patel [4] have obtained a radiating Kerr solution in terms of a Kerr-Schild (Kerr 
and Schild [5]) metric. Their solution describes the exterior gravitational field of a 
radiating rotating body. Vaidya, Patel and Bhatt [6] have also construeted Kerr- 
like radiating solutions of Einstein's equations. These solutions are simpler than 
the one reported earlier by Vaidya amd Patel [4]. The main purpose of the present 
investigation is to obtain ah exact explicit solution of Einstein's equations which 
describes the radiating Kerr and the radiating associated Kerr solution, discussed 
by Vaidya, Patel and Bhatt [6], in the cosmological background of an expanding 
univerge .  

For the derivation of our solution we shall use Cartan's exterior calculus of 
differential forros. This method of differential forms is standard now. Therefore we 
shall not enter into the details here. 
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2. Equat ions  of s t ruc tu re  

For calculations leading to the equations of structure, we take the line element 
in the form 

ds 2 = e2r[2(du + g sin ad~)dt  - Itl2(da 2 + sin 2 adfl 2) - 2L(du + g sin ad/~2], (1) 

wc,'e F : F ( t ) , M  = M ( u , a , t ) , g  = g(o~) ana L = L ( u , a , t ) .  The metric (1) is 
conformal to the Kerr-NUT metric discussed by Vaidya, Patel and Bhatt [6], the 
conformal factor being a function of time t. 

In the spar manifoid defined by the metric (1), let us introduce the 
following basic 1 - forms 

01 -- eF ( du.+ gsinad~), 

04 = eF d t -  LO 1, 

0 2 = eFdot, 
(2) 

0 3 = e r M  sin c~dj3. 

Therefore the metric (1) becomes 

ds 2 = 2 0 t O  4 _ ( 0 ~ )  2 - ( 0 3 )  2 = g (o~)O~  ~. (3) 

IIere and in what follows the bracketed indices indicate tetrad components with 
rcspcct to the tetrad (2). Using (2) it is easy to compute the exterior derivativcs dO ~, 
and Cartan's first structure equation dO a = -W~A0 b will the give the connection 
l - forros u,~. A straightforward calculation gives 

eFw~ -- 

eFwl  --. 

eFw 1 = 

eF w21 -- 

eFw3 -- 

eFw~ -- 

- -eFw: = (Lt + LFt)'81 - FtO 4, 

- [M. ] o~ q 

M -  ~-~u + [ M  + L  F , +  M I j O  3, 

- e r w ~  = - Ÿ g '~-O2 - (Ma + Me~ 03 + ~-~ M 2 

with was + wbo = O , f  = l-tg a2 , ,  + gcota) ,  and a suffix denoting partial derivatives 

(e.g. ga = ~"qJa, Fi = ~ etc.) From the second equation of structure 

dw~ + a e wr A w  b = R~caOeAO a. 
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We can now eompute the eurvature eomponents R~e d. For the sake of brevity they 
are not listed here. Ir R(ab) -" R%bc denote the tetrad components of the Rieei 
tensor, we find that 

R(23) =0,  (~, f') e2FR(,t4) =2 M4 + 2(Fu - Fi2), 

e2F R(24) =--~ - ~  y 

-g Mi (Ÿ , 

2g g Li + Mu + \ M 2,] e:r R(12) =Le2F R(24) + ---~L~FI + -'~ ~ ~ . , 

2 [ L S' l (5) e2F R(t4) =L. + -h7 ~M" + (LM,)f + M3 J + 

1 [ ( M u )  (~_~_.y) 
e2F R(22) =e2F R(33) = M2 92 g2 + y+ 

2fM~ 4S2L 2 ] 
+ ---M--- + ~ 1 - (M2)"i + {L(M2)I}tJ - 

- 2Ft (L ,+ 2~--M") -4LFt (Ft+ ~--~) -2LFu,  

1 e2FR(xx) =L2e2F R(44) + .-~ [g2(Luu -I- L•v ) + 

+21L~ + 2L.MMt + 4LMM,. - 2L, MM. + 2MMu.] + 2LuF,. 

In the above the variable y replaces the variable a in differentiation, the defining 
relation being 

gda = dy. (6) 

3. The  field equat ions 

We shall try to solve the following field equations 

1 
R~k - ~g~kR = - S r [ ( p  + p ) v ,  vk - Pg, k + c ,w,  wk]  - h g , ~ ,  (7) 
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with 
gi~'vivk "-- 1, g~~wiwk  = O, g ikv~wk = 1. (8) 

The la.st condition in (8) is the normalizing condition.Here a w ~ w k  is the tensor 
arising out of the flowing null radiation, v i is the flow rector of the perfect fluid 
and A is the cosmological constant. The other symbols occurring in (7) have their 
usual meanings. 

Ir is painless to see that  the field equations (7) can be expressed in the tetrad 
fo rmas  

[ 1 ] 
R(ob) -- Ag(~ - 87ra=(a)W(b) - 8~  (p-I- p)v(~ -- ~ ( p  -- P)g(ab) �9 (9) 

For the metric (1) and the tetrad (2) we take the tetrad components of the vectors 
vi and w~ as 

V(o) - ( 2 ~ , 0 , 0 ,  A) , w(o) -- ( ~ , 0 , 0 , 0 )  , (10) 

where Ais a function of the co-ordinates to be determined from the field equations. 
Ir is easy to see that  vi and w~ given by (10) satisfy the conditions (8). The equations 
(9) and (10) imply the following relations: 

R(24) = 0, R(~)  -- 0, (11) 

R(I~) = 0, R(,3) = 0, (12) 

8~p = -R(14) - A, (13) 

87rp = -2R(22) - RO4 ) - A, (14) 

2A 2 = R(44) (15) 
R(22) + RO4 ) ' 

P~4,)~lx)  (16) 
16~a = R(22) + RO4 ) R(22) + R(14)" 

Itere the tetrad components R(~b) of the Ricci tensor are given by (5). 

4. T h e  so lu t ion  o f  t h e  f ie ld e q u a t i o n s  

Take the two equations (11). These involve only one unknown function, M. 
One can easily verify that  these equations admit the so|ution 

M 2 = ( Ÿ  2 -F y 2 ) ,  (17) 

with 

x, ,  = - Y , ,  x ,  = Y,,, x ,  = - 1 ,  Y, = o. (18) 
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For our purpose we shall take a particular case of the above solution. We assume 
f = Y. Thercfore, the above solution becomes 

M 2 = X ~ + y2,  (19) 

with 
Y = -ay  + B, X = au - t. (20) 

Here a and B are undetermined constants and no additive constant is shown 
explicitly in x, because such a constant can always be incorporated in the t co- 
ordinate. The two equations (12) can be explicitly written as. 

- L t u -  ~ u+ ~ , M 2 ] y - 2 L , , F t = O  

and 

M,, "4- \-'M-~',] u + 2LyFt = O. Ltv + ~ y 

Using the results (19) and (20) a solution of the above two differential equations 
can be expressed as 

[ 2(F.X__.+E.Y)]e_~V, 
2 L = a +  a - l +  x 2 + y  2 j (21) 

with 
E * = - ( a - 1 ) Y ,  F * = - a ( a - 1 ) u - m ,  (22) 

where m is a constant of integration. The pressure p, the density p,A 2 and the 
radiation density r can be determined from (13), (14), (15) and (16). They ate 
given by 

87rp = A - e - 2 F [ a ( 2 F u  @ Ft 2) + e - 2 F ( 2 L o  -- a) (F t t  -- F~)] ,  (23) 

s~(p+ , )  = _2 _~F [ . - - I  ] x Z u  + a ( F .  - F, ~) - 

2e_4F [ 1--a (24) 
X2 + Y 2 J ' 

~2 _-- 2 ( F ,  - F~)e -2F (25) 

- s~ (v+p)  ' 
1 r 4ae -6F 

16~r~r -- -4~ ' (p  + p) + 47r(p+ p) [.X 2 + Y 2(F'' - F ~ ) { ( a -  1 ) +  F'F,} + 

+ ( F ,  - Ft2)e-4F{a + (2L0 - a)e-2F} 2] , (26) 
J 
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where 2L0 is given by 

2L0 = 2a - 1 + 

and F" and E* are given by (22). 

L.K. PATEL and S.S. KOPPAR 

2 ( E ' Y  + F ' X )  
X 2 + y 2  (27) 

With 2 f  = g~ + gco ta ,  gda = dy and f = Y, the result (20) shows that  the 
function Y satisfies the differential equation 

~ ~ ~ ( 1 - z  2 ) - 2 z ~ ~ + 2 a Y = 0 ,  z = c o s a ,  (28) 

This differential equation admits a power series solution if a > - I "  Given a satis- 
fying this condition, one can find a real number n such that 2a = n(n + 1), and so 
(28) becomes the Legendre equation 

Yz.(1 - 2 )  - 2zY~ + n(n + 1)y = 0. (29) 

The solution of (29) can be expressed as 

Y -- KPn(cosa)  + NQ.(cos  a),  (30) 

where K and N are arbitrary constants and P and Q are respectively the Legendre 
polynomial and the associated Legendre polynomial of order n. It is easy to see 
that  

K dPn N dQ.  
g s i n a  = - s i n 2 a +  - -  sin2a. (31) 

a d z  a - -~-z  

Thus the final form of the metric of our solution can be explicitly expressed as 

ds 2 = e 2~" 2{du + ~ z  + N a dz ] sin2ad~}dt - 

- 2 L  d u +  - - - - +  N a dz a dz ] sin2 adB - 

- ( X  ~ + Y2)(da2 + sin 2 ad/~2)[ , (32) 
J 

where 

x - . , ,  - t ,  Y = K P . ( c o s ~ )  + NQ.(cos~), 

2~ : ~  + [(1- o) + 2x(( ,-  ~ ~}.I e-~~. 
t J 

When F = 0, A = 0, we have veri¡ that  p -- 0,p -- 0 but  a ~ 0. In this case 
the metric (32) reduces to the radiating Kerr-like metric discussed by Vaidya, Patel 
and Bhatt  [6]. 
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Let us s tudy  the s i tuat ion when a = 1. In this case n = 1 and consequently 
Y is given by 

ot 
Y = K cos o~ + N(cos  a log tan ~ + 1). (33) 

In this case the parameters  p ,p ,  A 2 a n d a  are given by 

8 r p  =A - e -2F(2Ft ,  + F, 2) + 

4me-4F( rF]  + Ft) 
8 r ( p  h- p) = -- 2e2F(Ft, -- Ft 2) h- 

)i 2 __-- 

1671"O" 

2mre  -2F 
X 2 + y2 (F,, - F,2), 

r 2 q_ y 2  

2( Ftt - F,2)e - 2F 

-8~(p+p) ' 
1 [ 4mF~ 

47r(p + p) - r 2 + Y 2(Fu - Ft2)e-6F + 

+(Ft,  - Ft~)e -4F 1 q- r ~ - ~ ~ 2 e  -2F - 4~(p + p), 

(34) 

where Y is given by (33) and x = u - t = - r .  From (34) ir is obvious tha t  when 
F = 0, A = 0 we get  p = p = a = 0. Thus,  we get an empty  space time described 
by the metric 

ds 2 =2[du  + {IŸ sin 2 a + N(s in  2 ~ log tan 2 - cos a)}d~]dt- 
[ 2~nr] 

- (  r2 + Y2)(  da2 + sin2 a d f l 2 ) -  1+ r 2 + Y 2  x 

- cos o)d/3}] 2, • [du + { K  sin ~ a + N(sin  ~ a log tan 

(35) 

where Y is given by (33). 
The  metr ic  (35) is the part icular  case of  Kerr-like vacuum metric discussed 

by Demianski  [7] with slight changes of  notat ion.  When  N = 0, (35) reduces to the 
well-known Kerr  metric.  When  K = 0, (35) reduces to  the associated Kerr metric 
discussed by Vaidya [8]. Itere it should be noted tha t  when m = 0 the metric 
(35) reduces to  the ttat metric. The  explicit t ransformat ions  of  coordinates  for this 
purpose ate given by Demianski [7]. Therefore when a = 1 and m = 0 the metric 
(32) reduces to  the  metr ic  of  an expanding  universe. 

Thus  the metr ic  (32) with a = 1 and N = 0 gives us Kerr metric in the 
background of  ala expanding  universe. Also the metric (32) with a = 1 and K = 
0 represents the field of  the associated Kerr source embedded in an expanding 
universe. 

We can in terpre t  the metric (32) when N = 0 as the radia t ing Kerr metric in 
the cosmological background of  ah expanding  universe. Similarly when K = 0, the 
metric (32) represents the radia t ing associated Kerr metric,  in the background of  
an expanding  universe. 
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When the background universe is pressure-free, then we have 

2F,, + F, 2 = 0. (36) 

The Eq. (36) can be easi[y integrated to have 

e 2F -- (It + q)4, (37) 

where l and q are constants of integration. The metric (32) with e 2F given by (37) 
represents a radiating Kerr-]ike metric in the cosmo]ogica] background of Einstein- 
de Sitter universe. 

Acknowledgement  

One of the authors (S.S.K) is highly indebted to the University Grants  Comrrª New 

Del]U, for the award of a Junior Research Fellowship. 

References  

1. P.C. Vaidya, Pramana,  8, 512, 1977. 
2. R.P. Kerr, Phys. Rey. Lett. ,  11, 237, 1963. 
3. S.N. Guha  Thakur ta ,  Indian J. Phys., 55B, 304, 1981. 
4. P.C. Vaidya and L.K. Patel,  Phys Rey., D7, 3590, 1973. 
5. R.P. Kerr and A. Schild., Atti  del con8resso sull a Relativita Generale, (ed.) G. Barkera, 

Firenze, 222, 1965. 
6. P.C. Vaidya, L.K. Patel and P.V. Bhat t ,  Gen. Relativ. Gravitation,  7, 701, 1976. 
7. M. Demianski, Phys. Lett. ,  4~A, 157, 1972. 
8. P. C. Vaidya, Curr. Sci., 45, 490, 1976. 

Act= Ph~aicr H=ng=ric= 6,~, 1988 


