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The process of conversion of g. waves into e.m. waves is studied in an axisymmetric
Bianchi type I universe with a uniform magnetic field. A case is found in which the process
is sufficiently effective to maintain a continuous interchange between photons and gravitons.
This causes photons and gravitons to have the same frequency.

1. Introduction

The problem of the conversion of gravitational waves into electromagnetic
waves and vice versa has been discussed from various points of view, in its own right
and in view of detecting gravitational waves or in cosmological and astrophysical
implications [1, 2, 3]. It has been shown that in a flat Minkowski background
containing a uniform magnetic field gravitational waves are transformed into e.m.
waves and v. v. at a rate growing quadratically with distance [2]. In spite of this,
one must consider very high strength magnetic fields and paths of cosmological
magnitude to get appreciable effects [2).

The case has also been studied in which the magnetic field is embedded in
a conducting plasma with anisotropic conductivity; the results depend on the fre-
quency of incoming gravitational waves but are not very different from the case
of the empty space [4]. In this paper we study the conversion of g.. waves into
e.m. waves no longer in a flat background but in an anisotropic cosmological model
endowed with a uniform magnetic field.

Our aim is to estimate if this process is working sufficiently to maintain pho-
tons and gravitons at the same frequency, taking into account that the inverse
process must have the same rate. We proceed in this way: we consider the g. waves
as first-order perturbation of the anisotropic metric with magnetic field and try to
solve the Maxwell equations in this perturbed metric. As we are interested in the
cosmological era preceding the recombination, we insert in the Maxwell equations
(in the three cases we consider) asymptotic expressions for the metric coefficients
valid near the initial singularity.

This enables us to solve analytically the Maxwell equations which in all
the three cases lead to the solution of equations of the Bessel type. If we call
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328 D. BOCCALETTI and W. AGOSTINI

n=(produced flux of e.m. waves)/(incident flux of g. waves), then we give an
approximate evaluation of n as a function of time.

As we know, only if the primordial magnetic field is created with a strength
not exceeding the so-called B.rit = 4.4 x 10! gauss, can it be treated on a classical
ground; furthermore it seems likely that, for fields of infinite strength or of strength
B >> Bgit, a field organized on a large scale would not emerge as the universe
expanded out of the singularity [5)].

Therefore we take as fairly unrealistic the second and the third case we con-
sider which, also at times over the Planck time t; ~ 10%%s, involve field strengths
largely exceeding Beit. In the first case we study, on the contrary, we assume an
initial field of the order of Bc;t.

2. Axisymmetric cosmologies of Bianchi type I with a
uniform magnetic field—asymptotic solutions

In the second half of the sixties, after the discovery of the cosmic microwave
radiation background, spatially homogeneous anisotropic cosmological models en-
dowed with a uniform magnetic field were extensively studied [6]. The hypothesis
of the existence of primordial magnetic fields was largerly favoured [5, 6] because of
the necessity of understanding how galactic magnetic fields could have arisen since
the big-bang creation of the universe. Also if today we seem to have a satisfactory
theory of galactic magnetic fields which do not require magnetic fields frozen into
the matter since the origin of the universe, the hypothesis of primordial magnetic
fields is not ruled out [7]. We assume the existence of such a primordial field.

We shall consider universe models with metric

ds? = c?dt? — A%(t)(dz? + dy?) — W2(t)dz? (2-1)

filled with perfect-fluid matter at rest in the coordinate system of equations (2-1)
and having an equation of state

where 0 < ¥ < 1 and pas is the energy density of the perfect-fluid matter. The
stress-energy tensor contains both py and pp, where pg is the energy density
of the magnetic field. Solving the Maxwell equations in the metric (2-1) in the
hypothesis of a uniform magnetic field aligned along the z-axis, one obtains for the
primeval field _

B, = Bo(WA?)™!,
and for the magnetic energy density

pp=BZ/8x A~ (2-3*
0

!For the definition of the 3-dimensional fields we follow L.D. Landau, E.M. Lifshitz, Clas-
sical theory of fields, Pergamon Press, Oxford — New York, 1971, p. 256, from now on referred
to as L.L.
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(Bo is a constant to be fixed).

As is known, the Einstein field equations in the case of (2-1), (2-2), (2-3)
have been solved analytically in four cases [6]; moreover, there are solutions valid in
asymptotic conditions, near the singularity. If we define an adimensional normalized
time 7 = at (a ~ 10717 s~1), the asymptotic conditions, near the initial singularity,
are characterized by 7 << 1 (being 7 ~ 1 to day). We shall study three cases:

1) Axisymmetric pancake singularity;
2) Isotropic point singularity;
3) Axisymmetric hard magnetic solution.

The case 1) is defined by
A=QQ+a-70") W=r1 pp=BiS8n [1 —4a - TI-M | (2-4)

(o« non-negative constant) 0 < 4 < 1, and is an asymptotic solution. Of the
three cases it is the only one which allows for a finite magnetic energy density for
7 — 0; furthermore the solution becomes isotropic for large 7. We fix the constant
Bo ~ Bt = 4.4 x 103 gauss. The case 2), also an asymptotic solution, is given by

2
A:W:rr(l‘=§(1+7)), 1/3<v<1,
pp = B2/8x .+~ (2-5)

Obviously pp — 0o when 7 — 0; we fix the constant By ~ 1078 gauss (a possible
value for the intergalactic field to day, but leading to a physically inconceivable
magnetic field at the early times). The case 3) is at the same time an approximate
solution (r << 1) and an exact solution (but not the general solution) and is given
by

A=12  W=rMA=1-9/147), 1/3<y<1, (2-6)

pp = B3/87 - 772, where the constant Bg is not arbitrary but has the value
Bo = ca /(G)V2[(1 = v)(3y — 1)]*/? /2(1 + 7). Also this case has pp — oo when
T— 0.

3. The Maxwell equations in the perturbed metric

We have to solve the Maxwell equations:?

6F.-k/6:c’ + 6F,.-/6z" + 6FH/6::‘ =0,

(__g)—l/2a/a:k [(_g)I/ZFik] — ——47r/cj", (3_1)

2For definitions, notations (except the gravitational constant we denote by G) and all that,
see L. L.
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in the metric

gik = 95 + ha,

gk = Uk _ pik
where gJ are the coefficients of the metric (2~1) and h;; are first-order perturba-
tions; the solutions of (3—1) are to be considered small of the first order like the

hix: squares are negligible. We choose gravitational waves travelling in the positive
z-direction and two independent polarizations denoted as

h3(z,t) and — hi(z,t) = h3(z,?).
Being perturbations, they will be linear and we consider plane waves:

h3(z,1) = €, exp ik(z — ct),

—h¥(z,t) = h3(z,t) = €3 exp ik(z — ct), (3-2)

any g. wave being a sum of terms like (3-2), we solve (3-1), separately for each of
the two polarizations. .
Making use of the variable r=at, we rewrite (3-2) as

h3(z,7) = €4 exp [ik(z — c/a - 7)),

. 3 (3-2)
—h3(z,7) = h3(z,7) = € exp [ik(z — ¢/a - T)).
3a. Polarization h3
In virtue of the assumed plane symmetry (3-1) yield in this case

0/0z(WA?B,) =0, 08/0r(WA?B,) =0,
a/cd/0r(WA?B,) — WA~20/0z(W~'A%E,) = 0,

a/cd/dT(WA?B,)+ W~18/0z(WE,) =0, (3-1a)

' -la

W™1A"20/8(WE.) = 4r/cj°;, 8/8T7(WE;) =0,
a/c8/8r(WE,Y+ WA~23/0z(W A%B,) =0,
a/cd/8r(W—LA’E,) — W~'9/0z(W A’B,) = WA~ 2Bydh}/ 0z,
having taken into account that Fy; = WA?B, + By. Rewriting and rearranging the
relevant equations, we have:
a/cd/dr(WA?B,) + W~'3/8z(WE,) =0,
{ afcd/dTr(WE,) + WA~29/0z(WA%B,) = 0,
(3-1a’)
a/cd/0T(WA?B,) — WA™28/9z(W *A%E,) =0,
{ a/cd/dr(W~AE,) - W~13/3z(W A?B,) = WA~2Bodh3/0x.
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8b. Polarization —h% = h3
In this case (3-1) yield:
8/0z(WA?B;)=0; 98/8r(WA?B;) =0,
a/cd/dT(WA?B,) — WA™28/0z(W™A%E,) = 0,
a/c0/0r(WA?B,) + W0/8z(WE,) =0,
W-1A=20/0z(WE,) = 4r[cj®; 8/dr(WE.) =0,
a/cd/0T(WE,) + WA™20/8z(W A’B,) = WA~2By8h3/0z,
a/cd/8r(W~*A’E,) - W™10/8z(WA?B,) = 0.
And, rewriting and rearranging the relevant equations:
a/cd/0r(WA?B,) — WA™29/3z(W1A’E,) = 0,
{ a/cd/dr(W-AE,) - W~19/8z(WA?B,) = 0,

(3-1b)

(3-1b")
a/cd/dr(WA?B,) + W18/0z(WE,) =0,
{ a/cd/0r(WE,) + WA™20/0z(W A*B,) = WA~2B,0h/0z.
In the subsequent sections we shall solve (3-1a’) and (3-1b’) in the three cases of

asymptotic solution for the metric (2-1) we have discussed in Section 2, substituting
the coefficients of (3-1a’) and (3-1b’) by their asymptotic expressions.

4. Axisymmetric pancake singularity

As we have seen in Section 2, this case is characterized by A(7) = 14 a-r(=7),
W(r) = r with 0 < ¥ < 1 and «, a non-negative constant. For small 7, (3-1a’)
asymptotically become:

a/c8/dr(WA?B,)+ r~10/0z(WE,) =0,
{ a/cd/8T(WE,) + 18/dz(WA’B,) = 0,
(4-1a’)

a/cd/8T(W A?B,) — 10/8z(W~1A’E,) = 0,

{ a/c8/0r(W™A%E,) — 1718/8z(W A%B,) = ikegBo - T - exp [ik(z — c/a - T)].
The systems (4-1a’) have the solutions
WA?B, =(A1e™* + B1e***) -ke/a - Ji(kefa- 1)+
+ (—i/5 kefa-12 = 1/5-1%)e, By exp [ik(z — c/a - 7)),
W-lAE, = — i(A e~ + B1e'*®) - Jo(kefa - T)+ (4-2a’)
+ (i/5kc/a-12 —2/5 7 +2/5ia/kc)e s Boexp [ik(z — c/a - T)],
WA?B, =(Cye~** + D1e**)Jo(ke/a - 1),
WE, = —i(C1e”** + D1e**)kc/a - 7 - Jy(kefa-T),
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where Jo and J; are Bessel functions®. Imposing to (4-2a’) the obvious initial

condition that the left members vanish at 7 = 0, the final result is:
WA?By =¢, - Bo {2/5J1(kc/a 1) -7 e** + (—if5kefa-7° - 1/5-17).
- exp [ik(z - c/a-T)]},
W™AE, =¢,Bo {—2/5ia/ke Jo(ke/a - 7)e** + (i/5kc/a- % —
— 2/5-1+2/5ia/kc) exp [ik(z — c/a-T)]},
WAB, =WE, =0
and then
F3 =e4Bo {—2/5J1(kc/a 1) -7 %" + (if5kcfa T3+
+1/572) exp [ik(z — c¢/a - T)]},
F% =¢,Bo{2/5ia/kcJo(kc/a 1) 771 ek 4 (2/5 —if5kc/a-T7— (4-3a’)
~2/5ia/kct™1) exp [ik(z — c/a-T)]},
F3 =F% =0.
In the same way (3-1b’) asymptotically become:

a/cd/dr(WA%B,) — 10/0z(W ™' A’E,) = 0,
{ afcd/0r(W~LA’E,) — r710/8z2(WA*B,) = 0,
(4-1b%)
a/cd/8r(WA?B,) + 7710/0z(WE,) = 0,
{ a/cO/8T(WE,) + 18/0z(WA?B,) = —ike, - Byt exp [ik(z — ¢c/a - T)],
with the solutions:
W A?B, =(Aze™** 4 Bae**)kc/a -1 Jy(kefa - 1),
W-1A%E, = — i(Age_””’ + Bze”") ~Jo(kefa - 1),
WA?B, =(Coe™™** 4 Dqe'*®)Jy(ke/a - 7) 4+ (—1/3 + ike/a - T)es Bo-
- exp [ik(z — ¢/a-T)],
WE, = — i(Coe™*** 4 Dye***)kc/a - 7 - Ji(kc/a - 1)+
+ (—i/8kc/a - r?) exp [ik(z — ¢/a - T))
and, imposing the initial conditions, we get:
F} =F® =09,
F} = ey Bo {1/3Jo(kc/a - T)e'** — 1/3(ikc/a - T + 1) exp [ik(z — c/a - T)]},

F®? = ¢, By {i/3ke/aJy(kefa - T)e'** + i/3kefa - T exp [ik(z — c/a-T)]} .
(4-3b")

(4-2b”)

3We assume the notations and definitions of V. I. Smimov: A course of higher mathematics,
Vol. III, part 2, Pergamon Press, Oxford — New York.
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CONVERSION OF GRAVITATIONAL WAVES 333
5. Isotropic point singularity
This case is characterized by
A(r) =W(r)=1", where I =2/3(14+7) and 1/3 <y < 1.
(3-12’) become:
a/cd/8T(WA?B,) + 1 18/8z(WE,) = 0,
a/cd/0T(WE,) + 7 13/82(WA%B,) = 0,
(5-1a%)

a/cd/dr(WA?B,) — r~T8/0x(WA%E,) = 0,
afcd/0r(WA2E,) — r~T0/0z(W A®B,) = ikeaBor™T exp [ik(z — c/a - 7)),
and have the solutions
WA?B, =(Hi1e~™** + L¢'*%).
- { My exp [—ike/a(1 —T) - r'"T]+ Ny exp [ike/a(1 - T)-r'"T]},
WE, =(Hie™** — L1'*).
. {~M exp [~ike/a(1 = T) - 7'T] + Ny exp [ikc/a(1 = T) - -]},
WAsz =(P1e—ik= + Qleih)-
{Ry - exp [~ike/a(1 ~T)-r'"T]+ S, exp [ike/a(I-T) - 7'~T]} +

+ €a Boe*t= . {{—Ze”"/“ + exp [~ike/a(l = T) -~ T] 4
+ exp [ike/a(1 -~ T)- 7T - ikc/a- (5-2a”)
{ exo titefat 1) #F- [ exp ke /0 - 1) - e
— exp [tke/a(l -T).7*74]. Te —tke -1 -
p likc/a(t= 1) 1. [ exp [-ihefa(@ /1 - 1)+ i |,

W_IAZE, =(_Ple—ikz + Qleikz).
{ =Ry exp [~ike/a(1 = T) - 7T 4 S, exp [ike/a(l ~T) - 71T} +

+ ieaBoke/a { exp [ik(z — c/a(1 - T) . 7-T)] .
./0’ exp [ikc/a(€' T /(1 ~T) — €)ld¢ ~ exp [ik{z + c/a(1-T) -~ T)].
| exp tikesa@ =T/ - 1)+ ).
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And, imposing the initial conditions:

VVAzB‘z =WEy =0,
WA?B, =¢uBo {~2 exp [ik(z ~ c/a- )] + exp [ik(z — c/a(1~T) - =)
+ exp [ik(z +¢c/a(1-T)- 1-1*1’)]} — ieqBokc/a-

{ exp likGe = cfatt = 1) 7 [ exp fke/ale'=T /1 - ) - e

~ exp [ik(z + c/a(1 = T) . 7+-T)] . /0 " exp [ikc/a(e!T/(1 = T) + g)]dg}
W~ A’E, =ie,Bokc/a-

{ exp k(e efat =) =0 [ exp fkefa@=T/1 - ) - 1t

~ exp [ik(z + c/a(l = T) - P11 . /0 " exp [—ike/a(€T/(1 - T) + 6)]45}
and then:

le =F% =,
F3 =¢,Bo -7 {2 exp [ik(z — ¢/a - T)] ~ exp [ik(z + c/a(l =T) - r'~T]—-
— exp [ik(z — ¢/a(1 = T) - 71711} + ies Boke/ar ™2

{ w0tz = c/au =) 7Y [ exp fefale /01 - T) - -

— exp k(e +c/a(1= 1) 7)) [ exp [ikefal@T/(1 - 1) + e |
F% = —ig,Bokc/ar™3T. (5-3a”)

. { exp [ik(z — c/a(l - T) - =T /0 " exp [ikc/a(eT /(1 = T) — £)]..6—

— exp [ik(z + c/a(l - T) - 7-TY] - /0 " exp [—ikc/a(~T/(1—T) + &)]dé} .

In the same way, from (3-1b’) we get:

F =F® =0,

F} = —€yBor~ M {2 exp [ik(z — ¢/a - )]~
— exp [ik(z + ¢/a(1 = T) - 71T = exp [ik(z = e/a(l ~ T) - 71~T]} -
— igy Bgkefa - 72F.

. { exp [ik(z —¢fa(1 = T) - r1-T]. /07 exp [tke/a(€tT /(1 = T) —¢)]dé-
— exp [ik(z +c/a(1 -T)-771)]. /OT exp [—ikc/a(€'~T/(1-T) +f)]d£} ,
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CONVERSION OF GRAVITATIONAL WAVES 335
F°% =gy Bokcfa - 73

: { exp [~ik(z - c/a(1 - T)r'~T)]. / " exp [ike/a(¢"T /(1= T) - )]dé-

— exp [ik(z + ¢/a(1 =)'~ D)} / ’ exp [—ike/a(€'"T/1-T) + £)]d€} .
0
(5-3b%)
6. Axisymmetric hard-magnetic solution

A(t) = 7/2%, W(r) = 7" where A=1—v/1+ v and 1/3 < v < 1. For this
case, (3-1a’) become

a/cd/0r(WA?B,) + 7=28/0z(WE,) = 0,
{ a/cd/OT(WE,) + 210/0z(WA?B,) = 0,
(6-1a’
{ a/cd/0T(WA?By) — r4-18/80z2(W~1A%E,) =0

a/c0/Or(W~LAE,) — 720/02z(W A?By) = ikesBy - T2~ - exp [ik(z — c/a - T)]
and the solutions are

WAB, =(Ee™*** + Fe'**)(2kc/a - 71/2)1-A.
Gy - J1-a(2kefa- M) + H - Jp_1(2kefa - TH?)]
WE, = — i(—Ee™"** 4 Fe'**)(2kc/a)! = - 71/2.
- [A - Ja(2ke/a - TH?) = G - J_p(2kc/a-T?)],
WlATE, =(Me™** + Ne*®)(2ke/ar/?)1-A.
; [}3 - J1—a(2ke/a .,,.1/2) + Q- Ja- 1(2ke/a - 1'1/2)] +

+ eikz . {Z Io.bn Tn+A + Ec n+A+1}

_i(2A = 1)(=1)*(kc/a)?*! ¢ Bo
(A+1)n- (2A),,

: [1/A(2A -1)- E (ia/kc)™1/mY(A)m - (2A - 1),,.]

m=1

bn =

n a n42 0 Z . m
en =22 ([f§/+’2):]2 £eD {1/(A+1)2—E<m/kc) 1/m![<A+1),,,12},

W A?B, =i(—Me™*** 4+ Ne™**)(2kc/a)l~A . 1A/2.

o0
(@ Ja(2ke/a-THE) = P J_p(2kc]a - 12| 4 ¢k Za,,r"*’“,

n=0
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_ (=)™ (kefa)?™+2 ¢4 - By
" (A+ 1), - (2A + 1),

- [1 J2A% + Zn:(ia/kc)"‘ “1/m! - (A, - (2A)m] , (6-2a’)

m=1

where J, is the Bessel function of not integer subscript (see footnote 3) and, as
usual (A), = A-(A+1)...(A+n—1). Imposing the initial conditions, it remains:

WE, = WA®B, =0,

WlA%E, = et {Zb "+A+Zc "+A+1}
LVAsz =C {Z "l+2A}

and then
F} =F% =y,
Fl = _eikz  p2A-1 an - 7",
: % (6509

) )
FO3 = ik [T2A—l . § :bn PSE 2 z Cn T"} ]
n=0 n=0

In the same way, we get from (3-1b"):

F} =F%® =,
00
F}=e*.Y d, - ",
% 6o

00
_eik: . § :Cn , ,rn,
n=0

where
_ (=)™ - (ke/a)’™+2 ¢y - By o
i (S ) R 1] [1/A+n§(w/kc) (A)m] :
_ (1) - (ke/a)*™*2 ¢y - B e am
N 0 W) Y i § : [1/(A+ 1+ 2_:,0(m/kc) (A + 1)m] :

7. Conclusions

As already mentioned in the first Section, the process we have studied and
the inverse process, on the ground of general principles, must have the same rate.
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CONVERSION OF GRAVITATIONAL WAVES 337

Therefore our process, if working effectively, does not help to annihilate gravi-
tons but, on the contrary, it supplies them with the same frequency of the photons,
because in the mutual conversion the frequency is not altered. To estimate the effec-
tiveness of the process we shall calculate for each case the coefficient  =(produced
flux of e.m. waves)/(incident flux of g. wave). For the produced e.m. waves trav-
elling in the positive z-direction we must calculate ¢ - T9L (-means average ). For
the first g. wave polarization (¢,) we have:

¢-T9 = —c/dx(ReF) - Re F03)

and for the polarization ¢€:

¢-TO = —c/4n(ReF'2 . ReF0?).

Moreover, we remember that c - Ts",ll,v = ¢%/32nG - K? - €2 ,. The coefficient n must
be evaluated each time, taking into account, when dependmg on the frequency of
the incident g. wave of the value of the frequency at that time (considering the
redshift of the particular model). Obviously, as we have inserted in the Maxwell
equations asymptotic expressions of A(7) and W(7), the expressions we get for n
are valid near the singularity. In the first case (axisymmetric pancake singularity),
we have for the polarization ¢,

GB?\ ¢
n~4/25( );—2—7'4.

7 is growing with time and, for By ~ Beit : 9 — 1 for 7 — 1078 (¢ = 10%s). For
the polarization ¢,

7~ 4/9( )

taking again By ~ Bgit, 7 — 1 for 7 — 10'16 (t ~ 10s). For both polarizations 7
does not depend on the frequency of the incident gravitational wave.

In the second case (isotropic point singularity) there is no difference between
the two polarizations and we get

16(030) 1 _ar

Here we have a dependence on the frequency and the process is appreciable only at
times inconceivably smaller than the Planck time. As an example, for By ~ 10-8
gauss and a frequency ~ t” at t = t;, one has n ~ 1 for 7~ T~ 10 (1/3 <
I' < 1/2). The amsymmetrlc hard-magnetic solution gives 7 not dependmg on the
frequency and for the polarization €.

) -3__:(1— 7)(3y - 1) FIA-3
(1+9)?
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338 D. BOCCALETTI and W. AGOSTINI

For the polarization ¢;, we have

GBj.¢* _ (1-79y-1) _,
n~ 4(_);77' 2= ——(1—_,_—‘-7)—2—1'

(1/3<v<1),A=(1-=9)/(1+7). Through decreasing with time 7, in this case,
has unphysical values also at large 7.

If we consider the first case as the more realistic one (it has finite magnetic
energy density at the early times and becomes isotropic at large ), we are led to
think that with sufficiently large primordial magnetic fields a continuous interchange
between photons and gravitons can take place. In this way, the e.m. waves and the
g. waves retain the same frequency.
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