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Abstract: The additive clustering approach is applied to the problem of two-mode 
clustering and compared with the recent error-variance approach of Eckes and 
Orlik (1993). Although the schemes of the computational algorithms look very 
similar in both of the approaches, the additive clustering has been shown to have 
several advantages. Speci¡ two technical limitations of the error-va¡ 
approach (see Eckes and Orlik 1993, p. 71) have been overcome in the framework 
of the additive clustering. 

Keywords: Two-mode clustering; Additive clustering; Correspondence analysis; 
Addition/deletion algorithm. 

1. Introduction 

Two-mode cluste¡ has appeared in the literature rather frequently 
over the last twenty years (see, for example, Hartigan 1972, 1976; DeSarbo 
1982; DeSarbo and De Soete 1984; Arabie, Schleutermann, Daws, and 
Hubert 1988; Packer 1989; Braverman, Kiseleva, Muchnik, and Novikov 
1974, and Mirkin and Rostovtsev 1978, among Russian references). 
Recently, Eckes and Orlik (1991, 1993; also see Eckes 1993) have produced 
a new approach to the problem, constructing two-mode clusters sequentially 
using a type of variance crite¡ combined with certain additional heu¡ 
approaches. Those authors classify two-mode clustering strategies into three 
general catego¡ (a) direct cluste¡ applied to two-mode data without 
any preliminary transformations or the use of one-mode distances or similari- 
ties; (b) fitting tree structures to two-mode data; (c) additive clustering, 
representing the proximities between pairs of entities as combinations of 
discrete and possibly overlapping properties. Eckes and Orlik (1993) view 
their procedure as combining the advantages of the first two categories of 
methods. 

A goal of the present paper is to demonstrate that such a division of 
clustering methods should be considered rather arbitrary. Specifically, addi- 
tive clustering (c) should not be considered as being very different from 
"direct clustering" (a). 

We show a straightforward extension of an additive cluste¡ model 
(Shepard and Arabie 1979; Mirkin 1987) for two-mode row/column uncondi- 
tional data in a framework similar to the cluster-by-cluster approach of Eckes 
and Orlik. An additive two-mode clustering strategy (referred to as Box 
Clustering) is presented. A s a  by-product, that strategy resolves two problems 
noted by Eckes and Orlik (1993, p. 71) in their approach: the possible change 
of the "standard" proximity value (defined as the maximum value in a prox- 
imity matrix) used in forming the clusters and the option of post hoc creation 
of possibly overlapping clusters. Additionally, our own approach allows esti- 
mation of the contributions of the individual clusters to the total sum of 
squares of the input data. We believe that emphasizing a distinction between 
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methods based on explicit clustering models versus other "ad hoc" algo- 
rithms provides a taxonomy of two-mode clustering techniques that is more 
general than the three-category classification given by Eckes and Orlik 
(1993). 

The paper is organized as follows. Section 2 presents a formal analysis 
of the error-variance technique originally proposed by Eckes and Orlik (1991, 
1993; also see Eckes 1993). Section 3 introduces an additive ("Box Clus- 
ters") clustering model and provides two additive box cluste¡ algo¡ 
for fitting the model. They differ in the value of the "standard" proximity 
used in forming clusters: the maximum data value, as proposed by Eckes and 
Orlik, and the least-squares optimal value de¡ for the Box Cluste¡ 
model. We discuss some properties of that model, as well as of the associated 
algo¡ and the criteria they use. In Section 4, the box clustering metho- 
dology is applied to contingency data analyzed earlier with a Correspondence 
Analysis approach (see Mirkin 1993). In Section 5, the additive two-mode 
clustering algo¡ are applied to two data tables as considered by Eckes 
and Orlik (1993). FinaUy, some features of the box clustering approach are 
reviewed. 

2. Error-Variance Approach 

2.1. The Error-Variance Criterion 

Eckes and Orlik's procedure can be described as follows. Let the data 
be presented as a matrix X = (xij), i ~ I, j ~ J, where I and J are sets of 
indices corresponding to the two modes of entities and xij are two-mode prox- 
imity data keyed as similarities; the data analytic goal is to reveal the major 
associations that are present between members of these two sets as 
represented by the values xij. A two-mode cluster concept (later referred to 
as a box cluster, or just box) is used for this purpose and is defined as the 
Cartesian product V x W of subsets V c_ I and W ___ J. Any box V x W is asso- 
ciated with submatrix X(V,W) = (xij), i ~ V, j ~ W. The quality of the box 
cluster V x W is measured by the crite¡ 

1 ~ ;  (xij - rt) 2 (2.1)  
M S D ( V , W ) -  IVI IWI iev, j~w 

where g is the maximum entry in the input matrix X, and I VI and I WI 
denote the respective cardinalities of the sets V and W. The criterion resem- 
bles conventional badness-of-fit measures, except for only being defined 
locally, not for all the data, but only for the proximities relevant to the given 
cluster. 
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Eckes and Orlik (1993 p. 57) argued that their choice of [x helped main- 
tain homogeneity of the selected entries xi j, ( i , j)  ~ V x W. This approach can 
be extended to the context of additive clustering (see Section 3.2) 

Those authors' algorithm starts with singleton entries V = {i} and 
W = {j } for a box cluster, corresponding to the maximal xij; rows or columns 
are then added iteratively, based on certain heuristic "subc¡ (see for- 
mulae (5) to (8), p. 58, in Eckes and Orlik 1993). The most general of  them, 
(8), is defined for the case when two arbitrary two-mode clusters are merged. 
It equals the average of the squared errors for the newly added proximities 
between the elements of these clusters, which seems to us a rather indirect 
evaluation of the change in crite¡ MSD. In our opinion, the subcrite¡ 
should be based directly on the changes in crite¡ (2.1) as the box clusters 
are iteratively formed by the algorithm. 

More explicitly, if a box cluster VI x W I i s  to be augmented by subsets 
V 2 c I and W2 c J, where V 1 ca V2 = O and W1 ca W2 = O, in the larger box 
(V1 u V2) x (W l u W2), the increment to the criterion (2.1) equals 

A = MSD(V1 u V2, W 1 k.) W2) - M S D ( V I , W I ) .  

For example, the case of adding row k to box V x W corresponds to the 
following situation: V1 = V, W l  = W, Vz = {k}, W2 = 0 .  It is easy to show 
in this case that 

1 ( 1 Z (xkj - ~)2 _ MSD(V,  W)) ,  (2.2) 
A -  (IVI +1 )  IWI j~w 

which implies that adding a row to the box V x W requires minimizing 

1 ~ (xkj - g)2 (2.3) 
d ( k ) -  IWI  j~w 

to make the increment in crite¡ (2.1) as small as possible. This formula- 
tion corresponds to Case II of Eckes and Orlik (1993, p. 58, Eqs. 6 and 7), but 
not to those authors' more general Case III (1993, p. 58, Eq. 8). 

2.2 Error-Variance Box Clustering 

Based on the considerations above, we propose the following algorithm 
a s a  potential improvement over Eckes and Orlik's (1993) approach. 
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Error-Variance Box Algorithm 

1. F i n d a p a i r ( i , j ) ~  l •  { i } , W =  {j},and 
p .=maxx i j .  

2. For any row k ~ V and for any column 1 ~ W, calculate the change in cri- 
terion (2.1) based on formula (2.2) or its counterpart version for columns, 
and find the (row or column) entity that minimizes the change in the cri- 
terion. If the change is not large (Eckes and Orlik 1993, p. 59 used a 
specially introduced measure of "centroid effect ratio" [CER]) in the 
cluster that is not supposed to fall below 80%), add the entity to the box 
cluster, and repeat Step 2 from the beginning. Else go to Step 3. 

3. Redefine sets I and J respectively as sets I - V and J - W to find the next 
box cluster, and go to Step 2 if both sets are not empty. If either of  the 
sets is empty, END. 

After the solution is found it could be used as is, or followed up by one 
of two options: hierarchical agglomeration of the clusters into a dendrogram 
(Step 4 below), or an augmentation from the initial sets I and J to produce 
possibly overlapping clusters (Step 4-  below). Thus, if necessary, after the 
END, go to either 4 or 4-.  

4". Hiera rchy  construction: the clusters obtained are merged pairwise, 
based on some criterion. In contrast to Eckes and Orlik's (1993) indirect 
c¡ we suggest an altemative based on the increment in the origi- 
nal c¡241 (2.1) which can be expressed as follows: 

A = MSD(V1 u V2,W1 u W2) - MSD(V1 ,WI)  - MSD(V2 ,W2) .  

4". Overlapping follow-up: Any box cluster is augmented elementwise by 
adding a row o r a  column, as done in Step 2, this time from the initial 
sets I and J. 

Eckes and Orlik (1993, p. 71) emphasized two targets of opportunity 
for improving the box clustering approach: (a) a strategy for changing the 
value Ix when all large values of xij are to be taken into account, and (b) 
obtaining overlapping clusters from the beginning, rather than a s a  follow-up 
to the determination of disjoint box clusters. 
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3. Additive Box Clustering 

3.1. Additive Box Model 

The additive cluste¡ technique proposed here is closely related to 
the algorithm considered in the previous section. 

Considera  set of m box clusters, VI x Wl . . . . .  V n x Wm, along with 
corresponding intensity weights ~1 . . . . .  ~m. These clusters are referred to as 
additive box clusters if they fit the raw data X according to the following 
model (cf. the model considered in Shepard and Arabie 1979, and Mirkin 
1987): 

m 

Xij = ~-~ ~'t Vit Wjt  -F ei j  , (3.1) 
t = l  

with "small"  residuals eij, i ~ 1, j ~ J. Boolean vectors vt,w t correspond to 
the boxes V t x W t  by the common rule: vit =1 i f f i ~  Vt and w j t = l  iff 
j e  Wt, t = 1 . . . . .  m. 

To relate model (3.1) to the error-variance cluste¡ discussed in the 
section immediately preceding, we apply the sequential fitting procedure dev- 
ised by Mirkin (1987). It is based on a doubly greedy optimization strategy: 
first, clusters are obtained sequentiaUy (cluster-by-cluster) rather than simul- 
taneously, and second, each cluster is formed incrementally, with an 
element-by-element augmentation strategy. 

Specifically, find initially only one box cluster V x W to minimize the 
following least-squares crite¡ based on model (3.1): 

L 2= ~_~ ( x i j - ~ v i w j )  2. (3.2) 
i ~ L j ~ J  

For any 7~ (for example, equal to the maximal xij, as I.t in (2.1) or, to the 
average value of submatrix X(V,W)), criterion (3.2) clearly can be rewritten 
as follows: 

AB(V,W) = • E (xij _~,)2 + E x~ .  (3.3) 
iE V j~  W (i,j)Ÿ V x W 

This last c¡241 resembles the error-variance crite¡ (2.1) in that 
both express the intuitive idea of closeness of the elements of submatrix 
X(V,W) to the same value, either lx or ~, although in different ways. Two 
advantages of the additive cluste¡ crite¡ (3.3) should be pointed out. 
First, it is connected to the explicit clustering model (3.1). Second, its 
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behavior is not monotone in the traditional sense of measures of badness-of- 
fit. Consider, for example, its increment when a row k ~ Vis added to V: 

A = A B ( V u  {k},W)-AB(V,W) = ~ (xkj-~,)2- ~ x2j.  
jeW jeW 

(3.4) 

This value can be either negative or positive depending on the close- 
ness of the subset of row k corresponding to W to ~, or 0. If A is negative, k 
must be added to V because doing so decreases the value of criterion L 2 in 
(3.2); if A > 0, k may not be added to V because the value of L 2 increases 
with k added. Moreover, the sign of A does not depend on what was added 
du¡ the previous steps; this feature offers a natural termination for adding 
the elements to the box - -  when the change of L 2 becomes positive for any 
external row k (or, symmetricaUy, column l to add). In contrast, formula (2.2) 
shows that the increment to c¡241 (2.1) is always positive if k with 
minimal d(k)  in definition (2.3) were added in previous steps; this property 
necessitates the heuristic selection of a threshold value. 

Consider the additive clustering criterion (3.2) more closely. Clearly, 
(3.3) equals 

A B ( V , W ) =  Z Z ( x i j -~ )a  + Z x / ~ - Z  Z x/~ 
i~Vj~W ieLjeJ ieVjeW 

= Z x} + Z Z [(x,j- x) 2 -x} ] .  
ieLjeJ ie Vj~ W 

Since in the final expression the first term is constant and the contents 
of  the brackets in the last term can be transformed using the elementary for- 
mula a 2 - b 2 = (a - b)(a + b), the cfiterion (3.3) equals that constant term 
~;"iet,j~J X2 minus g(V,W,7~), where 

g(V,W,~.) = ~ ~.~ ~,(2xij - ~.). (3.5) 
i~Vj~W 

Thus, to minimize (3.3), crite¡ (3.5) must be maximized. Crite¡ (3.5) 
offers a better interpretation of the optimality condition based on the change 
of sign of (3.4) from negative to positive when V x W is optimal. Indeed, the 
change in (3.5) when k ~ I is  added to V (leaving W invariant) equals: 

Ag (V,W,k)= ~ ~,(2xkj-~,). (3.6) 
jeW 

For the sake of the simplicity, assume ~ is positive. In this case, Ag(V,W,k) is 
negative (so that the maximized criterion (3.5) is actually decreased) when 



250 B. Mirkin, P. Arabie & L.J. Hubert 

the average value 

x (k, W) = ~ xkj / I W I (3.7) 
jew 

is less then ~ / 2 .  An analogous condition holds for column objects. This 
demonstration shows rather clearly the real meaning of the value of ~, in addi- 
tive box clustefing. Specifically, the requirement of Eckes and Orlik (1993) 
that ~, equals the maximal value of xij implies that the box obtained, V x W, 
must include only those objects k ~ V and l e W that have their average 
proximities x (k, W), as defined in (3.7), and x (V,l), symmetrically defined, to 
the rest of the box at least as large as half that maximal value. This observa- 
tion lends support to the choice of the maximal value of p, for maintaining the 
large-valued proximities as boxes are being formed. 

When the optimal value of ~, is used in the additive clustering, the con- 
struction above can be described as follows. Obviously, the optimal value of 
~, for the c¡241 minimized in (3.2) for a given box cluster V x W equals the 
average intemal proximity 

~,=2(v,w)= E E xij/Ivllwl. 
i~ Vj~ W 

(3.8) 

With the optimal value (3.8) of 3, substituted into the c¡ g(V,W,~,) 
of (3.5), the Criterion equals 

g ( V , W ) = ( ~  E xij )2 / [V[  [W[ =x2(V,W)  [VI [W[ . 
i~ v je w 

(3.9) 

This form of the c¡ (3.5) does not contain ~, (which can be deter- 
mined afterward from formula (3.8)) and can be easily adjusted for the case 
when the optimal ~, is negative. 

3.2 Additive Box Algorithms 

The following algo¡ to fit model (3.1) by sequentially finding sin- 
gle boxes with criterion (3.2) are analogous to the Error-Variance Box Algo- 
¡  described in Section 2.2. 

Additive Box Algorithm 1 (for the case of the maximal intensity weight) 

1. Find a pair (i , j)  ~ I x J maxirnizing x U, and set V = { i }, W = {j }, and 
~,=mx2xxij. 
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2. For any row k ~ I and for any column l ~ J, calculate the change in cri- 
te¡ (3.5) based on (3.3) or its counterpart version for colunms, and 
find the row or column minimizing the change. (Alternarlvely, the 
simpler formula (3.6) could be used, based on crite¡ (3.5); in this case, 
the object-by-object merging process could be interpreted a s a  version of 
the average-link method). If the change is negative (positive when (3.6) 
is considered), add the row/column to the box cluster, and repeat Step 2 
from the beginning. Else go to Step 3. 

3. Calculate the residuals xij = x i j - ~ , v i  wj; replace the the matrix (xij) 
with those residuals and go to Step 1 if either (a) the cumulative contri- 
bution of  the obtained box clusters to the total sum of squares of the ini- 
tial data, ~,iet, j~.t x2 ,  is judged not large enough of (b) the number of 
clusters found is not sufficient. Else END. 

When the box cluste¡ problem is considered for the optimal value 
(3.8) of  7~ rather than the maximal one, the algorithm above must be modified 
as follows: (a) to allow the value of ~, to vary when the box is changed (con- 
sidering only positive values of ~,, if necessary), (b) to permit the deletion as 
well as the addition of objects from the box cluster being constructed, for 
better agreement between the box cluster and the variable ~,. These con- 
siderations lead to the following modified algorithm. 

Additive Box Algorithm 2 (for the case of the optimal intensity weight) 

1. Find a pair (i , j)  ~ 1 • J maximizing xij (when only posirlve values of ~. 
ate sought) or crite¡ (3.9) which equals x 2 for singleton boxes 
{ i } x {j } (when ~, is permitted to be negative) and set V = { i }, W = {j }, 
and ~, = xij for the corresponding i,j. 

2. For any row k ~ I and for any column l ~ J, calculate the change in the 
criterion as expressed in formula (3.5) (having ~, equal to x (V, W) given 
in (3.7)) or in (3.9) because of the modified state of the object in its tela- 
don to V of W (that is, adding k to V if k ~ V, of removing k from V if 
k ~ V, and similarly for/) ,  and find the maximum of those changes. If 
the change is positive, add the row or column to the box cluster, and 
repeat Step 2 from the beginning. Else go to Step 3. 

3. Calculate the residuals xij = xij - x  (V, W) v i wj; replace the matrix (xij) 
with those residuals and go to Step 1 if either (a) the cumulative contri- 
burlon of the obtained box clusters to the total surn of squares of  the ini- 
tial data, Ei~1,j~ ~ x 2, is judged to be not large enough, of (b) the number 
of clusters found is not sufficient. Else END. 
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3.3. Comments on the Additive Box Algorithms 

Although we already have pointed out two features of the approach, 
there are several other distinctions to be made between the algorithms for 
additive box clustering and the error-variance box algorithm of Section 2.2: 

1. The residuals are now used, thus allowing recalculation of the maximal 
element of the data after taking into account the previous ones (after 
Step 3 and for any box cluster, the calculations start from Step 1 rather 
than Step 2). This feature avoids problem (a) of the error-variance 
approach mentioned above in Section 2.2, as discussed by Eckes and 
Orlik (1993). 

2. The additive box clusters are constructed so as to allow possible overlap 
from the beginning, in contrast to the more restrictive structures arising 
from the error-variance approach. 

3. As shown above (when (3.5) was derived), the maximized value of 
g(V,W,~,) equals the cont¡ of the cluster to the total sum of 
squares, Y-,iel, jeJ x2, which allows use of the former value (single or 
cumulative) in an analysis of the comparative importance of the clusters 
obtained. 

4. The results of the Additive Box Algo¡ above depend on the origin of 
the scale of measurement for the data xi j: the results could differ using 
the transformation (xij - a )  for varying a, in contrast to those from the 
error variance-c¡241 (2.1). This drawback necessitates careful selec- 
tion of a preliminary transformation of the data. Usually, the data should 
be centered (that is, a equal to the average of all the xij should be sub- 
tracted from the data values). From a different perspective, this arbitrari- 
ness also allows for the adjustment of an additional parameter and the 
search for a variety of solutions. 

5. The additive clusters obtained do not generate any hierarchical structure 
(which is not necessary in the authors' opinion for successful data ana- 
lyses; see a similar point of view discussed in Eckes 1993). But a 
modi¡ analogous to the one desc¡ in the error-va¡ box 
cluste¡ algo¡ as Step 4" (in Section 2.2) could be considered. 
This modification requires initially obtaining nonoverlapping clusters by 
either of the additive box clustering Algorithms 1 or 2 of the previous 
Section 3.2. To construct the latter clusters, it is sufficient in the merging 
process of the algorithms (Steps 1 and 2) to use the reduced sets I and J 
(removing the elements of the clusters already formed). Then, the same 
merging process as in Step 4" of the Error-Variance Box Cluste¡ 
Algorithm (Section 2.2) is car¡ out as follows: 



The Error Variance-Approach Revisited 253 

Hierarchy construction. The clusters obtained are merged pairwise, based on 
the increment of the original criterion (3.2) or the de¡ criterion (3.9) (for 
optimal ~,), which can be expressed as follows: 

A = F(V1 u V2,W 1 k_) W 2 ) - F ( V 1 , W 1 ) - F ( V 2 , W 2 ) ,  

where F is either AB in (3.3) or g in (3.9) based on the maximized crite¡ 
(3.5), so that 

A~ = ~. < Z Z (2xij - 9~) + E Z (2xij - 9~)). 
i~ Vi j~ W2 i~ V2 j~ Wl 

4. Correspondence-wise Additive Clustering 

4.1. The Model 

A specific additive box clustering strategy can be developed for two- 
way contingency tables using the methodology of correspondence analysis 
(Nishisato 1980, 1994; Greenacre 1984; Lebart, Mo¡ and Warwick 
1984; Greenacre and Blasins 1994). Two features of correspondence 
analysis, in particular, distinguish it from principal components analysis (see, 
for example, Carlier and Kroonenberg 1993, Lebart and Mirkin 1993, and 
Mirkin 1993). The first is that the raw contingency data P = (Pij), where Pij is 
the probability or frequency or proportion of the entities corresponding to the 
pair of categories i ~ I and j ~ J, are first transformed into values 

pq - pi pj  
xij = = (p (i I j )  - p ( i ) ) / p ( i ) ,  (4.1) 

Pi Pi 

where Pi and pi are the marginal frequencies. The last expression above 
shows the meaning of the value xij as the relative change of the probability of 
i when j is known. 

The second feature is that the model for correspondence analysis can 
be expressed in the form of model (3.1) fitted with a modified least-squares 
crite¡ where the squared residuals are weighted by the products of 
corresponding marginal frequencies. 

Both these features can be easily taken into account in the framework 
of additive box cluste¡ First, consider the model (3.1) as applied to the 
mat¡ X defined by contingency table P with (4.1). Second, consider the fol- 
lowing weighted least-squares crite¡ instead of (3.2): 
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~p2 (V,W) = ~ P i P j  (xij - ~ , v i  Wj) 2 , (4.2) 
iELj~J 

where xij is defined as in (4.1). 
Consider only the case when ~, is defined as the value minimizing (4.2) 

for any fixed V and W. It is not difficult to derive (by setting the derivative of 
t~ 2 (V ,W)  with respect to 3, equal to zero) that the optimal X has the same 
meaning as the relative change of probability in (4.1), this time for V and W. 
That is, the optimal ~, equals: 

P v w  - P v  P w  
~ (V ,W)  = xv-w = , (4.3) 

P v  P w  

where the aggregate frequencies are defined traditionally as: 

P v w  = ~,ie v ~,j~ w Pij, Pv  = ~-,ie v Pi, P w  = ~jE w Pj.  
This observation can be considered a s a  legitimization of the use of the 

weighted least-squares c¡ in correspondence analysis, though our 
result has arisen somewhat unexpectedly in the context of cluste¡ 

Substituting this value of ~, into (4.2), the criterion could be expressed 
as follows: 

lyp2 (V,W) = ~.~ p i p j x  2 _~2 (V ,W)pvPw.  (4.4) 
i~Lj~J 

The last forro of the crite¡ shows that its final term must be maximized to 
define a correspondence-wise additive box. By substituting expression (4.3) 
for optimal ~, into that term, the critefion can be written: 

f (V,W) = ( Z  ~_u pi pj x/j) 2/(pvpw). (4.5) 
i~Vj~W 

Now an algo¡ can be formulated analogously to those considered 
above, i.e., the Error-Variance Box Algorithm (Section 2.2) and Additive Box 
Algorithms 1 and 2 (Section 3.2). 

4.2. Correspondence-wise Box Algori thm 

1. Find a pair (i,j) ~ I x J maximizing x 2 Pi Pi, and set V = { i }, W = {j }, 

and ~, = xi1. 

2. For any row k ~ V and for any column I ~ W, calculate the change in cd- 
terion (4.5), and ¡ the entity (row or column) maximizing the change. 
If it is positive, add the row/column to the box cluster, and repeat Step 2 
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3. 

from the beginning. Else go to Step 3. 

Calculate the residuals xij = x i j -  ~(V,W)viwj;  replace the mat¡ (xij) 
with those residuals and go to Step 1 if either (a) the cumulative contri- 
bution of the constructed box clusters to the total sum of squares of the 
initial data is not large enough, or (b) the number of the clusters found is 
judged not sufficient. Else End. 

4.3. Comments on the Correspondence-wise Box Algorithm 

out: 

1. 

The following characteristics of the algorithm above should be pointed 

The value of ~"i~l,j~J Pi Pj X2 equals the Pearson contingency coefficient 
~z. Thus, the crite¡ maximized is just the cont¡ of the box 
cluster to the value of the contingency coefficient. 

2. The box constructed can show a rather deviant behavior in the sense of 
the relative change of the frequencies; that is, for any row i or column j 
outside the constructed box V • W, the absolute values of the relative 
changes xvj and Xiw are half or less than the absolute value of the rela- 
tive " intemal"  change Xvw as defined in (4.3) (see Mirkin 1993). 

3. The preliminary transformation of the contingency data through formula 
(4.1) resembles the one recommended by DeSarbo and De Soete (1984) 
and used by Eckes and Orlik (1993). Here, the transformation is used as 
part of the correspondence-wise cluste¡ approach. Moreover, an 
interesting quantitative characteristic of any additive box cluster V x W 
(in the model (3.1)) obtained with the approach is that its intensity 
weight ~, has the same formas expressed in (4.3); that is, obtained with 
the same transformation, this time applied to the aggregate probability 
PVW = Eie V ~'j~ W Pij of the box. 

4. The algorithm works with the preliminary transformation of the data 
uniquely defined through formula (4.1). This feature distinguishes this 
algo¡ from the other Additive Box Clustering algorithms (see Com- 
ment 4 in Section 3.3). 

5. Some Empirical Results 

We reconsider two examples of data analyzed earlier by Eckes and 
Orlik (1993), using the additive two-mode clustering approach as such, 
without any supplementary agglomeration of the clusters. The basic motiva- 
tion is to find which classes of the columns correspond to specific classes of 



256 B. Mirkin, P. Arabie & L.J. Hubert 

the rows; the question arises in substantive research (see, for example, Price 
1974; Hartigan 1976; Eckes 1993). 

In the first example, the data are a 15 x 15 table of proximities between 
pairs formed from 15 kinds of situations and 15 kinds of human behavior, 
based on the approp¡ of the behavior to the situation (judged on a 
scale from 0 to 9 by fifty-two subjects in an experiment by P¡ and Bouffard 
1974), as reported in Eckes and Orlik (1993, p. 66). The data in Table 1 are 
deviations of the raw proximities from their grand mean. 

The results of applying the Additive Box Algo¡ to the data are 
described in Tables 2 and 3. The ¡ presents the results obtained with Algo- 
¡  1 with maximal ~t (from the residuals matrix) as the intensity weight for 
any box cluster. The resulting clusters seem reasonable. But at the same 
time, the following peculiarity of the results seems to be forced by defining 
the intensity weight lx for any cluster as the maximal proximity: all the row 
object subsets Vs in the four box clusters having maximal ~ts are mutually 
exclusive (the ¡ four such row clusters cover 14 situations with only 
Church, which has the smallest proximities, not covered) because after the 
intensity weight was subtracted from the corresponding data, the other entries 
in the rows were not sufficiently large for the corresponding objects to be 
selected again. The other peculiarity, that the column object sets in the initial 
clusters are proper subsets of the column set of the ¡ box, seems to reflect 
the actual characteristics of the data. 

The clusters shown in Table 2 account for 39.7% of the total sum of 
squares of the data in Table 1, or of the variance of those data (for these 
specific data, these measures are equivalent since the mean value of the prox- 
imities in Table 1 equals zero, and thus, the sum of squares is proportional to 
the variance for the results shown in both Tables 2 and 3). Such a fit might 
seem unacceptably low, compared to higher levels usually obtained with 
regression or factor analyses. But recall that our solution uses only Boolean 
(not quantitative) factors for clusters. The low contribution we obtained sug- 
gests that the clusters shown in the Table 2 reflect an aggregate picture of the 
data but that there are many local peculiarities in the data which will be 
reflected in the less substantial and smaUer clusters omitted here. Also, in 
this particular approach, the intensity weight equals the maximal proximity in 
the matrix, which could be rather far from the optimal intensity weight (equal 
to the average), and this discrepancy decreases the amount of explained vari- 
ance (although not dramatically so, as will be seen from the results given 
below in Tables 3 and 4). The Eckes-Orlik approach does not seek to minim- 
ize any least-squares function, though their c¡ is a "local" goodness- 
of-fit, and we therefore cannot compare our goodness-of-fit to those authors' 
even for the same data. 
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Table 1: Situation-Behavior Centered Proximities. 

Behavior 
Situation Run Talk Ki~ Write Eat Sleep Mumb Re.ad Fight Belch Argue Jump Cry Laugh Shout 
Cla~ -1.99 1.70-2.41 3.66 -0.28-0.91 -0.89 2.76 -3.30 -2.74 0.82 -2.72-2.30 1.72 -2.57 
Date 0.49 4.05 4.22 -0.89 3.28-0.74 -1.39 -1.63 -0.93 -2.28 -0.01 -0.09 -I.47 3.49 -0.72 
Btm -3.07 3 .57-0.24 0.36 0.97 2.53 0.66 2.66 -2.99 -2.36 -0.34 ol .39-1.43 2.59 -1.51 
FDinner -1.95 4.01 0.41 -1.93 3.93-2.22 -1.97 -0.55 -2.84 -2.01 -1.26 -2.22 -1.30 2.62 -2.55 
Park 3.43 3.01 3.20 2.49 3.62 1.12 0.89 3 .26 -1 .45  0.49 0.55 2.91 0.70 3.59 2.41 
Chuzch -3.13-1.22 -2.13 -1.66 -3.13 -2.74 -0.99 -0.93 -3.89 -3.09 -2.59 -2.80 -1.38 - 1.91 -3.18 
Jlnterv -2.57 3.95-3.43 0.34 -2.78-3.76 -3.20 -2.03 -3.47 -3.30 -2.68 -3.03 -3.14 1.37 -2.86 
Sidewalk 1.07 3.68 0.24 -I.13 0.32-3.05 0.45 0.30 -3.05 -I.70 -0.43 -0.97-0.80 2.89 0.37 
Movies -2.05 0.47 1.70 -1.78 2.97-0.43 - 0 . 3 8 - 2 . 7 8 - 3 . 1 4 - 1 . 9 3  -2.80 -2.20 2.64 3.43 -2.09 
Bar -2.55 3.74 0.66 0.87 3.16-1.61 1.70 0.20 -2.61 0.53 -0.20 -0.76-1.07 3.72 -0.38 
Elevator -2.88 2.89 0.28 -1.47 0.59-3.20 0.61 -0.03 -2.93 -1.97 -1.93 -2.39-1.03 2.26 -2.78 
R~t room -1.66 2.74-1.70 -1.05 -2.16-1.68 0.53 0.24 -2.74 0.61 -1.03 -0.86 0.26 1.39 -0.99 
O w n r o o m  1.64 4.07 4.01 3.78 3.43 4.34 3.10 4.07 -0.26 2.30 3.01 2.22 3.49 3.66 1.93 
DLounge -0.11 3.37 2.03 3.22 2.68 1.57 0.99 4 .05-2 .11  -0.51 0.37 0 .07-0.63 3.24 -0.91 
FBGame -0.39 3.57 0.57 0.05 3.53-1.53 0.72 -0.82 -2.47 -0.66 0.47 2.61-0.20 3.39 3.43 

Table 2: Additive boxcs obtaincd with Additivc Box Algorithm 1. 

Box 
1 

2 

3 

4 

5 

6 

Row, Columna 
Pazk, Own room, Donn lounge Talk, Kiss, Write, Eat, 

Sleep, Re�91 Laugh 
Date, Family dinner, Movies, Tatk, Kiss, Est, 

Bar, FootbMl game Laugh 
Bus, Job interview, 

SidewMk, Elewator, Restroom 
Talk ,  L a u g h  

Cl �91  W r i t e ,  R e � 9 1  

O w n  r o o m  

P a r k ,  Foo tba l l  g a m e  

p Cont¡ 
4.34 16.9 

4.22 10.4 

3.95 5.0 

3.66 1.7 
3.3 

2.4 

M u m b l e ,  Belch ,  A r g u e ,  3.49 

J u m p ,  Cry ,  S h o u t  

Run, Jump, Shout 3.43 

Box 
I 

Tablc 3: Additive boxcs obtained with Algo¡ 2. 

Rows Columna 
Date, Bus, Pazk, Sidewdk, TMk, Kiss, Eat, Laugh 

F�91 dinner, Bar, Elevator, 
Movies, Own room, Dorm lounge, 

Foot ball gmme 
Cla.ss, Bus, Paxk, W¡ Sleep, Re�91 

Own room, Dorm lounge 
Cl�91 Date, Job interview, Talk, Laugh 

Bar, Pazk, Restroom, 
Own zoom, Football game 

Pazk, Own room Run, Mumble, Re�91 Belch, 
Argue, Jump, Cry, Shout 

Footbatl ga.me Jump, Shout 
Movies, Own r o o m  Cry 

A 

2.68 

2.60 

1.46 

1.96 

3.02 

2.09 

C o n t r i b . , %  

26.5 

8.5 

2.8 

5.1 

1.5 

0.7 
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Table 3 gives a pattem obtained with the Additive Box Algo¡ 2 
applied when the optimal intensity weights 7L s are required to be positive. The 
six boxes presented account for 45.1% of the variance of the data in Table 1; 
additional boxes fitted had successively smaller intensity weights and also 
very smaU contributions to the variance, and thus are omitted from Table 3. 
The solution here is somewhat different from that presented in Table 2, 
although some clusters are common to the two solutions; specifically, Boxes 
2 and 3 from Table 2 correspond to Boxes 1 and 3 from Table 3, respectively, 
in such a way that their column-sets coincide, and the row-sets of the boxes 
from Table 3 contain the row-sets of the corresponding boxes from Table 2. 
Another feature shared by the Tables 3 and 4 is that some clusters cont¡ 
to the variance less than do those that follow (see Clusters 4 and 5 in Table 2; 
3 and 4 in Table 3); this result contradicts the goal of the sequential fitting 
procedure which seeks a maximal contribution at each step. That contmdic- 
tion is generated by the local nature of the Algorithms 1 and 2 in Section 3.2: 
any cluster is created with a sequential addition/deletion of only one of the 
entities, beginning with a pair of maximally proximal entities. The results 
shown in the tables demonstrate that such a greedy procedure generally does 
not lead to the global maximum of the cluster contribution. 

In general, the boxes in Table 3 seem to be reasonable both according 
to their content and the coverage of the raw proximities. For example, in the 
first of the boxes, the proximities in submatrix X (Vi, Wl) are much higher 
than the other values of the corresponding columns, Kiss, Eat, Laugh, with 
the only two exceptions occurring in the column Talk: the proximity 3.95 to 
Job Interview (see Table 1) is taken into account in another box (the third), 
and the low proximity 0.47 to Movies, which is still positive and much 
greater than all the other proximities in the row Movies (excluding the 
column Cry, taken into account in Box 6). There is one entry in the first box 
cluster, Bus/Kiss, which has a rather small proximity value, -0.24 (similarly, 
the proximity for the entry Class/Sleep in the third cluster equals -0.91). 
Although it may seem unnatural to have that entry in the first cluster, the pres- 
ence of Bus/Kiss can be explained by the column Kiss being connected to the 
other rows of the cluster more tightly than it is disconnected from Bus, so the 
exclusion of either Bus or Kiss from Cluster 1 will decrease the value of the 
criterion maximized in (3.9). It appears that our least-squares estimation stra- 
tegy is heavily dependent on the value of the threshold (TL (V,W)/2, in this 
case) and sometimes allows the inclusion of marginal proximity values in the 
best-fitting solution. In support of this explanation, we note that for the data 
in Table 3, the inclusion of Kiss in Box 1 gives a better fit compared to its 
exclusion. Also the Bus/Kiss proximity value of-0.24 in Table 1 is still con- 
siderably greater than any of the proximities between Kiss and the row-items 
not included in the first box. Similar explanations could be offered for other 
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Table 4: Correspondence-wise boxes with their relative change of probability 
(RCP) values. 

Box 
I 
2 
3 
4 

Rows Columns 
Job interview Talk, Write, Laugh 

Class Write, Read, Argue 
Paxk, Sidewalk, FootbaU game Run, Jump, Shout 
Date, Family dinner, Movies Kiss, Eat 

A(RCP) Contrib.,% 
0.81 7.9 
0.74 7.3 
0.41 7.4 
0.43 6.3 

Table 5: Switching (from row to column product) data on soft drinks from 
Bass, Pessemier, and Lehmann (1972); estimates of potential movers among 
loyal (diagonal) consumers are in parentheses. 

Drinks Coke 7-Up Tab Like Pepsi Sp¡ DPepsi Fresca 
Coke 188(35) 33.0 3.0 10.0 41.0 17.0 4.0 11.0 
7-Up 32.0 77(14) 1.0 11.0 24.0 17.0 2.0 8.0 
Tab 2.0 3.0 4(1) 9.0 2.0 1.0 2.0 2.0 
Like 4.0 7.0 4.0 7(1) 11.0 2.0 6.0 5.0 
Pepsi 47.0 35.0 2.0 8.0 137(25) 20.0 7.0 10.0 
Sprite 8.0 13.0 2.0 5.0 11.0 23(4) 2.0 6.0 
DPepsi 4.0 2.0 8.0 4.0 5.0 4.0 11(2) 5.0 
Fresca 17.0 7.0 4.0 8.0 11.0 8.0 5.0 15(3) 

possible anomalies in the obtained solution (e.g., the Class/Sleep entry in Box 
3 of Table 3). 

The boxes shown in Table 3 could be also compared with the results 
from the analysis provided by Eckes and Orlik (1993) in their Table 5 (see 
Eckes and Orlik 1993, p. 70), which contains four box clusters, A, B, C, and 
D, in two forms: as obtained originally without overlap and then as followed 
up with those authors' overlapping procedure. The clusters refer to the aug- 
mented raw data table with a "negative" behavior added for each of the o¡ 
ginal behaviors, by using complementary values, 9 - x i  j ,  for the proximities. 
Only two of the clusters include actual activities not resulting from that aug- 
mentation of the data: C and D. From those, Cluster C coincides exactly with 
Box 1 in Table 3 (and also includes the "inconsistent" Bus/Kiss entry dis- 
cussed above), and Cluster D almost coincides with Box 4 in Table 3. StiU 
other boxes in Table 3 reveal other connections between situations and 
behavior. 

More sharply delineated segments of the data in Table 1 are found with 
correspondence-wise box cluste¡ (see Table 4 where the clusters contribut- 
ing more than 5% to the Pearson contingency coefficient are presented). 
These boxes correspond to data most deviant from the average values, but the 
deviance is not great: the connection of the row objects to the column objects 
in those boxes ranges from 41% (Box 3) to 81% (Box 1) higher than average. 
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The correspondence-wise box clustering was also applied to data col- 
lected by Bass, Pessemier, and Lehmann (1972), which have served to illus- 
trate many data analytic techniques (see, for example, DeSarbo 1982; Arabie, 
Schleutermann, Daws, and Hubert 1988). The data are usually considered in 
the form of conditional probabilities. The original contingency table form of 
these data is presented here (see Table 5). The correspondence-wise box 
clustering applied ad hoc to the matrix produced only one non-t¡ box 
(that is, a box that was nota dyad of the same brand with itself) consisting of 
three diet cola drinks: Tab, Like, and Diet Pepsi, both as the row and the 
column clusters. Although this cluster was repeatedly found in the analyses 
just cited, the main principle of organization among the drinks was generated 
by the contrasts of cola versus non-cola and diet versus non-diet. The use of 
box clustering techniques allows us to display yet another aspect of the data. 
Brand switching data typically have large values for the elements in the prin- 
cipal diagonal, corresponding to brand-loyal consumers. Colombo and 
Morrison (1989) have argued that the influence of the diagonal entries should 
be mitigated when emphasizing the information in the off-diagonal entries. 
Our normalization is based on a type of statistical independence hypothesis 
(as in Colombo and Morrison 1989) that replaces the observed diagonal 
values with those in parentheses (see Table 5). The hypothesis suggests that 
any nondiagonal entry Pij (i ;e j )  can be expressed a s  Pij = o~fi gj where 3Ÿ is 
the probability of switching from brand i, gj is the probability of switching to 
brand j, and t~ is the probability of potential switching behavior (applied to 
both loyal and nonloyal purchasers). After the unknown values of 3Ÿ gj, and 
o~ ate obtained (with least-squares techniques, for example), the proportion of 
the potential switchers for any given principal diagonal entry Pii is estimated 
as ~ = (Ix-Y-,i~j Pi j ) /ZPi i  �9 These proportions ~Pii are presented in Table 5 
in parentheses beside the diagonal entries. 

The results show that there ate only three important boxes, accounting 
for 52.7% of the total sum of weighted squares of the data. These boxes are: 
Diet Pepsi x Tab (RCP -- 4.9, cont¡ 24.6%), Tab x Like (RCP = 3.58, 
contribution = 19.05%), and Like x {Tab, Diet Pepsi} (RCP = 1.85, contribu- 
tion = 9.05%). The same three drinks found here are contained in the non- 
trivial box obtained using the original data, but the boxes now give more 
interpretable information: obviously, the consumers do not like any of these 
drinks, and keep changing the selection as if ever hoping for an acceptable 
diet entry to appear. 

6. Conclusion 

A model-based approach to two-mode clustering is provided and its 
theoretical and practical advantages have been shown. Two versions of the 
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additive box clustering model in (3.1) have been considered: direct (Section 
3) and correspondence-wise (Section 4), and a special technique has been 
developed for fitting this kind of clustering model. The technique is based on 
a doubly greedy optimization strategy: first, clusters are obtained sequentially 
(cluster-by-cluster) rather than simultaneously, and second, each cluster is 
formed incrementally, with an element-by-element addition/deletion strategy; 
each greedy step maximizes the explained part of the total sum of squares. 
Such a technique is rather simple computationally, and also allows a formal 
analysis of its properties. Because of these formal underpinnings, our 
approach has some technical advantages over the one presented by Eckes and 
Orlik (1993): 

1. The parameters of the algorithms can be set according to theoretical con- 
siderations, not heuristically (compare, for example, the arbitrary 80% 
threshold stopping rule of Eckes and Orlik 1993, with the model-based 
stopping crite¡ in Section 3). Although such a theoretical criterion 
also uses thresholds, such as 1% of the contribution to the va¡ 
these thresholds have a traditional statistical meaning; 

Interpretation of the clusters becomes much easier (compare, for exam- 
pie, the precise meaning of the RCP intensity weight in (4.3) or the con- 
tributŸ to the total sum of squares 
of the data with the very imprecise meaning of the parameter ~t con- 

sidered by Eckes and Odik (1993)); 

The problems Eckes and Orlik (1993) noted, namely an arbitrary 
definition of ~t and the post hoc construction of possibly overlapping 
clusters, are resolved rather easily in our model-based strategy; 

The analyses presented in Section 5 also appear more direct and com- 
plete in comparison to those of Eckes and Orlik (1993). The additive 
clustering allows: first, treating the raw data without any special aug- 
mentation techniques; second, obtaining a larger number of clusters 
because they are allowed to oveflap from the very beginning. Also, in 
those specific examples, additive clustering techniques have found the 
same clusters obtained by Eckes and Orlik (1993) with their error- 
variance approach, and some additional clusters have been identified, 
with several other connections between situations and behavior 
presented (like jumping and shouting at a football game in Table 3), but 
these advantages might be less evident for other examples. 

2) 

3) 

4) 
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