
New Generation Computing, 22(2004)177-186
Ohmsha, Ltd. and Springer-Verlag [W GE RATIo COMPUTING

@Ohmsha, Ltd. 2004

A Grid-Oriented Genetic Algorithm Framework for
Bioinformatics

Hiroaki IMADE, Ryohei MORISHITA, Isao ONO and
Norihiko ONO
The Universi~. of Tokushima
2-1 Minamijosanjima, Tokushima, 770-8506, Japan

Masahiro OKAMOTO
Kyushu Universi~
6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
h i r o l l 2 1 O i s , t okushima-u, ac. jp

Received 15 June 2003
Revised manuscript received 17 November 2003

Abstract In this paper, we propose a framework for enabling for
researchers of genetic algorithms (GAs) to easily develop GAs running on
the Grid, named "Grid-Oriented Genetic algorithms (GOGAs)", and actually
"Gridify" a GA for estimating genetic networks, which is being developed by
our group, in order to examine the usability of the proposed GOGA frame-
work. We also evaluate the scalability of the "Gridified" GA by applying it to
a five-gene genetic network estimation problem on a grid testbed constructed
in our laboratory.

Keywords: Genetic Algorithms, Grid, Framework, Genetic Networks, Grid-
Oriented Genetic Algorithms.

w IntroductiOn
In bioinformatics studies, it is important that researchers in life science,

information science and bioinformatics collaborate with each other. By transpar-
ently using their resources such as data, power and services distributed in their
laboratories, it is expected that large-scale problems that have been difficult to
be handled by a single laboratory so far can be solved. Recently, to achieve
such environment, some studies on grid computing have been made actively. 3'6)
There are some grids for studying bioinformatics applications including North
Carolina Bioinformatics Grid, TM BioGrid 2~ and Open Bioinformatics Grid. 9)

178 H. Imade , R. Morishi ta , I. Ono, N. Ono and M. Okamoto

In bioinformatics studies such as estimating mutual interactions among
genes and cell simulations, researchers need to find appropriate system structures
and parameters of target systems that explain experimentally-observed data
well. Generally, these processes are defined as optimization problems. These
problems are very difficult because they are multidimensional, multimodal and
non-linear problems and it takes a long time to evaluate a solution in these
problems. The Genetic Algorithm (CA) 4) is an optimization method inspired
by the evolution of living things. Because GAs not only show good performance
on multidimensional, multimodal and non-linear problem spaces but also can be
parallelized easily, they have been employed as optimization methods for solving
these problems in many studies. 1.~.~215.2o.21) At present, most of these studies
handle just small-scale problems by using a limited number of computation nodes
in each laboratory independently. In order to handle larger-scale problems by
using more computation nodes effectively, it is important that more researchers
and more laboratories collaborate with each other. Therefore, GAs that can
solve large-scale problems in a short time by effectively using a great number of
computation nodes on a grid are expected to develop. In this paper, we call a
GA running on a grid "Grid-Oriented Genetic Algorithm (GOGA)".

There are many studies on parallel GAs for reducing search time by using
multiple computers. 5'8'11 ~8> However, most of these studies assumed the use of
parallel computers, e.g. SMP computers, or PC clusters, which consist of ho-
mogeneous computation nodes and have high-speed and stable network. Grids
are greatly different from parallel computers and PC clusters in that a grid
consists of heterogeneous computation nodes and its network is low-speed and
unstable. Most of existing parallel GAs cannot effectively work on a grid because
asynchronous processes in heterogeneous environment, communication overhead,
robustness and security are not considered. In order to develop GOGAs, GA
researchers have to learn various domain knowledge on gird computing such as
security, transferring data and invoking remote processes. Even if GA researchers
use some middlewares such as Globus Tool Kit (GTK), 3) the researchers have
to write complex source codes. Therefore, it is very difficult for ordinary GA
researchers to begin GOGA studies at present.

This paper proposes a GOGA framework to easily develop GOGAs with-
out domain knowledge on grid programming. In order to show that GAs used
in bioinformatics can be easily "Gridified" by using the proposed framework, we
try to "Gridify" a parallel GA for estimating genetic networks 13) as an exam-
ple. Then, we examine the scalability of the proposed framework by applying
the "Gridified" GA to a five-gene genetic network estimation problem on a grid
testbed with three sites, which has been constructed in our laboratory.

w G O G A Framework

2.1 Requirements from A Viewpoint of GA Models
Generally, GAs can be categorized into the following two models:

The single population model is a model in which a single population is evolved

A Grid-Oriented Genetic Algorithm Framework for Bioinformatics 179

by genetic operators. Simple GA 4) and MGG 16) are its examples. Generally, its
algorithm can be described as follows: 1) generate an initial population randomly
(generation of initial population), 2) choose parents from the population (selection

for reproduction), 3) generate kids by crossover and mutat ion (generation of kids),
4) calculate the evaluation values of the kids (calculation of evaluation values)
5) select the individuals surviving in the next generation (selection for survival),
and 6) repeat the above steps from two to five until a terminating condition
is satisfied. This model can be parallelized by assigning the population data
and the processes other than calculation of evaluation values to one node, named
master, and assigning the processes of calculation of evaluation values to multiple
nodes, named workers.
The multiple population model is a model in which multiple sub-populations are
evolved independently and interact with each other periodically. Island model 18)
and DuDGA s) are its examples. Generally, its algorithm can be described as
follows: 1) generate multiple initial sub-populations (generation of initialpopula-
tion), 2) apply genetic operators to each sub-population (independent evolution)
and 3) exchange information, such as the best individuals in each sub-population,
among sub-populations periodically (interactions among sub-populations). This
model can be parallelized by assigning each sub-population and the processes of
independent evolution to each node, named peer.

In this paper, a persistent process on a node such as the process of gen-
eration alternation on a master and the process of independent evolution on each
peer is called a job. A transient process invoked by other nodes such as the
process of calculation of evaluation values and the process of interactions among
sub-populations is called a task. A persistent data on a node such as a population
on a master or a peer is called session data. A GOGA framework should pro-
vide some programming interfaces to easily define jobs, tasks and session data. A
GOGA framework should also provide a function which jobs and tasks use to
register any session da ta to a node, to refer them and to delete them from the
node, a function which enables multiple jobs to operate cooperatively, a function
which jobs use to request tasks to other nodes, and a function to easily realize
hiding network latency.

2.2 Requirements from A Viewpoint of Grid Environment
In this paper, we assume a grid in which multiple sites connect to each

other via the Internet and each site includes global nodes and private nodes, as
shown in Fig. 1. A' global node has a global IP and can be directly accessed from
other sites. A private node has a global or private IP and cannot be directly
accessed from other sites. Each private node can be directly accessed from the
global nodes belonging to the same site.

A GOGA framework should satisfy the following requirements to work
on such grid as described above: 1) the framework should have a powerful user
authentication function and a data encryption function (security), 2) the frame-
work should have a function to notify errors on the network and other nodes to
the user-defined code level and, then, to safely separate the troubles from the

H. Imade, R. Morishita, I. Ono, N. Ono and M. Okamoto 180

Priv

GIo

Fig. 1 Grid Environment

system, not stopping the whole system (robustness), 3) the framework should
have a function to add/delete nodes to / f rom the grid, not stopping the whole
system(flexibility), 4) the framework is desirable to run on as various platforms
as possible (portability) and 5) the framework should provide functions to trans-
fer any files, any tasks and any messages from any private node to another and
to invoke any jobs on the other remote private nodes, and should have a single-
sign-on function tha t allows users to login the grid by typing a pass phrase only
once (convenience to GOGA users).

2.3 Implementing GOGA Framework

[1] Programming language and middleware
We employ Java as a programming language from the view points of hiding

network latency, robustness, flexibility and portability. Java is an object-oriented
programming language that provides powerful multi thread management, mem-
ory management , exception handling functions and good portability. We use
Globus Tool Kit (GTK), 3) which is defacto standard for grid programming, as
middleware. G T K provides functions for authenticating users based on X.509
certificates, enabling single-sign-on, invoking processes on remote global nodes,
transferring files and standard input, output , or error messages to remote global
nodes, and encrypting data transferred between global nodes. We also use CoG
Tool Kit 1~ to access G T K with Java.

[2] Architecture of GOGA framework
The G O G A framework consists of the following four programs:

Framework manager and job manager are programs running on a private node
which a user uses as a terminal. Framework manager, first, invokes gateway
managers on global nodes and local managers on private nodes. Next, job man-
ager invokes specified jobs on specified local managers. Job manager transfers
error messages from gateway managers and local managers to the user terminal
and displays on the user console. These programs require only Java and CoG.
Gateway manager is a program running on more than one global node in each site.
This program manages a database of nodes in the site, named sitemap, and relays
tasks and messages between sites. The user can add some nodes to a si temap

A G r i d - O r i e n t e d G e n e t i c A l g o r i t h m F r a m e w o r k for B io in fo rma t i c s 181

or delete ones from a sitemap by using framework manager. Communication
between gateway managers is encrypted by SSL. This program requires Java,
CoG, GTK and rsh/rcp clients.
Local manager is a program running on each private node. It manages jobs
and session data and handles tasks received from other local managers. In local
manager, the process of sending, receiving and performing tasks are assigned to
independent threads, respectively. This allows a GOGA developer to easily real-
ize hiding network latency and robustness by terminating only the corresponding
threads at the time when some malfunctions occur. Standard-output messages
from jobs and tasks are automatically recorded in a log file on the node. This
program requires Java and rsh server.

[3] Programming interfaces
The GOGA framework provides the following classes to enable a GOGA

developer to easily "Gridify" parallel GAs:
Abstract Job: A developer can define any jobs by extending Abstract Job and
writing codes for the initialization and the job process. This class provides
methods for sending and receiving tasks. Errors during requesting tasks are
notified by exceptions to the user-defined codes of job processes.
AbstrackTask: A developer can define any tasks by extending AbstractTask and
writing codes for the task process and the serialization/deserialization of neces-
sary data to perform the task. Data necessary for task communication are held
as a TaskHeader object and used by the framework.
Environment: By using Environment, jobs and tasks can register any jobs and
objects as session data to the local manager, to refer them and to delete them.

[4] Behavior o f GOGA framework
Framework manager, first, generates a certificate by receiving user's pass

phrase and, then, performs authentication processes on global nodes on each
site. Next, framework manager sends all necessary files to all nodes on the grid,
and, after that, invokes gateway managers on global nodes and local managers
on private nodes. Job manager, first, reads boot job files. A boot job file includes

PrJwto Nodes Gsteway M~rmpr I G m | y Memlger 2 PrlvatD No~les

Job ID g thls
TJSk ID s unique number to the Msk
Tmsk N~me the clsSs Paine DI thls ~#klnvoked

by the desli~tlon
Slatus mn Dxecution stmlus of this /ask

Task Dola Jrgumen~ tot this ~ or
m~lth of this ~Mc

1.A Job on Node A creates a task and initializes
its TeskHesder end TaskData.

2.The task Is sent to the gateway mangerwhlch
Node A can directly access, Gateway Manager 1

3.Gateway Manager 1 refers the attemap 1o detsrmlce
which gateway manager can directly access the
deatlnatlon node, Node B.

4.Gateway Manager I sends the task to the gateway
manager chosen in step 3, Gateway Manager 2.

5.Gateway Manager 2 sends the task to the destination
node, Node 8.

6. Local manager on Node B dynamical ly loads the task
class specified by TaskName and executes it.

7. Status is set to "normal terminat ion" or "abnormal
termination".

8,Baesd on JoblD, the result is returned to the Node A
via Gateway Manager 2 and 1.

Fig. 2 Behavior of the Framework

182 H. Imade, R. Morishita, I. Ono, N. Ono and M. Okainoto

the class name of a job, the node name where the job is to be invoked and
some arguments for initialization and, then, invokes the jobs on the specified
local managers. Figure 2 shows a typical behavior of the framework when a job
requests a task.

w A P a r a l l e l G A for E s t i m a t i n g G e n e t i c N e t w o r k s a n d Its " G r i d -
i f i c a t i o n "

3.1 A Parallel GA for Estimating Genetic Networks
This section briefly explains a parallel GA for estimating genetic networks,

named "Parallel Network-Structure-Search Evolutionary Algorithm" (Parallel
NSS-EA)? 3~ Parallel NSS-EA performs structure optimization on the master node
and parameter optimization on multiple worker nodes as shown in Fig. 3. In
structure optimization, the structures of genetic network are searched by a GA.
The evaluation value of an individual in structure optimization is given by the
evaluation value of the best individual found in parameter optimization. In pa-
rameter optimization, a real-coded GA searches the system parameters of network
structures passed by structure optimization.

The master node has three kinds of threads cooperating with each other,
named main thread, generation-alternation thread and client thread, and some data
such as a population and an individual queue as shown in Fig. 3. Main thread
initializes data such as the population and the individual queue. Generation-
alternation thread handles the process of generation alternation for structure opti-
mization. This thread makes kids and puts them to the individual queue. Client
thread communicates with a worker. Multiple client threads run on the master
node. This thread, first, initializes the corresponding worker and, then, repeats
the processes of getting the predetermined number of kids from the individual
queue and sending them to the corresponding worker.

A worker node, first, initializes itself by using data received from the
corresponding client thread on the master node. Then, the worker repeats the
following procedures: 1) receive a request for evaluating individuals, 2) perform
parameter optimization of the individuals and 3) return the evaluation values
obtained in parameter optimization.

' ~ / ~ - ~ . St ucture Optimization I i . '__
O 0 ~ 0 ~ . ~ i o ~

0 ~ . n d p t ~ 0 EEl> 0

~ - ~ I T IIIII ,~.~,o. . I I.rl I ~ / V l r-~

Genendlo ItermtlonTh .d I~d I~0 H r ~ " I PlarameterOptlmlzatlon

Fig. 3 Parallel NSS-EA

3.2 "Gridifying" the Parallel GA for Estimating Genetic Networks
In this section, we try to "Gridify" parallel NSS-EA by using the proposed

A G r i d - O r i e n t e d G e n e t i c A l g o r i t h m F r a m e w o r k for B io in fo rma t i c s 183

GOGA framework and show that parallel GAs can be easily "Gridified" by
implementing threads and requests to a worker in parallel GAs as jobs and tasks
of the GOGA framework, respectively, as described below.

In this paper, main thread, generation-alternation thread and client thread
are implemented as jobs, named MasterMainJob, GenerationAlternationYob and
Client Job, respectively, by extending Abstract Job of the GOGA framework. Re-
quests for initialization and parameter optimization on a worker are implemented
as tasks, named InitWorkerTask and EvaITask, respectively, by extending Abstract-
Task of the GOGA framework. The population and the individual queue are reg-
istered as session data. MasterMainJob generates a population and an individual
queue, registers them to Environment as session data, and waits until the time
when the number of generations reaches the finish generation. GenerationAlter-
nationYob gets the population and the individual queue from Environment, and
performs the processes of generation alternation. Client Job gets the individual
queue from Environment, sends InitWorkerTask to the corresponding worker to
initialize the worker, and repeats the processes of getting the predetermined
number of kids from the individual queue, packing them into EvaITask and send-
ing the task to the worker. InitWorkerTask initializes the worker by registering
the system parameters and time course data for parameter optimization as ses-
sion data. EvalTask performs parameter optimization by using the session data
registered by InitWorkerTask.

w Performance Test of GOGA Framework
To evaluate the scalability of the proposed GOGA framework, we applied

the "Gridified" parallel NSS-EA to a five-gene genetic network estimation prob-
lem on the grid testbed as shown in Fig. 4. We measured the time required
for 200 iterations when the number of workers is 1, 10, 20, ..., 100. Fig. 5 (left)
shows the number of workers versus the time required for 200 generations. Fig. 5
(right) shows the number of workers versus the speed up rate, where the speed of
one worker is supposed to be 1. The average time required for a single EvalTask
to be accomplished on a worker is distributed between one and three second.
The average size of transmission data is about 200 bytes. As shown in Fig. 5
(right), the GOGA framework shows good scalability. In this experiments, we
also confrmed that GOGA framework notified errors to the user-level code by
exceptions when some malfunctions occurred in any worker.

~ s t e r N o d e
User Terminal[],~ " ' ~ " 1 0 B A S E - T 100BASE-TX ~ Athlon MP 2000+ X 2

Pentium III 450MHz I~ll I ' ~ I ~ ' f f ~ r ~ G a t e w a v ~,~
~Gateway J ' ~ L ~ . a . ~

Celelon 466 MHz ~ 0 0 u + ~ z

Gateway WorkerNodes
" ~ , ~ . . . ~ , Athlon MP 2000*

' X 100

Fig. 4 Grid Testbed

184 H. Imade , R. Morishi ta , I. Ono, N. Ono and M. Okarnoto

20000

15OO0
W

~10000

5000

10 20 30

Fig. 5

IO0
90

7O

4O
30
2O
10

40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
NO. of Workers No. of Workers

Time Required for 200 Generations (left) and Speed
Up Rate (right)

w Conclusion
In this paper, we discussed the requirements for GOGA framework and

proposed an implementation of the GOGA framework. We tried to "Gridify" a
parallel GA for estimating genetic networks. As the result, we confirmed that
we can easily "Gridify" parallel GAs by using the proposed GOGA framework.
We also found that the proposed GOGA framework showed good scalability.

For future work, we will evaluate the performance of the framework on
Open Bioinformatics Grid where the network latency is very large. We will try
to "Gridify" other existing GA models including multiple population models and
evaluate the performance. We also have a plan to develop a new GOGA running
efficiently on the grid. We have to compare the features and performance of the
proposed GOGA framework with those of EVOLVE/G. 1~) We will release the
GOGA framework on Open Bioinformatics Grid in the near future.

Acknowledgements
This work was partially supported by the Grants-in-Aid for Scientific Re-

search on Priority Areas, "Genome Information Sciences" (No.12208008) from
the Ministry of Education, Culture, Sports, Science and Technology in Japan.

References
1) Ando, S. and Iba, H., "Inference of Gene Regulatory Model by Genetic Algo-

rithms," Proc. CEC 2001, 2001.

2) BioGrid, http: / /www.biogrid.jp

3) Foster, I. and Kasseleman, C., "Globus: A Meracomputing Infrastructure
Toolkit," USA, 1997.

4) Goldberg, D. E., "Genetic Algorithms in Search, Optimization and Machine
Learning," Addison-Wesley, 1989.

5) Gorges-Scheluter, M., "ASPARAGOS An Asynchronous Parallel Genetic Opti-
mization Strategy," Proc. 3rd ICGA, pp. 422-427, 1989.

6) Grimshaw, A. S., Wulf, W. A. and the Legion team, "The Legion Vision of
World Wide Virtual Computer," Communications of the ACM, 1997.

A Grid-Oriented Genetic Algorithm Framework for Bioinformatics 185

7) Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa,
M., Kim, J., Saito, K., Saeki, M., Sirouzu, M., Yokoyama, S. and Konogaya A.,
"A Computational Model on the Modulation of MAPK and Akt Pathways in
Heregulin-induced ErbB Signaling," Journal of Biochemistry, 373, 2, pp. 451-
463, 2003.

8) Hiroyasu, T., Miki, M., Hamasaki, M. and Tanimura, Y., "A New Model of
Distributed Genetic Algorithm for Cluster Systems, Dual Individual DGA,"
Proc. PDPTA '2000, 1, pp. 477-483, 2000.

9) Konishi, F., Eukuzaki, A., Satou, K., Yamamoto, T., Defago, X. and Kona-
gaya, A., "OBIGrid: A New Computing Platform for Bioinformatic," Genome
Informatics, 13, pp. 484-485, 2002.

10) Laszewski, G., Foster, I., Gawor, J., Smith, W. and Tuecke, S., "COG Kits:
A Bridge between Commodity Distributed Computing and High-Performance
Grids," in ACM2OOOJava Grande Conf., pp. 97-106, 2000.

11) Lee, C., Park, K., Kim, J., "Hybrid Parallel Evolutinary Algorithms for Con-
strained Optimization Utilizing PC Clustering," Proc. CEC 2001, 2, pp. 1436-
1441, 2001.

12) Miyoshi, F., Nakayama, Y. and Tomita, M., "Estimation of Genetic Networks
of the Circadian Rhythm in Cyanobacterium Using the E-Cell System," Genome
Informatics, 12, pp. 308-309, 2001.

13) Morishita, R., Imade, H., Ono, I., Ono, N. and Okamoto, M., "Finding Mul-
tiple Solutions Based on An Evolutionary Algorithms for Inference of Genetic
Network by S-system," to be published in Proc. CEC 2003, 2003.

14) North Carolina Bioinformatics Grid, http://www.ncbiogrid.org.

15) Sakamoto, E., and Iba, H., "Inferring a System of Differential Equations for
a Gene Regulatory Network by Using Genetic Programming," Proc. CEC 2001,
2001.

16) Sato, H., Yamamura, M. and Kobayashi, S., "Minimal Generation Gap Model
for Gas Considering both Exploration and Exploitation," Proc. IIZUKA '96, pp.
494-497, 1996.

17) Savageau, M. A., "Biochemical Systems Analysis : A Stuff of Function and
Design in Molecular Biology," Addison-Wesley, Reading, 1976.

18) Tanese, R., "Distributed Genetic Algorithms," Proc. 3rd ICGA, pp. 434-439,
1989.

19) Tanimura, Y., Hiroyasu, T. Miki, M. and Aoi, K., "The System for Evolutionary
Computing oh the Computational Grid," IASTED 14th Intl. Conf. on Parallel and
Distributed Computing and Systems, pp. 39-44, 2002.

20) Tominaga, D., Koga, N. and Okamoto M., "Efficient Numerical Optimization
Algorithm Based on Genetic Algorithm for Inverse Problem," Proc. GECCO 2000,
pp. 251-258, 2000.

21) Ueda, T., Koga, N., Ono, I. and Okamoto M., "Efficient Numerical Optimization
Technique Based on a Real-coded Genetic Algorithm for Inverse Problem," Proc.
AROB '02, 2002.

186 H. Imade, R. Morishita, I. Ono, N. Ono and M. Okamoto

Hiroaki Imade: He received his B.S. degree in the department of engineering from The
University of Tokushima, Tokushima, Japan, in 2001. He received the M.S. degree
in information systems from the Graduate School of Engineering, The University of
Tokushima in 2003. He is now in Doctoral Course of Graduate School of Engineering,
The University of Tokushima. His research interests include evolutionary computa-
tion. He currently researches a framework to easily develop the GOGA models which
efficiently work on the grid.

Ryohei Morishita: He received his B.S. degree in the department of engineering from
The University of Tokushima, Tokushima, Japan, in 2002. He is now in Master Course
of Graduate School of Engineering, The University of Tokushima, Tokushima. His re-
search interest is evolutionary computation. He currently researches GA for estimating
genetic networks.

Isao Ono, Ph.D.: He received his B.S. degree from the Department of Control Engi-
neering, Tokyo Inst i tute of Technology, Tokyo, Japan, in 1994. He received Ph.D. of
Engineering at Tokyo Insti tute of Technology, Yokohama, in 1997. He worked as a
Research Fellow from 1997 to 1998 at Tokyo Insti tute of Technology, and at Univer-
sity of Tokushima, Tokushima, Japan, in 1998. He worked as a Lecturer from 1998
to 2001 at University of Tokushima. He is now Associate Professor at University of
Tokushima. His research interests include evolutionary computation, scheduling, func-
tion optimization, optical design and bioinformatics. He is a member of JSAI, SCI,
IPSJ and OSJ.

Norihiko Ono, Ph.D.: He received his B.S.M.S. and Ph.D. of Engineering in 1979, 1981
and 1986, respectively, from Tokyo Inst i tute of Technology. From 1986 to 1989, he
was Research Associate at Faculty of Engineering, Hiroshima University. From 1989 to
1997, he was an associate professor at Faculty of Engineering, University of Tokushima.
He was promoted to Professor in the Department of Information Science and Intelligent
Systems in 1997. His current research interests include learning in multi-agent systems,
autonomous agents, reinforcement learning and evolutionary algorithms.

Masahiro Okamoto, Ph.D.: He is currently Professor of Graduate School of Systems
Life Sciences, Kyushu University, Japan. He received his Ph.D. degree in Biochemistry
from Kyushu University in 1981. His major research field is nonlinear numerical opti-
mization and systems biology. His current research interests cover system identification
of nonlinear complex systems by using evolutional computer algorithm of optimization,
development of integrated simulator for analyzing nonlinear dynamics and design of
fault-tolerant routing network by mimicking metabolic control system. He has more
than 90 peer reviewed publications.

