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7. Introduction

THE success of Debye's formula in representing the variation with tempera-
ture of the specific heat of a large number of metals crystallizing in the cubic
system has for many years been regarded as conclusive evidence for the
correctness of the assumptions on which this theory is based. Gradually,
however, various experimental facts have come to light which do not fit into
the theory. According to Debye, the specific heat of an elementary solid is
expressible as a function involving only one arbitrary constant known as
the Debye characteristic temperature for the substance, this constant itself
being expressible in terms of the elastic modulii of the solid. Several cases
have however come to light in which it is impossible to fit the specific heat
data into a formula of this kind. In order to preserve at least the framework
of the theory, it has become the fashion to regard the " characteristic tempera-
ture " as being itself a function of the temperature and to exhibit its variation
graphically. On a close examination of the matter, it is found that there are
comparatively few cases in which the " Debye temperature " is even approxi-
mately constant over a wide range of temperature. Lead, calcium, molyb-
denum and vanadium are examples of cases in which a fairly satisfactory fit
is obtained. On the other hand, there are equally numerous cases in which
the " characteristic temperature " shows quite distinct variations, increasing
with the temperature as is the case of gold, diminishing as in tungsten, and in
other cases, again, showing more complicated types of variation. In the cases
of lithium, grey tin and metallic silicon, the variations are so large that the
Debye formula does not even roughly represent the specific heat curve.

An extensive literature has grown up in the attempt to interpret these
failures of the Debye theory on the basis of special hypotheses. It is not
proposed here to enter into that literature, as we shall consider the whole
question from a more general point of view. Debye's identification of the
possible atomic movements in a crystal with the elastic vibrations of a continu-
ous solid seems justifiable only when the wave-length of such vibrations is
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sufficiently large in comparison with the lattice spacings of the crystal. There
appears, however, no reason for assuming that all the possible types of atomic
movement can be described in this fashion. Indeed, wherever it has been
possible to make a direct experimental study of the question, e.g., by photo-
graphing the Raman spectra, it is found that such an assumption does not
correctly represent the facts. The spectroscope, in fact, discloses that the atomic
vibrations even in elementary solids, viz., diamond, phosphorus and sulphur,
exhibit numerous monochromatic frequencies, the position and number of which
may be correlated with the crystal structure of the solid. Such methods of
optical study are, unfortunately, not open to us in the case of metals. But
we have no reason to suppose that a similar situation does not exist in their
case as well. It may be recalled that in making the first attempt to develop a
quantum theory of specific heats, Einstein (1907), assumed that the vibrations
of the atoms in a solid are monochromatic. The difficulty felt by him later
(1911) in sustaining this hypothesis, namely that the vibrations of an atom would
be highly damped by its reactions with its neighbours, disappears when it is
recalled that the characteristic vibrations of the lattice necessarily occur in
the same way in all its cells and are therefore undamped. The highly mono-
chromatic character of the frequencies usually exhibited by crystals in the
Raman effect is, in fact, a complete vindication of Einstein's original hypo-
thesis.

From the foregoing considerations, it is clear that for the evaluation
of the specific heat, we have to find the frequencies of atomic vibration in the
crystal and to assign to each such frequency an Einstein function with the
appropriate weight factor. The principal Einstein terms relate to the fre-
quencies of vibration in which the lattice cell is the repeating unit of the
vibration pattern in space. Further terms would also have to be added to
represent the sup erlattice frequencies for which the vibration pattern in space
is a multiple of the size of the lattice cell, as explained more fully in papers
by Sir C. V. Raman and Dr. C. S. Venkateswaran appearing in these
Proceedings. The elastic vibrations of the solid properly so-called, however,
make no sensible contribution to the thermal energy.

2. Relation to Crystal Structure

We may take the basis group in the cases now under consideration to be
the unit cube. This contains two atoms in the case of body-centred lattices,
four in the case of face-centred ones, and eight in diamond-like structures.
The case of the body-centred lattice is the simplest of all. This may be con-
sidered as made up of two interpenetrating simple cubic lattices, one of which
is formd by the corner atoms and the other by the central atom of the cube.
The three translations of the cell as a whole involve three degrees of freedom.
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The Einstein frequency would then correspond to the movement of one single
cubic lattice against the other and because of the cubic symmetry, this must
be triply degenerate. The case of a face-centred lattice is somewhat more
complicated. There are four interpenetrating simple cubic lattices to be con-
sidered. Here as well, three degrees of freedom relate to the translation of
the cell. The remaining nine degrees of freedom are associated with the
possible modes of vibration of the four lattices against each other. Since
each frequency must be triply degenerate, we are concerned with three Einstein
frequencies. In the case of diamond-like lattices, the unit cell of eight atoms
is made up of two groups of four each forming a face-centred cubic lattice.
Assigning three degrees of freedom to the translations, twenty-one degrees
of freedom are left over. There would then be, in general, seven triply
degenerate Einstein frequencies.

The evaluation of the Einstein terms in the specific heat thus involves
a knowledge of one characteristic frequency for body-centred lattices, three
for face-centred ones, and seven for diamond-like structures. Provision-
ally and for the sake of simplicity, the three frequencies of a face-centred
lattice may be replaced by a single representative frequency. In the case of
diamond-like structures, the spectroscopic evidence afforded by diamond it-
self indicates that it is necessary to have at least two representative frequencies;
one of these corresponds to an oscillation of the two face-centred cubic
lattices against each other; the other frequency may be pictured as an oscilla-
tion of the component atoms in each such lattice amongst themselves. Of
the total number of degrees of freedom, one half should evidently be assigned
to the vibrations of the first type which would naturally have the higher fre-
quency. Three degrees of freedom being assigned to the translations, the
remainder are associated with the second and lower frequency.

The three degrees of translatory freedom of the unit cell appear in each
case as superlattice frequencies. Taking a superlattice cell whose edge is
double that of the unit cell, we assign three degrees of freedom to the trans-
lations of the enlarged cell and the remaining 21 degrees of freedom to seven
triply degenerate superlattice frequencies. The three reserved degrees can
then be passed on to superlattice frequencies of the second order, and so forth.
For our present purpose, we may replace the seven superlattice frequencies
of a particular order by a single representative frequency and also restrict
ourselves to superlattice frequencies of the first two orders. The expressions
for the specific heat accordingly reduce to

C„=3R 12 E (kTJ + 6 E \kT/ + 16 E \kT/^
for body-centred structures
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C=3R[E() 
+ 3 E \kTJ + 32E \kT/j

for face-centred structures

and Cv ==3 R r 1 E h"1) + 3 E (h—v2) + E h"3

) + 
E (h ''4l

L2	 kT	 8	 ITT	 64	 kT	 64 \kTJ

for diamond-like structures,
where E stands for Einstein function. The last two terms in each case refer
to the superlattice frequencies of the first and second orders respectively.

Failing spectroscopic data, the frequencies can be evaluated from the
specific heat data themselves. The superlattice frequency of the lowest order
is obtained from the specific heat data at the lowest temperature where the
contribution of other frequencies becomes negligible. Superlattice fre-
quencies of other orders can similarly be found from the specific heat data
at intermediate temperatures. The high-temperature specific heats where
the contribution of superlattice vibrations is constant give the lattice
frequencies. Towards the end of the paper we shall compare the lattice
frequencies empirically found with those given by the melting point formula
of Lindemann.

In the present paper the author has used the above method for calculating
specific heats of several elements crystallizing in the cubic system which do not
fit into the Debye theory. In other cases where the Debye theory gives an
approximate fit with the experimental values, calculations show that it is always
possible to express the specific heats slightly better by the new method. Such
calculations have however, not been given here to save space.

3. Specific Heats of Body-Centred Structures

(a) Lithium.—Of all the metals having this structure, lithium is the most
interesting since no single Debye function will fit the experimental results, the
value of 0 Debye changing from 328 at low temperatures to 430 at room tempe-
ratures. Various hypotheses have been suggested to explain this so-called
anamoly, that given by Simon and Swain (1935) being the most discussed.
They believe that Li ions are of two different kinds and some heat is taken
up in changing one kind into another. The soundness of this assumption
has been questioned and their value of 9 Debye (510) is not supported by
experimental evidence (Pankow, 1936). Fuch (1936) has tried to explain
the specific heats on the assumption of anisotropy, but the values of 0 Debye
calculated by him on that basis show an even larger deviation than is experi-
mentally the case. The values of the specific heat calculated by us (given
below), however, are very close to the experimental values at all temperatures.
It is noteworthy also that our Einstein frequency comes very close to that
given by Lindemann's melting point formula.



Thermal Energy of Crystalline Solids: Lithium, Tugs/en, Gold, etc. 477

The values of Cv have been taken from the paper by Simon and Swain
(loc. cit) ; Beutler and Levis' (1934) results have not been used because the
accuracy claimed by them is not very high, only the first place of decimals
being shown.

TABLE I

Specific Heats of Li in Cals./deg. gm. atom

v1 =8.4x 1012, v2 =4.64x 1012, v3 = 1.84x 1012

Experimental Data of Simon and Swain (1935)

Absolute
tempe-
rature

Einstein
contri-
bution

1

Einstein
contri-

vb
bution

 v2 and 3

Calculated

CV

Observed

Cv

Difference
observed

-calculated

Debye
function

(	 0=350

Difference
observed C7,

-Debye Cv

15 .. -0364 -0364 -045 + •009 •037 +-008
20 .. -095 •095 -095 ±-000 -087 +-008
25 -173 -173 -169 - •004 •169 ± •000
30 •001 •278 •279 •273 - •006 -289 --016
35 -0046 •4112 •416 -413 - •003 -452 -•039
40 •0133 -567 -580 •573 - •007 -652 -•079
45 -0327 -7376 -770 -770 ±-000 -884 - •114
50 -064 -910 •974 •995 +-021 1.137 - •142
60 -169 1.239 1.41 1.42 + •01 1-67 --45
70 •324 1.525 1.85 1.87 + •02 2.197 -•327
80 -509 1.757 2-27 2.31 +•04 2.67 -•36
90 -71 1.948 2.66 2-67 + •0l 3.09 - •42

100 -906 2.104 3.01 3.02 + •01 3.46 - •44
110 1.093 2.228 3.32 3-32 ± •000 3.77 -•45
120 1.269 2.330 3.60 3.59 - •01 4.02 - •43
140 1.569 2-479 4.05 4.01 -•04 4.45 -•44
160 1.813 2.586 4.40 4.34 - •06 4.75 - •41
180 2.006 2.656 4.66 4.57 -•09 4.98 -•42
200 2.156 2.724 4-88 4.78 - •10 5.14 -•36
240 2-372 2.793 5.17 5-28 + •11 5-36 - •08
280 2.518 2.844 5-36 5.31 -•05 5-52 -•21
300 2.575 2.860 5.44 5.39 - •05 5-63 - •24

(b) Tungsten.-This is the only metal for which the frequency spectrum
has been worked out on the Born-Karman model (Fine, 1939). An approxi-
mate method which involved a solution of 140 cubic equations and in which
the interaction of an atom and its fourteen neighbours only was considered,
was used. The values calculated on that basis do not however show any
distinct improvement on those calculated by Debye's formula for 8 = 310.

The agreement of the calculated values with Lange's data is excellent.
The small deviations with respect to Zwikker's data are well within the experi-
mental errors. This is shown by the considerable differences between the two
series of measurements made by him in the region of temperatures given
below.
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TABLE II

Specific Heats of W in Cals.; deg. gm. atom
v1 = 5.4 x 1012, v2 = 4.48 x 1012, v3 = 1-67x 1012

Experimental Data of Lange (1924) from 26-91° A and Zwikker (1929)
from 100-300° A

Absolute
tempe-
rature

Einstein
contri-
bution

P 1

Einstein
contri-
bution

v2 and v3

Calculated Observed Difference
observed

-calculated

Debye
function
9=310

Difference
observed C„
-Debye C„

26.01 •013 •224 •237 •213 - -024 -272 - -059
32.3 •0617 -387 •449 •434 --015 •506 -072
38.8 •165 •587 •752 •750 -•002 •826 -•076
46.7 •355 •866 1.22 1-21 -•01 1.28 -•07
54.7 -592 1.144 1.74 1.80 +06 1.77 +-03
74•4 1.176 1.701 2.88 2.87 -•01 2.85 - 02
78.3 1.272 1.797 3.07 3.07 ±00 3-03 +-04
84.2 1.42 1.908 3.33 3.33 j-00 3.29 +-04
91.1 1.576 2-026 3.60 3.60 ±-00 3.55 +-05

100 1.745 2.156 3.90 3.77 -13 3.85 +08
200 2.592 2.741 5.33 5.30 -03 5-30 ±00
300 2.796 2.869 5.67 5-87 +-20 5.65 +-22

4. Specific Heats of a Face-Centred Structure

Gold.-The specific heats of this metal have been measured by Clusius
and Harteck (1928) and unlike most other metals of this structure are not
expressed by one Debye function. The values of 0 Debye vary between
160 and 186.

TABLE III

Specific Heats of Gold in Cals./deg. gm. atom
v1 =3•14x 1012, v2 =1.80x 1012, v3 = 1•15x 1012

Cp - Cv = 2.09 x 10-5 CO T

Experimental Data of Clusius and Harteck (1928)

Absolute
tempe-
rature

Einstein
contri- I
bution
v and v2	 3

Einstein
contri-
bution

v 1

Calculated
Cv

Observed Difference
observed

-calculated

Debye
function
0=163

Difference
observed Cv 
-Debye C „

14.96 -351 -0195 -371  -357 - -014 •354 +-003
15.73 •389 -029 •418 •431 +013 -408 +-023
20.33 -618 -158 •776 •782 +-006 -816 -•024
24.9 •8057 •3945 1.200 1.252 +052 1.32 -•068
32.5 1.0461 •9575 2.004 1-998 - 006 2-184 -186
44 1.207 1.840 3.047 3.034 --013 3.27 -•236
63.6 1.3243 2.8642 4.189 4.144 -•045 4.39 --246
82.5 1.400 3.414 4.814 4.706 --108 4.938 --232

105 1.434 3.759 5-193 5.128 --065 5-158 --030
147.5 1.460 4.101 5.561 5.578 +-017 5.604 --026
176.5 1.468 4-206 5.674 5.706 +-032 5.71 --004
212.5 1.476 4.283 5.759 5.762 +-003 5.782 --02
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The deviations of the calculated values from the observed data are smaller
than those of the Debye function and are not, as is the case with the latter
in the same direction throughout. They are however larger than those
observed with the body-centred structures. This is possibly due to the fact
that we have taken a single Einstein frequency as a representative of a
group of three, which may be different from one another.

5. Specific Heats of Diamond-like Structures

(a) Metallic Silicon.—Specific heats of this substance have been measured
at six temperatures by Nernst and Schwers (1930) (20-90)° K, by Anderson
(1930) (61-296)° K, and by Magnus (1923) (138-1000)° K. The Debye
characteristic temperatures necessary to explain these results vary between
440 and 715. Nernst and Schwers' values are considerably (2-30)% lower
than those extrapolated by Anderson from his own data. We have used
the latter's extrapolated values in Table IV. Cr Cv has been calculated by
the usual formula from the compressibility (• 325 x 10-12), linear coefficient
of expansion (7.15 x 10-6) and Cp at 296 (4.652), the former two being taken
from the International Critical Tables.

With reference to the distinctly noticeable deviation at 296.3 °K, it
must be pointed out that Anderson does not claim a very high degree of
accuracy for his work. The observed values of specific heats deviate consider-
ably from those given by his curve in this region of temperature. Similar
deviations take place at very low temperatures. The order of error can be
judged from the fact that the specific heat given by him by interpolation at
65.6 0 K is • 920, while his own determination at a slightly lower temperature
(65.1) is • 974. The small deviations from Magnus' data are not unexpected,
since his values differ by about 4% from Anderson's at the temperatures 297
and 296.30 nearly common to both sets of observations.

(b) Grey Tin.—The calculation of Cp — Cv requires the exact knowledge
of the specific heat, compressibility, coefficient of expansion and density at
one and the same temperature. For grey tin only the density and the mean
coefficient of expansion between -163 and 18° C. are known. We have there-
fore calculated the values of Cp — C y by an approximate formula of Gruneisen

C^ = 1 + 2 y T, where y is the coefficient of expansion, on the supposition
v

that the coefficient of expansion is the same at all temperatures. y is taken
as 1.59x 10-6 .

The specific heats were expressed by Lange (1924) by two Debye func-
tions 4 Debye 280 + 4 Debye 76. In terms of one Debye function the 0 Debye
ranges from (140- 225)° K.
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6. Remarks on the Frequencies Assumed

In Table VI the values of the lattice frequencies obtained from the
specific heat data are compared with those deduced from the Lindemann
melting point formula. The following form given by Gruneisen in his
article in the " Handbuch der Physik " has been used

v =25x 1012 VAV02(3

where T,. = melting point in absolute degrees, A= atomic weight and V 0 =
atomic volume.

TABLE VI

Comparison of Frequencies

Substance

v from Lindemann
formula

 Einstein v from specific
heat data

v B =Kv v 0 =Kv

deg. K deg. K
Lithium	 .. 8.7	 x 1012 417 8.4 x 1012 400
Tungsten	 .. 523x10'2 253 5.4 x 1012 260
Gold	 .. 3.34x1012 160 3.14x1012 350
Silicon	 .. 851x10'2 407 659x 10Y 2 315

14.7	 x1012 705
Grey tin	 .. 1.86x1012# I	 89* 2.20x1012 105

5.44 x 1012 260

* From data for ordinary tin.

For the first three metals the frequencies obtained from Lindemann
formula are very near to those used by us. In the latter two cases such agree-
ment is not to be expected because two frequencies are involved. The lower
of the two frequencies, however, comes near the Lindemann frequency. It
is noteworthy that, as in the case of diamond, one frequency is about double
the other.

An independent estimate of the higher frequency of silicon can be made
by the use of Nagendra Nath's theory of the vibrations of the diamond lattice
(1934). His formula for the higher frequency 1332 cm.- ' of diamond is

1v 2_rcVC3M(K+8 
—K

 )J
P`

which must also hold good for silicon because of the similarity of structure.
K, K' and K" in the formula stand for the force constants for primary
valence, directed valence and intravalence, respectively, while M is the mass of
the atom and p the distance between any two connected atoms. The second
term in the above formula is unknown for silicon but is comparatively small
(about 30% of the first) for the force constants used by Nagendra Nath for
carbon. The value of K for silicon has been found to be 1.7 x 10 5 dynes/cm,
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by Still and Yost (1937) from the Raman spectrum of disilane. The cor-
responding value of K for carbon from a compound of similar structure is
4.64 x 10 1 dynes/cm. If the latter value is put in the'above formula for
diamond, the first term by itself (neglecting the other) gives the frequency as
1308 cm.- '- which is near the observed value. We shall therefore not be far
wrong in calculating the frequency for silicon in the same way from the value

K and neglecting ( K ' ;K") The frequency thus obtained is 516 cm. -1

which is not so different from the 491 cm. -1 adopted for the specific heat
calculations. An alternative me thod of calculation is to assume that

v silicon _ Mcarbon x K __.^ 	vsi
v carbon &Msa x Kcarbon 1332

which gives us 525 cm. -1 for vs on using the values of K quoted above.
In conclusion the author wishes to thank Professor Sir C. V. Raman,

Kt., F.R.S., N.L., for his guidance and encouragement.
7. Summary

It is shown in the paper that the specific heat formula for all metals
must necessarily include two types of Einstein terms, one corresponding to
the lattice frequencies and the other to the superlattice frequencies. The
number of lattice frequencies is shown to be one in the case of body-
centred cubic lattices, three in the case of face-centred cubic types and
seven in diamond-like structures. In the latter two cases the groups of
frequencies have been replaced for simplicity by one and two representative
frequencies respectively. The specific heats of the so-called anomalous
cases, Li, W, Au, Si and grey tin have been calculated on the above basis
and a satisfactory agreement with experimental results has been obtained.
In the first two types of structures the monochromatic lattice frequencies
obtained are shown to be of the same order as those given by Lindemann's
melting point formula.

REFERENCES

Einstein	 .. Annalen der Physik., 1907, 22, 180, 800.
—	 Ibid., 1911, 35, 679.

Simon and Swain	 .. Zr. f. Phys. Chemie, 1935, 28B, 189.
Pankow	 .. Helv. Phys. Acta, 1936, 9, 87.
Fuch	 .. Proc. Roy. Soc., 1936, 157 A, 444.
Beutler and Levi	 .. Zs. f. Phys. Chemie, 1934, B 24, 278.
Fine	 .. Physical Review, 1939, 56, 358.
Lange	 .. Zs. f. Phys. Chemie, 1924, 110, 343.
Zwikker	 .. Zeits. f. Physik, 1929, 52, 668.
Clusius and Harteck	 .. Zs. f. Phys. Chemie, 1928, 134, 243.
Nernst and Schwers 	 .. Preuss. Akad. wissen Berl., 1914, 10, 355.
Anderson	 .. J. Am. Chem. Soc., 1930, 52, 2301.
Magnus	 .. Annalen d. Physik, 1923, 70, 325.
Gruneisen	 .. Handbuch der Physik, 1926, 10, 52.
Nagendra Nath	 .. Proc. Ind. Acad. Sci., 1934, 1, 343.
Still and Yost	 .. J. Chem. Phys., 1937, 5, 94,


