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Abstract In this paper, we propose a framework for enabling for 
researchers of genetic algorithms (GAs) to easily develop GAs running on 
the Grid, named "Grid-Oriented Genetic algorithms (GOGAs)", and actually 
"Gridify" a GA for estimating genetic networks, which is being developed by 
our group, in order to examine the usability of the proposed GOGA frame- 
work. We also evaluate the scalability of the "Gridified" GA by applying it to 
a five-gene genetic network estimation problem on a grid testbed constructed 
in our laboratory. 

Keywords: Genetic Algorithms, Grid, Framework, Genetic Networks, Grid- 
Oriented Genetic Algorithms. 

w IntroductiOn 
In bioinformatics studies, it is important that  researchers in life science, 

information science and bioinformatics collaborate with each other. By transpar- 
ently using their resources such as data, power and services distributed in their 
laboratories, it is expected that large-scale problems that have been difficult to 
be handled by a single laboratory so far can be solved. Recently, to achieve 
such environment, some studies on grid computing have been made actively. 3'6) 
There are some grids for studying bioinformatics applications including North 
Carolina Bioinformatics Grid, TM BioGrid 2~ and Open Bioinformatics Grid. 9) 
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In bioinformatics studies such as estimating mutual interactions among 
genes and cell simulations, researchers need to find appropriate system structures 
and parameters of target systems that  explain experimentally-observed data 
well. Generally, these processes are defined as optimization problems. These 
problems are very difficult because they are multidimensional, multimodal and 
non-linear problems and it takes a long time to evaluate a solution in these 
problems. The Genetic Algorithm (CA) 4) is an optimization method inspired 
by the evolution of living things. Because GAs not only show good performance 
on multidimensional, multimodal and non-linear problem spaces but also can be 
parallelized easily, they have been employed as optimization methods for solving 
these problems in many studies. 1.~.~215.2o.21) At present, most of these studies 
handle just small-scale problems by using a limited number of computation nodes 
in each laboratory independently. In order to handle larger-scale problems by 
using more computation nodes effectively, it is important that  more researchers 
and more laboratories collaborate with each other. Therefore, GAs that can 
solve large-scale problems in a short time by effectively using a great number of 
computation nodes on a grid are expected to develop. In this paper, we call a 
GA running on a grid "Grid-Oriented Genetic Algorithm (GOGA)".  

There are many studies on parallel GAs for reducing search time by using 
multiple computers. 5'8'11 ~8> However, most of these studies assumed the use of 
parallel computers, e.g. SMP computers, or PC clusters, which consist of ho- 
mogeneous computation nodes and have high-speed and stable network. Grids 
are greatly different from parallel computers and PC clusters in that  a grid 
consists of heterogeneous computation nodes and its network is low-speed and 
unstable. Most of existing parallel GAs cannot effectively work on a grid because 
asynchronous processes in heterogeneous environment, communication overhead, 
robustness and security are not considered. In order to develop GOGAs, GA 
researchers have to learn various domain knowledge on gird computing such as 
security, transferring data and invoking remote processes. Even if GA researchers 
use some middlewares such as Globus Tool Kit (GTK), 3) the researchers have 
to write complex source codes. Therefore, it is very difficult for ordinary GA 
researchers to begin GOGA studies at present. 

This paper proposes a GOGA framework to easily develop GOGAs with- 
out domain knowledge on grid programming. In order to show that  GAs used 
in bioinformatics can be easily "Gridified" by using the proposed framework, we 
try to "Gridify" a parallel GA for estimating genetic networks 13) as an exam- 
ple. Then, we examine the scalability of the proposed framework by applying 
the "Gridified" GA to a five-gene genetic network estimation problem on a grid 
testbed with three sites, which has been constructed in our laboratory. 

w G O G A  Framework 

2.1 Requirements from A Viewpoint of GA Models 
Generally, GAs can be categorized into the following two models: 

The single population model is a model in which a single population is evolved 
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by genetic operators.  Simple GA 4) and MGG 16) are its examples. Generally, its 
algorithm can be described as follows: 1) generate an initial population randomly 
(generation of initial population), 2) choose parents from the population (selection 

for reproduction), 3) generate kids by crossover and mutat ion (generation of kids), 
4) calculate the evaluation values of the kids (calculation of evaluation values) 
5) select the individuals surviving in the next generation (selection for survival), 
and 6) repeat the above steps from two to five until a terminating condition 
is satisfied. This model can be parallelized by assigning the population data  
and the processes other than calculation of evaluation values to one node, named 
master, and assigning the processes of calculation of evaluation values to multiple 
nodes, named workers. 
The multiple population model is a model in which multiple sub-populations are 
evolved independently and interact with each other periodically. Island model 18) 
and DuDGA s) are its examples. Generally, its algorithm can be described as 
follows: 1) generate multiple initial sub-populations (generation of initialpopula- 
tion), 2) apply genetic operators to each sub-population (independent evolution) 
and 3) exchange information, such as the best individuals in each sub-population, 
among sub-populations periodically (interactions among sub-populations). This 
model can be parallelized by assigning each sub-population and the processes of 
independent evolution to each node, named peer. 

In this paper,  a persistent process on a node such as the process of gen- 
eration alternation on a master  and the process of independent evolution on each 
peer is called a job. A transient process invoked by other nodes such as the 
process of calculation of evaluation values and the process of interactions among 
sub-populations is called a task. A persistent data  on a node such as a population 
on a master  or a peer is called session data. A GOGA framework should pro- 
vide some programming interfaces to easily define jobs, tasks and session data. A 
GOGA framework should also provide a function which jobs and tasks use to 
register any session da ta  to a node, to refer them and to delete them from the 
node, a function which enables multiple jobs to operate cooperatively, a function 
which jobs use to request tasks to other nodes, and a function to easily realize 
hiding network latency. 

2.2 Requirements from A Viewpoint of Grid Environment 
In this paper,  we assume a grid in which multiple sites connect to each 

other via the Internet  and each site includes global nodes and private nodes, as 
shown in Fig. 1. A' global node has a global IP and can be directly accessed from 
other sites. A private node has a global or private IP and cannot be directly 
accessed from other sites. Each private node can be directly accessed from the 
global nodes belonging to the same site. 

A GOGA framework should satisfy the following requirements to work 
on such grid as described above: 1) the framework should have a powerful user 
authentication function and a data  encryption function (security), 2) the frame- 
work should have a function to notify errors on the network and other nodes to 
the user-defined code level and, then, to safely separate the troubles from the 
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Fig. 1 Grid Environment  

system, not stopping the whole system (robustness), 3) the framework should 
have a function to add/delete nodes to / f rom the grid, not stopping the whole 
system(flexibility), 4) the framework is desirable to run on as various platforms 
as possible (portability) and 5) the framework should provide functions to trans- 
fer any files, any tasks and any messages from any private node to another and 
to invoke any jobs on the other remote private nodes, and should have a single- 
sign-on function tha t  allows users to login the grid by typing a pass phrase only 
once (convenience to GOGA users). 

2.3 Implementing GOGA Framework 

[ 1 ] Programming language and middleware 
We employ Java as a programming language from the view points of hiding 

network latency, robustness, flexibility and portability. Java is an object-oriented 
programming language that  provides powerful multi thread management,  mem- 
ory management ,  exception handling functions and good portability. We use 
Globus Tool Kit  (GTK),  3) which is defacto standard for grid programming, as 
middleware. G T K  provides functions for authenticating users based on X.509 
certificates, enabling single-sign-on, invoking processes on remote global nodes, 
transferring files and standard input, output ,  or error messages to remote global 
nodes, and encrypting data  transferred between global nodes. We also use CoG 
Tool Kit 1~ to access G T K  with Java. 

[ 2 ] Architecture of GOGA framework 
The G O G A  framework consists of the following four programs: 

Framework manager and job manager are programs running on a private node 
which a user uses as a terminal. Framework manager, first, invokes gateway 
managers on global nodes and local managers on private nodes. Next, job man- 
ager invokes specified jobs on specified local managers. Job manager  transfers 
error messages from gateway managers and local managers to the user terminal 
and displays on the user console. These programs require only Java and CoG. 
Gateway manager is a program running on more than one global node in each site. 
This program manages a database of nodes in the site, named sitemap, and relays 
tasks and messages between sites. The user can add some nodes to a si temap 
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or delete ones from a sitemap by using framework manager. Communication 
between gateway managers is encrypted by SSL. This program requires Java, 
CoG, GTK and rsh/rcp clients. 
Local manager is a program running on each private node. It manages jobs 
and session data and handles tasks received from other local managers. In local 
manager, the process of sending, receiving and performing tasks are assigned to 
independent threads, respectively. This allows a GOGA developer to easily real- 
ize hiding network latency and robustness by terminating only the corresponding 
threads at the time when some malfunctions occur. Standard-output  messages 
from jobs and tasks are automatically recorded in a log file on the node. This 
program requires Java and rsh server. 

[ 3 ] Programming interfaces 
The GOGA framework provides the following classes to enable a GOGA 

developer to easily "Gridify" parallel GAs: 
Abstract Job: A developer can define any jobs by extending Abstract Job and 
writing codes for the initialization and the job process. This class provides 
methods for sending and receiving tasks. Errors during requesting tasks are 
notified by exceptions to the user-defined codes of job processes. 
AbstrackTask: A developer can define any tasks by extending AbstractTask and 
writing codes for the task process and the serialization/deserialization of neces- 
sary data to perform the task. Data necessary for task communication are held 
as a TaskHeader object and used by the framework. 
Environment: By using Environment, jobs and tasks can register any jobs and 
objects as session data to the local manager, to refer them and to delete them. 

[ 4 ] Behavior  o f  GOGA framework 
Framework manager, first, generates a certificate by receiving user's pass 

phrase and, then, performs authentication processes on global nodes on each 
site. Next, framework manager sends all necessary files to all nodes on the grid, 
and, after that,  invokes gateway managers on global nodes and local managers 
on private nodes. Job manager, first, reads boot job files. A boot job file includes 

PrJwto Nodes Gsteway M~rmpr I G m | y  Memlger 2 PrlvatD No~les 

Job ID g thls 
TJSk ID s unique number to the Msk 
Tmsk N~me the clsSs Paine DI thls ~#klnvoked 

by the desli~tlon 
Slatus mn Dxecution stmlus of this /ask 

Task Dola Jrgumen~ tot this ~ or 
m~lth of this ~Mc 

1.A Job on Node A creates a task and initializes 
its TeskHesder end TaskData. 

2.The task Is sent to the gateway mangerwhlch 
Node A can directly access, Gateway Manager 1 

3.Gateway Manager 1 refers the attemap 1o detsrmlce 
which gateway manager can directly access the 
deatlnatlon node, Node B. 

4.Gateway Manager I sends the task to  the gateway 
manager chosen in step 3, Gateway Manager 2. 

5.Gateway Manager 2 sends the task to  the destination 
node, Node 8. 

6. Local manager on Node B dynamical ly  loads the task 
class specified by TaskName and executes it. 

7. Status is set to "normal terminat ion" or "abnormal 
termination". 

8,Baesd on JoblD, the result  is returned to the Node A 
via Gateway Manager 2 and 1. 

Fig. 2 Behavior of the Framework 
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the class name of a job, the node name where the job is to be invoked and 
some arguments for initialization and, then, invokes the jobs on the specified 
local managers. Figure 2 shows a typical behavior of the framework when a job 
requests a task. 

w A P a r a l l e l  G A  for  E s t i m a t i n g  G e n e t i c  N e t w o r k s  a n d  Its  " G r i d -  
i f i c a t i o n "  

3.1 A Parallel GA for Estimating Genetic Networks 
This section briefly explains a parallel GA for estimating genetic networks, 

named "Parallel Network-Structure-Search Evolutionary Algorithm" (Parallel 
NSS-EA)? 3~ Parallel NSS-EA performs structure optimization on the master node 
and parameter optimization on multiple worker nodes as shown in Fig. 3. In 
structure optimization, the structures of genetic network are searched by a GA. 
The evaluation value of an individual in structure optimization is given by the 
evaluation value of the best individual found in parameter optimization. In pa- 
rameter optimization, a real-coded GA searches the system parameters of network 
structures passed by structure optimization. 

The master node has three kinds of threads cooperating with each other, 
named main thread, generation-alternation thread and client thread, and some data 
such as a population and an individual queue as shown in Fig. 3. Main thread 
initializes data  such as the population and the individual queue. Generation- 
alternation thread handles the process of generation alternation for structure opti- 
mization. This thread makes kids and puts them to the individual queue. Client 
thread communicates with a worker. Multiple client threads run on the master 
node. This thread, first, initializes the corresponding worker and, then, repeats 
the processes of getting the predetermined number of kids from the individual 
queue and sending them to the corresponding worker. 

A worker node, first, initializes itself by using data received from the 
corresponding client thread on the master node. Then, the worker repeats the 
following procedures: 1) receive a request for evaluating individuals, 2) perform 
parameter optimization of the individuals and 3) return the evaluation values 
obtained in parameter optimization. 

' ~ / ~ - ~ .  St ucture Optimization I i . '__ 
O 0  ~ 0 ~ . ~ i o ~  

0 ~ . n d  p t  ~ 0 EEl> 0 

~ - ~  I T IIIII ,~.~,o. .  I I.rl I ~ / V l  r-~ 

Genendlo ItermtlonTh .d I~d I~0 H r ~ " I PlarameterOptlmlzatlon 

Fig. 3 Parallel NSS-EA 

3.2 "Gridifying" the Parallel GA for Estimating Genetic Networks 
In this section, we try to "Gridify" parallel NSS-EA by using the proposed 
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GOGA framework and show that parallel GAs can be easily "Gridified" by 
implementing threads and requests to a worker in parallel GAs as jobs and tasks 
of the GOGA framework, respectively, as described below. 

In this paper, main thread, generation-alternation thread and client thread 
are implemented as jobs, named MasterMainJob, GenerationAlternationYob and 
Client Job, respectively, by extending Abstract Job of the GOGA framework. Re- 
quests for initialization and parameter optimization on a worker are implemented 
as tasks, named InitWorkerTask and EvaITask, respectively, by extending Abstract- 
Task of the GOGA framework. The population and the individual queue are reg- 
istered as session data. MasterMainJob generates a population and an individual 
queue, registers them to Environment as session data, and waits until the time 
when the number of generations reaches the finish generation. GenerationAlter- 
nationYob gets the population and the individual queue from Environment, and 
performs the processes of generation alternation. Client Job gets the individual 
queue from Environment, sends InitWorkerTask to the corresponding worker to 
initialize the worker, and repeats the processes of getting the predetermined 
number of kids from the individual queue, packing them into EvaITask and send- 
ing the task to the worker. InitWorkerTask initializes the worker by registering 
the system parameters and time course data for parameter optimization as ses- 
sion data. EvalTask performs parameter optimization by using the session data 
registered by InitWorkerTask. 

w Performance Test of GOGA Framework 
To evaluate the scalability of the proposed GOGA framework, we applied 

the "Gridified" parallel NSS-EA to a five-gene genetic network estimation prob- 
lem on the grid testbed as shown in Fig. 4. We measured the time required 
for 200 iterations when the number of workers is 1, 10, 20, ..., 100. Fig. 5 (left) 
shows the number of workers versus the time required for 200 generations. Fig. 5 
(right) shows the number of workers versus the speed up rate, where the speed of 
one worker is supposed to be 1. The average time required for a single EvalTask 
to be accomplished on a worker is distributed between one and three second. 
The average size of transmission data is about 200 bytes. As shown in Fig. 5 
(right), the GOGA framework shows good scalability. In this experiments, we 
also confrmed that  GOGA framework notified errors to the user-level code by 
exceptions when some malfunctions occurred in any worker. 

~ s t e r N o d e  
User Terminal[],~ " ' ~ " 1 0 B A S E - T  100BASE-TX ~ Athlon MP 2000+ X 2 

Pentium III 450MHz I~ll I ' ~  I ~ ' f f ~ r ~ G a t e w a v  ~,~ 
~Gateway J . . . . . .  ' ~  L ~ . a . ~  . . . .  

Celelon 466 MHz ~ 0 0 u +  ~ z 

Gateway WorkerNodes 
" ~ , ~ . . . ~ ,  Athlon MP 2000* 

' . . . .  X 100 

Fig. 4 Grid Testbed 
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w Conclusion 
In this paper, we discussed the requirements for GOGA framework and 

proposed an implementation of the GOGA framework. We tried to "Gridify" a 
parallel GA for estimating genetic networks. As the result, we confirmed that 
we can easily "Gridify" parallel GAs by using the proposed GOGA framework. 
We also found that the proposed GOGA framework showed good scalability. 

For future work, we will evaluate the performance of the framework on 
Open Bioinformatics Grid where the network latency is very large. We will try 
to "Gridify" other existing GA models including multiple population models and 
evaluate the performance. We also have a plan to develop a new GOGA running 
efficiently on the grid. We have to compare the features and performance of the 
proposed GOGA framework with those of EVOLVE/G. 1~) We will release the 
GOGA framework on Open Bioinformatics Grid in the near future. 
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