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In this paper we show that, with reparametrization of supergroup, superspace as the 
homogeneous space ofit will be linearized, superfield will be defined uniquely, vector coordinates and 
spinor coordinates will play the equal r61e... We can list all possible subgroups of supergroup easily 
in this way of parametrization. The reprr of this algebra will be given. The linearization of 
superspace would lead to new approaches to construct geometrical structures on it. The Abelian 
translation group would make easier the construction of the harmonic analysis on it. Last of all, the 
SU(N) internal symmetry of extended superunified theories would be manifest in these models. 

1. l~troduction 

In original works [1,2], the supertranslation group has been introduced with 
parametrization by the generators Q, Q, P of the pseudo Lie algebra 

{Q, ~} = 2a~PU, 

{Q, Q} = {Q, Q} = [P~, Q] = [P•, ~] = [P,,  P,] = 0. (1.1) 

Elements of the supertranslation group can be parametrized as: 

G(c#, ~, ~) = exp i(% P" + ~ Q + 0.~). (1.2) 

The product defined on the group is not linear, not global, even not commutative 
[3, 4]: 

C(cl~, ~1, ~',)" C(c2~, ~,, ~-2)= 
(1.3) 

Then the superspace and the superfields defined on it can be introduced as: 

O(x, ,9, ~) = exp [ i(x~ P~ + ,gQ + Q ~  ] ~(0, 0). (1.4) 

Using the Cambell--Haussdorf identity, by such way of parametrization with 
Q, Q and PV we have three different definitions of superfield corresponding to the 
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following three choices (see [5]): 

exp [i(x~,P # + 3Q + ~~)] 4(0, 0) = ~(x, 0, 9), 

exp [ i (x#P # + 3Q)] " exp (iQg")~(O, O) = - ~ , ( x ,  3, ~) , 

exp [i(x.P" + Qg)] .exp (iaQ)q,(0, 0)--- q'2(x, ~, 0). 

(1.5) 

This way of parametrization has some "esthetical" shortcomings: 

a) The spinortranslations do not form one-parameter group. This kind of 
parametrization is n o t a s  canonical as the usual techniques treated with Lie groups. 

b) The supertranslation group is not commutative. The harmonic analysis and 
the generalized Fourier transformations have not been discussed yet on the superspace. 
Because the supertranslation group is not compact, but Iocally compact only, the 
commutativity would make this construction easier by the recipe given in [6]. 

c) Superfields are not determined uniquely. 
d) When the geometrical structures on a manifold are constructed, an algebraic 

structure used to be given on it, so that the manifold will become a vectorspace. 
Concretely, one always makes an additive group isomorph with the translation group. 
With the previous parametrization both cannot be realized at the same time, becauge 
the supertranslation group is not Abelian. We cannot use the standard techniques to 
construct a linear geometry on it. 

e) Geometrically speaking, up to now the superspace is considered a s a  fibre 
bundle [7, 8], not base manifold. The geometry on it is a non-linear one. So vector 
coordinates and spinor coordinates do not play the same r61e in our formalism. 

In this study on the reparametrization of supergroup, we try to overcome aU 
these minor esthetical shortcomings. 

2. Reparametrization of supergroup and superspace 

In [9] the authors have affirmed that the most general form of the commutator of 
the Fermi generators of degree 1 is: 

{QZ, QM} = cLMa~ p~ . (2.1) 

According to them, if c L~ = 0 then Q = Q = 0. So in the case of non-vanishing 
Fermi generators c LM can always be normalized to fiLM. However, it is not true, if we 
reexamine the analysis in which {QL, QM} belongs to the (1/2, 0)(0, 1/2)=(1/2,  1/2) 
representation of Lorentz group. Because zero belongs to any representation, so in 
(2. 1) c LM can vanish quite right. For instance, let us take the following non-vanishing 
Fermi generators: 

TspL = QL + i~iLtr ~ p~ , (2.2) 

TspL = QL + q 
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with Q and Q given in (1.1). 9̀ and ~ are spinorcoordinate operators ot the superspace 
(1.3). As we know from [3-1 

{Q, 9̀} = {Q, ~} = i. (2.3) 

We have the following minimal extension of Poincar› algebra 

[P.,  Tsp]=[P.,  Tsp]= {Tsp, Tsp}, 

{ Tsp, Tsp} = { Tsp, Tsp} = 0, (2.4) 

EM.,, Tsp] = l/2" a.v Tsp, 

[Mvv, Tsp] = 1/2.6v. Tsp. 

We can see that in this case Fermi generators forro a Grassman algebra (while the 
generators given in (I.I) forro a Clifford algebra). Supertranslation group will be 
parametrized as: 

G(a v, (, ~ = exp [i(a v pv + ~Tsp + Tsp~)] . (2.5) 

The product defined on this group turns to be commutative, linear and global: 

G(a,u, ( , ,  (,)" G(a2v, (2, ~2) = G(a,u + a2v, (, + ~2, (,  +(2).  (2.6) 

Superfield will be determined uniquely ir the superspace is parametrized with 

Tsp, Tsp and W: 

q~(x, ,9, g)=exp [i(x v pv + `gTsp + Tspg)] 4~(0, 0). (2.7) 

Let us parametrize the elements of the minimal spinor extension of Poincar› 

group with generators Tsp, Tsp, pv and M w by {A, a v, ~}. We can get easily the set ofall 
possible subgroups of it, when we fix each parameter: 

1. { 1, 0, 0} = 1: i t is  the trivial group, the unir of the supergroup. 
2. {A, 0, 0} �9 ~: i t is  the usual Lorentz group. 
3. {A, av, 0} �9 ~: ir is the usual Poincar› group. 
4. { 1, a v, ~} �9 ~T. it is the commutative supertranslation group. 
5. { 1, a v, 0} �9 T." it is the usual space time translation group. 
6. { 1, O, ~} �9 Tsp: it is the new spinor translation group. 
7. {A, 0, ~} �9 ~~:  ir is the new super Lorentz group. 
It is worth noting that in this way of parametrization we get two new groups 7~p 

and $~ .  The consideration of these is an interesting work, and ir will be discussed 
elsewhere. 

The superspace now is the set of numbers (x v, `9, g) transforming under the action 
of the element {A, a v, (} of supergroup as follows: 

x . ~ A ª  

`9--. A (A)`9 + ~ , (2.8) 

O--.X(A)g+ ~-. 
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So we come to a natural and general definition of supergroup: Supergroup is the 
group of inhomogeneous linear transformations actiny on superspace and leaving 
Minkowski space and spinorspace invariant. 

3. Representation of Tsp aigebra 

Let us consider the massive case: Take/3 = 0 and Po = m Tsp. Tsp is Casimir 
operator then, because it commutes with all other generators. So we have: 

i) Irreducible multiplets with Tsp. Tsp l~p)= 0 

There are two possibilities: 
a) Tsplm, J, J3)£ J, J3)£ is the Grassman vacuum with left-handed 

chirality. This vacuum degenerates with four states forming a complete basis, which 
spans a 4-dimensional representation space: 

Im, J, J3)£ Tsp~lm, 3, J3)£ Tsp~Tspplm, J, J3)£ (3.1) 

b) Tsplm, J, J3)£ =0: Ira, J, J3)£ is the Grassman vacuum with right-handed 
chirality. This vacuum degenerates with four states forming a complete basis, which 
spans a 4-dimensional representation space: 

]m,J, J3)£ Tsp~[m,J, J3)£ Tsp~Tspplm, J, J3)£ (3.2) 

ii) Irreducible multiplets with Tsp. Tspl q~ ) = 0 

It occupies 8 states forming a complete basis. It is an octet with neutral chirality: 

Tsp[m,J, J3)[#O; Tsplm, J, J3)[#O: 

Im, J, J3)[; Tsp~lm, J, J3)[; Tsp~lm, J, J3)[; 
(3.3) 

Tsp~Tspplm, J, Ja)[; Tsp~Tsp~lm, J, Ja)[; 

Tsp~ Tspplm, J, J3)[ . 

In the space of functions on the supergroup, we represent the generators of the 
minimal spinor extension of Poincar› group as: 

P~ = id~, 

Mu,=i(x~O,-x,c3u)+l/2.(a~,~~--- ~ -~~,~~---~), (3.4) 

Tsp~ = idldg,; Tsp~ = idld~~. 
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Generally speaking, the 16-component superfield is reducible and it can be reduced 
into the sum of an irreducible quartet with left-handed chirality (independent of/I), and 
an irreducible quartet with right-handed chirality and an octet with neutral chirality. 
At the same time, it is the product of a superfield with right-handed chirality a n d a  
superfield with left-handed chirality: 

�9 (x~, `9, 9) = ~'(x ,  `9) + ~'(x,  ~) + ~ ' (x ,  `9, 9) = (3.5) 
= ~"(x,  `9). r ~. 

Let us note that the product of superfields of the same chirality is a superfield of 
that chirality. 

4. Discussion 

The construction of Lagrange field theory for Tsp algebra is straightforward by 
the standard method proposed by Salam and Stradee [2-1. Here we do not discuss it in 
detail. 

From a geometrical viewpoint, the constructon of geometrical structures on the 
superspace as a vectorspace is a very interesting work. For this purpose we would 
define a certain scalar product on superspace as: 

(Z,  Z ' )  = gmnZ m" Z ~ where Zm= (x~, `9, ~). 

First we consider the flat superspace, in which gm, is a global supermetric tensor. 
Only from the scalar nature and from the symmetric property of this product with 9̀ 
and ~I we come to 

( Z, Z )  = f  (xux ~, ̀ 9, ~ =  xux u . (4.1) 

Proof: From the scalar nature of this product, we must pair 9̀ with gin  any terms ofthis 
product. So: 

( Z, Z )  = f  (xux ~, ̀ gff) . 

But because the product is symmetric, if in a certain term of the product there is a 
`91~. C(x, `9, ~,  there must be l~`9"C(x, `9, ~) terms in the product. However, the two 
terms destroy each another. 

So: Distance in superspace is the distance is Minkowski space, but the angle in 
superspace is not that one in Minkowski space. 

So we can see that the spinor coordinates would give contributions to the 
curvature of manifolds in the superspace. Indeed, if we give a hypersurface by the 
following equation: 

,9 =`9(x); g(x) = ~. (4.2) 

We can come to a curved Minkowski space a s a  physical manifold in the 
superspace with the following metric tensor: 
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g , . ( x )  = g , .  + g,,~ . Og ' (x) /dx  ~ + g,,~ O~~(x)/Ox ~ + 

+ g~v O3~(x)/Ox" + g~~ Ogi(x)/Ox" + (4.3) 

+ g,,p O3~(x)/gx ~" O�91 ~ + g~~Og~(x)/gx "" Og• ~ + 

+ g~~~g~(x)/Ox". ~~~(x)/Ox ~ + g,~O�91 g~~( x ) /&  v . 

Specially, if we choose: 

/ 1 o o  o o o o o \  

0 ! 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 - 1  0 0 0 0 
gro. = (4 .4 )  

0 0 0 0 0 0 i 0 

0 0 0 0 0 0 0 i 

t 0 0 0  0 i 0 0 0  

0 0 0  0 0 i 0 0  

With the assumption that the scalar product is bilinear and symmetric with 9 and 
~. Then (4. 3) gets the following forro: 

g.v(x) = g.~ + i(O�91 Og(x)/Ox ~ + (4.5) 

+ g 5 ( x ) / ~ x " .  O 0 ( x ) / O x ' ) -  g,~ + S .  

The S-term will cause the curvature of the space. We stop the discussion with the 
remark that: In the superspace we can get all configurations of  gravity corresponding to 
the set of  the possible ,9 = �91 ~(x) in ir. 

In conclusion, we note that with Tsp algebra, the SU(N)  internal symmetry will 
be manifest. 

Consider the extended superunified algebra in the general form: 

[p~,, pv] = [p~,, Bt ] = [p~,, QL] = [M.v ,  B,] = O, 

[Mgv, Pp] = i(g~,p Pv - g~p P~,), 

[ u . ~ ,  QL] = 1/2.  ,~.~Q' , 

L M {Q~, Qa } =t~PX(a,)LM" B,,  

L --M {Q~, Q~ }=CLM(a,)~~P", 

[ B I, B,,,] = iZ, ck,. Bl, , 

[Bi, QL] = Ss~U . QM . 

(4.6) 
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When CLu= 0, we get the Tsp algebra. 
Using Jacobi identity (BI, QL, Qu) we come to: 

�91 TM . gl MN ~L ~ S  T M  , C MN : 0 (4.7) 

or in the matrix form: c . gr  = - ~ .  c .  

In usual models, with c TM = 6 TM, we have gr = - st .  As we now, st matrices are the 
representations of the internal symmetry group. So the internal symmetry group must 
be orthogonal. We could get the S U ( N )  symmetry only after a lengthy manipulation 
with so called self-duality (see [10]). 

In our Tsp  algebra c LM = 0, (4.7) satisfies automatically. So we can get a manifest 
S U ( N )  superunified theory. This kind of symmetry fits better with reality. 
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