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Using the method of differential forms a Kerr-like metric is derived as an exact
solution of Einstein's field equations corresponding to a perfect fluid distribution plus a
pure radiation field. The solution is interpreted as a Kermr-like radiating metric in the
cosmological background of an expanding universe. The radiating Kerr metric and the
radiating associated Kerr metric are derived as particular cases. The details of the solution
are also discussed.

1. Introduction

Vaidya [1] has discussed a metric which reduces to the metric of an expanding
universe in the absence of the source and becomes the well known Kerr metric
(Kerr [2]) in the absence of the expansion of the universe. The source for Vaidya’s
solution is an imperfect fluid (i.e. the pressures in three spatial directions are not
equal). Guha Thakurta [3) has also discussed the Kerr metric in the background
of expanding universe. He has used the field equations corresponding to a perfect
fluid with heat flow for his discussion.

Kerr metric describes the exterior gravitational field of a rotating body. Many
people have tried to construct the non-static generalization of Kerr metric. Vaidya
and Patel [4] have obtained a radiating Kerr solution in terms of a Kerr-Schild (Kerr
and Schild [5]) metric. Their solution describes the exterior gravitational field of a
radiating rotating body. Vaidya, Patel and Bhatt [6] have also constructed Kerr-
like radiating solutions of Einstein’s equations. These solutions are simpler than
the one reported earlier by Vaidya amd Patel [4). The main purpose of the present
investigation is to obtain an exact explicit solution of Einstein’s equations which
describes the radiating Kerr and the radiating associated Kerr solution, discussed
by Vaidya, Patel and Bhatt [6], in the cosmological background of an expanding
universe.

For the derivation of our solution we shall use Cartan’s exterior calculus of
differential forms. This method of differential forms is standard now. Therefore we
shall not enter into the details here.
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2. Equations of structure

For calculations leading to the equations of structure, we take the line element
in the form

ds? = e*F[2(du + gsin adB)dt — M?*(da?® + sin® adf?) — 2L(du + gsin adf?), (1)

were F = F(t),M = M(u,a,t),9 = g(a) and L = L(u,a,t). The metric (1) is
conformal to the Kerr-NUT metric discussed by Vaidya, Patel and Bhatt [6], the
conformal factor being a function of time .

In the space-time manifold defined by the metric (1), let us introduce the
following basic 1 - forms

8 = ef (du+ gsinadp), 0? = efda,

2
0* = eFdt — Lo, 83 = ef M sin adp. @

Therefore the metric (1) becomes
ds? = 20'0% - (62) — (6)? = g(a)8°0". (3)

Here and in what follows the bracketed indices indicate tetrad components with
respect to the tetrad (2). Using (2) it is easy to compute the exterior derivatives df?,
and Cartan’s first structure equation df® = —W2A6® will the give the connection
1 - forms wy. A straightforward calculation gives

efuw! = —eFw} = (L + LF,)8! — F0*,
efwl =efwl = (—n-‘%) 0%+ (Fg + 9—{1) 02,

M
eFwl = efuld = - (AL)OZ (Fg+%’) 63,
efuwl = efuld = AI; [1;1! + L(Fe + M, ] 0% - }{/![;03
eFuw = efuwi = %‘o‘ + ifl; 6 + [};l!{ (F, + %)] 63,
¢ s = —efug = 1{11;2 - ]f; o (e Lyma) M?g4

with wep + wpe = 0, f = %(gc,r + gcota), and a suffix denoting partial derivatives
(e 9a = gﬁ-, Fi = &F etc.) From the second equation of structure

dwf + wiAwf = RE,,0°A6°.

Acta Physica Hungarica 64, 1953



A KERR-LIKE RADIATING METRIC 355

We can now compute the curvature components R} ;. For the sake of brevity they
are not listed here. If R(;5) = R°abc denote the tetrad components of the Ricci
tensor, we find that

R(a3) =0,
f2
CZFR(‘M) =2 (—‘ ) + 2(Fu - Fz)

M,
(52), -unem. }
M,
(5) + ],
2FR(12) =Le? R(24)+ 12\'[L Fi + —117 [(Lt Mﬁ) (Ff ] ,
F Ry =Le¥ Rpwy ~ S LuFi + & [_ (L, + %) + ”—f) ] ,
¥ v

1\21 [Mu, + (M) + X 2] + )

2M; M,
+4LF: +2LF (Fg + —AT) + 2F; (2[4 + —-—) .

1 M M
2F _2F — 2 u 2 y
¢ Ry =€ Reaa) = 3 [g (M)..” (M>,+

2f M, sz
M 3t M —-1- (Mz)ut + {L(Mz)t}t] -

Py ( 2M") —ALF, (F, + %) — 2L Fy,

*FRa1ay =Lue +

+ ——

M M
1
e?FR(1y) =L2€2FR(44) + e [9°(Luu + Lyy) +
+2fLy + 2L M M; + ALM M, — 2LiM M, + 2MMy,] + 2Ly Fy.

In the above the variable y replaces the variable a in differentiation, the defining

relation being
gda = dy. (6)

3. The field equations

We shall try to solve the following field equations
1
Ry — EgikR = —87((p + p)vivk — pgir + owiwe] — Agar, (7
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with

v =1, ¢*wiwr =0, ¢*viwp = 1. (8
The last condition in (8) is the normalizing condition.Here ow;w; is the tensor
arising out of the flowing null radiation, v* is the flow vector of the perfect fluid

and A is the cosmological constant. The other symbols occurring in (7) have their
usual meanings.

It is painless to see that the field equations (7) can be expressed in the tetrad
form as

w w 1
Ras) = Ag(ap) — 8m0™ (a)* (b) — 87 [(P + p)v(a)v(p) — 5(/’ - P)g(ab)] .9

For the metric (1) and the tetrad (2) we take the tetrad components of the vectors

v; and w; as ) ]
V(@) = ('27)0’0)’\) y W(a) = (X’O)O’O) ’ (10)

where ) is a function of the co-ordinates to be determined from the field equations.
It is easy to see that v; and w; given by (10) satisfy the conditions (8). The equations
(9) and (10) imply the following relations:

R(24) = 0) R(M) = 0’ (11)
R(12) =0, R(13) =0, (12)
87|’p = —R(H) - A, (13)
87p = —2R(22) — R1a) — A, (14)
222 = _—R_(L, 15
Rea2y + R(14) (15)
Ry Ry

1670 = + - 16
R22) + R(q) R + Rom (16)

Here the tetrad components R, of the Ricci tensor are given by (5).

4. The solution of the field equations

Take the two equations (11). These involve only one unknown function, M.
One can easily verify that these equations admit the solution

M? = (f/Y)(X? +Y?), (17)

with
Xu ==Yy, Xy =Yy, X =-1, Y; =0. (18)
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For our purpose we shall take a particular case of the above solution. We assume
f =Y. Thercfore, the above solution becomes

M?I=X?4+Y? (19)

with
Y=-ay+B, X=au-t. (20)

Here a and B are undetermined constants and no additive constant is shown
explicitly in z, because such a constant can always be incorporated in the t co-
ordinate. The two equations (12) can be explicitly written as.

M, 2fL
~L¢y — <ﬁ)u + (m)y —-2L,Fi =0

M, 2fL
Y u

and

M M?

Using the results (19) and (20) a solution of the above two diflerential equations
can be expressed as

2L=a+[a—1+2%zﬁ] i (21)
with
=—(a-1)Y, F*=-a(a-1)u—m, (22)

where m is a constant of integration. The pressure p, the density p, A% and the
radiation density o can be determined from (13), (14), (15) and (16). They are
given by

87p = A — e F[a(2F + F2) + e~ 2F (2Ly — a)(Fyu — F})), (23)
1
8n(p+ p) = —2¢~2F [X‘; Y2 + a(Fu — F; )]
_o,-4F | _Ll—a _ g2 2F{(a -1t +m)
2e [X’ V7 — (2L, — a)F{ — X1 Y? , (24)
_ p2\,—-2F
32 = 2 — Fe , (25)
—8x(p+p)
1670 = —4x(p + ! dae™®" (Fu—FA{(a—1)+ F*F} +
o=t r s rr e F ‘
+(Fu = FP)e " {a + (2Lo - a)e‘”‘}’] : (26)
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where 2Ly is given by

2E'Y + F*X)

2Lg=2a-~1+ X2 17?2

(27)
and F* and E* are given by (22).

With 2f = go + gcota,gda = dy and f =Y, the result (20) shows that the
function Y satisfies the differential equation

Y;:(1-22) = 22Y, +2aY =0, z=cosaq, (28)
This differential equation admits a power series solution if a > —%. Given a satis-

fying this condition, one can find a real number n such that 2a = n(n + 1), and so
(28) becomes the Legendre equation

Y::(1-23) = 2:Y, +n(n+ 1)y =0. (29)
The solution of (29) can be expressed as
Y = K Py(cosa) + NQp(cos a), (30)

where K and N are arbitrary constants and P and Q are respectively the Legendre
polynomial and the associated Legendre polynomial of order n. It is easy to see

that dP N dQ
z + a4 dz

gsina:-li sin’ a. (31)
a

Thus the final form of the metric of our solutlon can be explicitly expressed as

ds? = e*F |2{du + K b, +NdQ" sin? adf}dt -
a dz a dz

2
—2L<du+ I\dP +NNQ">sn adf
a dz a d

— (X2 4+ Y?)(da? + sin? adﬂ"’)] , (32)
where

X=au—-t, Y =KP,(cosa)+ NQu(cosa),

2L=a+ [(1 —a)+ 2X{()1(;_:);; m}] e 2F

When F = 0,A = 0, we have verified that p = 0,p = 0 but & # 0. In this case
the metric (32) reduces to the radiating Kerr-like metric discussed by Vaidya, Patel
and Bhatt [6].
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Let us study the situation when a = 1. In this case n = 1 and consequently
Y is given by
Y:Kcosa+N(cosalogtan%+l). (33)

In this case the parameters p, p, A2 and o are given by

_ 2mre—2F
87p =A — e 2F(2F; + F?) + W(F.. — F}),

dme~ ¥ (rF? + F,)

— 2F 2 t t
8n(p+p) =—2¢*" (Fu—F)+ Y7 ,

32 = 2(Fu — FR)e=?F
-8r(p+p) (34)
__ 1 AmF, 2),—6F

167['0—-47"(p+p) [ r2+Y2(F" Fg )6 +

2mr 2

2y —4F -2F

+(F¢¢—F,)€ {1+7’2+Y26 }]—47r(p+p),

where Y is given by (33) and £ = u —t = —r. From (34) it is obvious that when
F=0,A=0weget p=p=0c =0. Thus, we get an empty space time described
by the metric

ds? =2[du + {K sin® a + N(sin® a log tan % — cosa) }df]dt—

2mr ]

— (r? + Y?)(da? + sin® adf?) - [1 + Try? (35)

x [du + {K sin® a + N(sin? o log tan % — cosa)df}]?,

where Y is given by (33).

The metric (35) is the particular case of Kerr-like vacuum metric discussed
by Demianski [7] with slight changes of notation. When N = 0, (35) reduces to the
well-known Kerr metric. When K = 0, (35) reduces to the associated Kerr metric
discussed by Vaidya [8]. Here it should be noted that when m = 0 the metric
(35) reduces to the flat metric. The explicit transformations of coordinates for this
purpose are given by Demianski [7]. Therefore when @ = 1 and m = 0 the metric
(32) reduces to the metric of an expanding universe.

Thus the metric (32) with a = 1 and N = 0 gives us Kerr metric in the
background of an expanding universe. Also the metric (32) with a = 1 and K =
0 represents the field of the associated Kerr source embedded in an expanding
universe.

We can interpret the metric (32) when N = 0 as the radiating Kerr metric in
the cosmological background of an expanding universe. Similarly when K = 0, the
metric (32) represents the radiating associated Kerr metric, in the background of
an expanding universe.
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360 L.K. PATEL and §.S. KOPPAR

When the background universe is pressure-free, then we have
2Fy + F2 = 0. (36)

The Eq. (36) can be easily integrated to have
e = (it + ¢)*, (37)

where [ and ¢ are constants of integration. The metric (32) with e2F given by (37)

represents a radiating Kerr-like metric in the cosmological background of Einstein-
de Sitter universe.
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